Open questions in hadron physics
Spectroscopy with the Crystal–Barrel Detector

Volker Credé

• Introduction

• The Crystal–Barrel Detector at LEAR (CERN)
 – Meson spectroscopy in \(\bar{p}p \) reactions at rest and the search for exotic states

• The Crystal–Barrel Experiment at ELSA: initial configuration (2000/2001)
 – Baryon spectroscopy (photoproduction of neutral mesons: \(E_\gamma < 3 \text{ GeV} \))
 – \(\gamma p \rightarrow p \pi^0 (p \eta) \Rightarrow \) differential and total cross sections
 – \(\gamma p \rightarrow p \pi^0 \pi^0 (p \pi^0 \eta) \Rightarrow \) total cross sections and PWA

• Summary and outlook: polarization measurements with CB/TAPS (2003)
Access to QCD and fundamental questions

Breaking of chiral symmetry can be treated perturbatively.

Application of perturbation theory allows access to QCD.

| resonance region at | very small energies | intermediate energies | very large energies |

Do we understand bound systems within the framework of QCD?

⇒ Development of QCD-inspired models can help to find answers to ...

... the fundamental questions

- What are the relevant degrees of freedom and the corresponding effective interactions responsible for hadronic phenomena?
- What are the mechanisms for confinement and for chiral symmetry breaking?
Mesons

- $D_{sJ}^+(2317) \rightarrow D_s^+ \pi^0$ at BaBar
- $D_{sJ}^+(2457) \rightarrow D_s^{*+} \pi^0$ at CLEO

⇒ Observation of missing 0^+ and 1^+ states in the D_s^+ $(c\bar{s})$ system?
⇒ ... or even DK molecules or tetraquarks?

- $B^\pm \rightarrow K^\pm \pi^+ \pi^- J/\psi$ at BELLE
 (S.K. Choi et al., hep-ex/0303032)

Baryons

- Observation of Θ^+ with $S = 1$
 (LEPS, CLAS, DIANA, SAPHIR, etc.)
- Observation of Ξ^{--} with $Q = -2$
 (C. Alt et al. [NA49 Coll.], hep-ex/0310014)

⇒ Observation of pentaquark states as members of an antidecuplet?

Observation of an enhancement at $p\bar{p}$ threshold in $J/\psi \rightarrow \gamma \eta_c \rightarrow \gamma p\bar{p}$
(BES Coll. at HADRON’03 conference)
The quark model of hadrons

- Mesons \((q\bar{q})\)
 \(q \otimes \bar{q} = 3 \otimes \bar{3} = 8 \oplus 1\)

- Baryons \((qqq)\)
 \(q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1\)

Ordinary matter, however, QCD also predicts so-called exotic states

⇒ simplest possibility:
 \[q \otimes q \otimes q = 15 \oplus 6 \oplus 3 \oplus 3 \]

Does not work: color singlets needed!

⇒ multiple of \((qqq)\) and \((q\bar{q})\) necessary

- Glueballs:
 \(g \otimes g = 8 \otimes 8 = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 1\)

- Hybrids:
 \(q \otimes \bar{q} \otimes g = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 8 \oplus 1\)
 \(\Rightarrow (q\bar{q})^l((q)^3)^m(g)^n,\)
 \(l + m \geq 1\)
 for \(n = 1\)
The quark model of hadrons

- **Mesons** \((q\bar{q})\) \(q \otimes \bar{q} = 3 \otimes \bar{3} = 8 \oplus 1\)
- **Baryons** \((qqq)\) \(q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1\)

Ordinary matter, however, QCD also predicts so-called exotic states

⇒ simplest possibility: \(q \otimes \bar{q} \otimes q = 15 \oplus 6 \oplus 3 \oplus 3\)

Does not work: color singlets needed!

⇒ multiple of \((qqq)\) and \((q\bar{q})\) necessary

- **Glueballs**: \(g \otimes g = 8 \otimes 8 = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 1\)
- **Hybrids**: \(q \otimes \bar{q} \otimes g = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 8 \oplus 1\) \(\Rightarrow\) \((q\bar{q})^l((q)^3)^m(g)^n\),
 \(l + m \geq 1\) for \(n = 1\)
The search for new forms of matter

All exotic states of hadrons can be subdivided into three groups:

1. States with explicitly exotic values of principal quantum numbers

 - Θ^+ with $S = 1$
 - Ξ^{--} with $Q = -2$
All exotic states of hadrons can be subdivided into three groups:

1. States with explicitly exotic values of principal quantum numbers
 - Θ^+ with $S = 1$
 - Ξ^{--} with $Q = -2$

2. States with exotic combinations of J^{PC}
 - Forbidden for ordinary $q\bar{q}$ states:
 - 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, etc.

 \[
 \begin{align*}
 \pi_1(1400) &\rightarrow \eta\pi^- \\
 \pi_1(1600) &\rightarrow \eta'\pi^-
 \end{align*}
 \]
 \[J^{PC} = 1^{-+}\]
The search for new forms of matter

All exotic states of hadrons can be subdivided into three groups:

1. States with explicitly exotic values of principal quantum numbers
 - \(\Theta^+ \) with \(S = 1 \)
 - \(\Xi^{--} \) with \(Q = -2 \)

2. States with exotic combinations of \(J^{PC} \)
 - \(\pi_1(1400) \rightarrow \eta\pi^- \)
 - \(\pi_1(1600) \rightarrow \eta'\pi^- \)
 \[J^{PC} = 1^{-+} \]

3. States with hidden exotic properties
 - Problem: predicted glueballs can mix with ordinary \(q\bar{q} \) states
 - \(f_0(1500) \)
 \[J^{PC} = 0^{++} \]

Evidence far from solid
 - Details needed for a full understanding are missing
Spectroscopy with the Crystal–Barrel Detector

1989 - 1996 (at LEAR/CERN)

- Investigation of $\bar{p}p$ and $\bar{p}d$ annihilations
 - Annihilation dynamics in the non-perturbative regime of QCD
 - Search for baryonium ($\bar{p}p$ bound states)
- Spectroscopy of light mesons

2000 - present (University of Bonn)

- Photoproduction experiments at ELSA
 - Spectroscopy of light baryons
 (... and mesons)
The Crystal–Barrel Detector at LEAR

1. magnet yoke
2. magnet coils
3. CsI barrel calorimeter
4. jet drift chamber (JDC)
5. proportional wire chamber
6. target (liquid H₂, deuterium)
7. one half of the endplate
Ordinary mesons and assigned quantum numbers

\[J^{PC} \equiv 2s+1 L_J \]

- Parity \(P = (-1)^{L+1} \)
- Charge conjugation (defined for neutral mesons)
 \(C = (-1)^{L+S} \)
- G parity \(G = (-1)^{L+1+I} \)
Ordinary mesons and assigned quantum numbers

\[J^{PC} \equiv 2s^1 L_J \]

- Parity \(P = (-1)^{L+1} \)
- Charge conjugation (defined for neutral mesons)
 \(C = (-1)^{L+S} \)
- G parity \(G = (-1)^{L+1+I} \)

Nonet of pseudoscalar mesons
\[J^{PC} = 0^{-+} \quad (L = 0, \ S = 0) \]
Ordinary mesons and assigned quantum numbers

\[J^{PC} = 2s+1 L_J \]

- Parity \(P = (-1)^{L+1} \)
- Charge conjugation
 (defined for neutral mesons)
 \(C = (-1)^{L+S} \)
- \(G \) parity \(G = (-1)^{L+1+I} \)

Nonet of pseudoscalar mesons
\[J^{PC} = 0^{--} \quad (L = 0, \ S = 0) \]

Nonet of vector mesons
\[J^{PC} = 1^{--} \quad (L = 0, \ S = 1) \]
Ordinary mesons and assigned quantum numbers

What about nonets of radial and orbital excitations?
⇒ Meson spectroscopy
⇒ Hints for exotic mesons from overpopulation of nonets

Nonet of pseudoscalar mesons
\[J^{PC} = 0^{-+} \ (L = 0, \ S = 0) \]

Nonet of vector mesons
\[J^{PC} = 1^{--} \ (L = 0, \ S = 1) \]
The technique of Partial Wave Analysis

Measured intensity (incoherent sum over all possible $\bar{p}N$ initial states):

$$I = \sum_{JPC(\bar{p}N)} |A_{JPC}|^2$$

$$A_{JPC} = \sum_a \left(\sum_i \text{combinations} \right) CG_i \cdot H_{JPC,L,l}(\Theta) \cdot B_L(p) \cdot \hat{F}_l(q)$$

Angular dependence in terms of helicity amplitudes

$$H_{\lambda_1\lambda_2,M}(\theta, \phi) = D^{J}_{\lambda M}(\theta, \phi) \sum_{l_s} \alpha_{ls} \langle J\lambda|ls0\lambda \rangle \langle s\lambda|s_1s_2\lambda_1,-\lambda_2 \rangle$$

In simplest case, \hat{F} given as Breit–Wigner function

$$\Rightarrow \text{Parametrization of } \hat{F} \text{ in } K\text{-matrix formalism}$$

$$\hat{F} = (I - i\hat{K}\rho)^{-1} \hat{P}$$

Propagation and decay Production
Hint for an exotic state with $J^{PC} = 1^{--}$

Investigation of the reaction $\bar{p}d \rightarrow \omega \pi^- \pi^0 + p_{\text{spectator}}$

More than just $\rho(770) \, \rho(1450) \, \rho(1700)$ in the spectrum of $(I = 1)$ vector mesons
\Rightarrow good reasons for $\rho(1200)$

PhD thesis Burkhard Pick, Bonn 2000
(submitted to Nucl. Phys. A)
Hint for an exotic state with $J^{PC} = 1--$

Investigation of the reaction $\bar{p}d \rightarrow \omega\pi^-\pi^0 + p_{\text{spectator}}$

More than just $\rho(770)$ $\rho(1450)$ $\rho(1700)$ in the spectrum of $(I = 1)$ vector mesons

\Rightarrow good reasons for $\rho(1200)$

Possible scenario:

\begin{align*}
\begin{pmatrix}
\rho(1200) \\
\rho(1450) \\
\rho(1700)
\end{pmatrix}
= M \begin{pmatrix}
|2^3S_1> \\
|H_0> \\
|1^3D_1>
\end{pmatrix}
\end{align*}

Hint for an exotic state with $J^{PC} = 0^{-+}$?

Investigation of the reaction $\bar{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-\eta$

Interpretation of PDG

$\eta(1295)$ first radial excitation of the η (2^1S_0)

$\eta(1440)$ \begin{align*}
\eta(1400) & \text{ exotic candidate} \\
\eta(1480) & \text{ radial excitation of the } \eta' (2^1S_0)
\end{align*}

Conclusion

- No evidence for $\eta(1295)$ in $p\bar{p}$ reactions
 \[\Rightarrow\] Does it exist? Possibly not a $q\bar{q}$ state!

PhD thesis Jörg Reinnarth, Bonn 2003
Observation of an exotic $J^{PC} = 1^{+-}$ state

Most prominent candidate for an exotic hybrid state: $\pi_1(1400)$

52567 events in the Dalitz plot

$$PWA \begin{cases} \ ^3S_1 \rho^-(770), \rho^-(1450), \ a_2(1320) \\ \ ^1P_1 \ a_0(980), \ a_0(1450) \end{cases}$$

\Rightarrow confirmation of exotic state in analysis of $\bar{p}p \rightarrow \pi^0 \left(\pi^0 \eta \right)$

(PhD thesis Mario Herz, Bonn 1997)

Exotic $\eta\pi$ state in $\bar{p}d$ annihilation at rest into $\pi^-\pi^0\eta p_{\text{spectator}}$

in agreement with D.R. Thompson et al. (E852 collaboration)
The search for the scalar glueball in $p\bar{p}$ annihilation

\[m^2(\pi^0\pi^0) \text{ [MeV/c}^2]\] $\times 10^3$

\[m^2(\pi^0\eta\eta) \text{ [MeV/c}^2]\] $\times 10^3$

\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
\hline
$f_0(980)$ & $K\bar{K}$ & $K\bar{K}$ & $q\bar{q}$ & $q\bar{q}$ \\
$a_0(980)$ & $K\bar{K}$ & $K\bar{K}$ & $q\bar{q}$ & $K\bar{K}$ \\
$f_0(1000)$ & ρ ex. in t & ρ ex. in t & Glueball & ρ ex. in t^2 \\
$f_0(1370)$ & $q\bar{q}^1$ & $q\bar{q}^1$ & Glueball & $q\bar{q}$ \\
$f_0(1500)$ & Glueball \(^1\) & $q\bar{q}^1$ & Glueball \(^1\) & $q\bar{q}$ \\
$f_0(1750)$ & $q\bar{q}^1$ & Glueball \(^1\) & - & 2^3P_0 \\
\hline
\end{tabular}
\end{center}

Is $f_0(1500)$ a glueball? \(^1\) strongly mixed
\(^2\) possibly $\rho\rho$ molecule
There are many indications for gluonic excitations
⇒ however, most candidates are questionable

As yet little theoretical guidance on the masses of hybrid states:

- Mass-range predictions for light-quark hybrids from 1.5 to 2.5 GeV/c² with the lightest exotic state ($J^{PC} = 1^{-+}$) having a mass about 2 GeV/c² (lattice QCD and flux-tube models)

- However, the observed masses of the most prominent exotic candidates ($\pi_1(1400), \pi_1(1600)$) are much too low

⇒ in addition: neither of the discussed pseudoscalar or vector candidate with non-exotic quantum numbers has a mass as predicted for hybrids

No hybrid assignment yet to any observed state in the baryon spectrum

↓

Do hybrids really exist?
Photoproduction with the Crystal–Barrel Detector at ELSA

\[2.0 < m_{p\pi^0\pi^0} < 2.1 \text{ (in GeV}/c^2) \]

Baryon spectroscopy
- Search for missing resonances
General Physical Motivation

⇒ Search for *missing* resonances

Quark models predict many more baryons than have been observed

<table>
<thead>
<tr>
<th></th>
<th>****</th>
<th>***</th>
<th>**</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N spectrum</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Δ spectrum</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

⇒ according to PDG
⇒ little known
(many open questions left)

Possible solutions:

a) Quark-diquark structure

- one of the internal degrees of freedom is frozen

b) They have not been observed, yet

- Nearly all existing data result from πN scattering experiments
⇒ If the missing resonances did not couple to Nπ, they would not have been discovered!! (supported by theory)
Effective theories and models necessary to make spectroscopic predictions

Basic assumption: linear confinement potential + residual short–range interaction

- **Goldstone–boson (pion) exchange**

 (*relativized* quark model)
 1. wrong spin–orbit couplings
 2. no explanation for parity doublets

- **Instanton–induced interaction** (relativistic quark model)
 1. acceptable Regge trajectories
 2. natural explanation for parity doublets

Which is the right model?
⇒ Do we have a correct model? Is there really one interaction that dominates?
Symmetries and classification

\[|qqq\rangle = |\text{colour}\rangle_A \cdot |\text{space; spin, flavour}\rangle_S \]
\[
O(6) \quad SU(6) \rightarrow SU(2)|_{\text{spin}} \otimes SU(3)|_{\text{flavour}}
\]

⇒ Total wave function antisymmetric with respect to exchange of two quarks

SU(6) symmetry: (Notation: \(2^{2S+1}\) multiplet)

\[
6 \otimes 6 \otimes 6 = 56_S \oplus 70_M \oplus 70_M \oplus 20_A
\]

⇒ \[
56 = 4^{10} \oplus 28 \\
70 = 2^{10} \oplus 4^8 \oplus 2^8 \oplus 2^1 \\
20 = 2^8 \oplus 4^1
\]

Classification of multiplets (D, L\(^P_N\)):

ground state (56, \(0^+_0\)):

\[
\Delta_{\frac{3}{2}^+}(1232) \quad \epsilon^{4\,10} \\
N_{\frac{1}{2}^+}(939) \quad \epsilon^{2\,8}
\]

1. excited state (70, \(1^-_1\)):

\[
\begin{align*}
\Delta_{\frac{1}{2}^-}(1620), & \quad \Delta_{\frac{3}{2}^-}(1700) \quad \epsilon^{2\,10} \\
N_{\frac{1}{2}^-}(1535), & \quad N_{\frac{3}{2}^-}(1520) \quad \epsilon^{2\,8} \\
N_{\frac{1}{2}^-}(1650), & \quad N_{\frac{3}{2}^-}(1700) \quad \epsilon^{4\,8} \\
N_{\frac{5}{2}^-}(1675)
\end{align*}
\]

Notation for baryon resonances:

(example)

\[
S_{11}(1535) \iff N_{\frac{1}{2}^-}(1535)
\]
Nucleon resonances

Bonn model: residual short-range interaction based on instanton–induced forces
Nucleon resonances

OGE model: residual short-range interaction based on one-gluon exchange
Δ-resonances

Bonn model: residual short-range interaction based on instanton–induced forces

too low in mass

<table>
<thead>
<tr>
<th>J π</th>
<th>L 2T 2J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2+</td>
<td>P 31</td>
</tr>
<tr>
<td>3/2+</td>
<td>P 33</td>
</tr>
<tr>
<td>5/2+</td>
<td>F 35</td>
</tr>
<tr>
<td>7/2+</td>
<td>F 37</td>
</tr>
<tr>
<td>9/2+</td>
<td>H 39</td>
</tr>
<tr>
<td>11/2+</td>
<td>H 3 11</td>
</tr>
<tr>
<td>13/2+</td>
<td>K 3 13</td>
</tr>
<tr>
<td>15/2+</td>
<td>K 3 15</td>
</tr>
<tr>
<td>1/2-</td>
<td>S 31</td>
</tr>
<tr>
<td>3/2-</td>
<td>D 33</td>
</tr>
<tr>
<td>5/2-</td>
<td>D 35</td>
</tr>
<tr>
<td>7/2-</td>
<td>G 37</td>
</tr>
<tr>
<td>9/2-</td>
<td>G 39</td>
</tr>
<tr>
<td>11/2-</td>
<td>I 3 11</td>
</tr>
<tr>
<td>13/2-</td>
<td>I 3 13</td>
</tr>
<tr>
<td>15/2-</td>
<td></td>
</tr>
</tbody>
</table>

OGE model: residual short-range interaction based on one-gluon exchange

too low in mass
The Electron Stretcher Ring ELSA

Investigation of the nucleon structure with a 4π high-resolution photon detector at the Electron Stretcher Accelerator ELSA in Bonn

Collaboration of
- Basel
- Bochum
- Bonn
- Dresden
- Erlangen
- Gatchina
- Gießen
- Groningen
- Münster
The Crystal–Barrel Experiment at ELSA

Photoproduction experiment using a liquid H$_2$ target
(unpolarized in a first series of experiments → 2000/2001)

Tagging range:
25 % – 93 % of incoming E_{e^-}

$E_{e^-} = 1.4$ GeV
0.35 GeV $\leq E_\gamma \leq 1.3$ GeV
1.2 GeV/$c^2 \leq \sqrt{s} \leq 1.8$ GeV/c^2

$E_{e^-} = 3.2$ GeV
0.8 GeV $\leq E_\gamma \leq 3.0$ GeV
1.5 GeV/$c^2 \leq \sqrt{s} \leq 2.6$ GeV/c^2
The tagging system

- 14 scintillation counters
- 2 wire chambers (352 wires)
- tagging range: 25% – 92%
Target and inner detector

The inner detector:

- 3 layers of scintillating fibres
 (⇒ additional reconstruction point)
- Trigger on charged tracks
The Crystal–Barrel Experiment at ELSA

Tagging magnet

Barrel calorimeter
Photoproduction of π^0 / η mesons

Excitation spectra and quantum numbers alone do not provide very sensitive tests of hadron models

Models also have to...

- predict transitions between states
- link observables to fundamental questions

⇒ Little known on η decays!
- Selection according to the number of clusters in the Crystal Barrel
- Identification of protons via inner scintillating fibre detector
- Kinematic fitting
 (e.g. $3\pi^0$ and missing proton)

Reconstruction

from hep-ph/0311045
on eta photoproduction

Invariant $\gamma\gamma$ mass
Differential cross sections for the reaction $\gamma p \to p \pi^0$

$d\sigma/d\Omega$ [μb/sr]

- SAID predictions
- CB–ELSA fit

PhD thesis Harald van Pee, Bonn 2003
Differential cross sections for the reaction $\gamma p \rightarrow p \pi^0$

PhD thesis Harald van Pee, Bonn 2003
Differential cross sections for the reaction $\gamma p \rightarrow p\pi^0$

$d\sigma/d\Omega$ [\(\mu b/sr\)]

- SAID predictions
- CB–ELSA fit

PhD thesis Olivia Bartholomy, Bonn 2004
Differential cross sections for the reaction $\gamma p \rightarrow p \pi^0$

$d\sigma/d\Omega$ [$\mu b/sr$]

- **SAID predictions**
- **CB–ELSA fit**

Preliminary

PhD thesis Olivia Bartholomy, Bonn 2004
Total cross section for the reaction $\gamma p \rightarrow p \pi^0$
Investigation of the reaction $\gamma p \rightarrow p \pi^0$

Aspects of pion production for CB-ELSA

- **Understanding of detector acceptances** in preparation for partial wave analyses also for other channels ($\gamma p \rightarrow p \pi^0 \pi^0$, $\gamma p \rightarrow p \pi^0 \eta$, etc.)

- **Normalisation** (photon flux) by fitting angular distributions to known SAID predictions \Rightarrow cross check with hardware measurements

- **Better understanding of high-energy behaviour**
 \Rightarrow $E_\gamma > 2$ GeV:

 t–channel vector–meson exchanges are better described in terms of Regge trajectories \Rightarrow allows extrapolation towards lower energies

Resonances are excited up to the highest available photon energies, however, strong production of pions in the forward direction is observed above 2.4 GeV (presumably exchange of mesons in the t–channel)
Investigation of the reaction $\gamma p \rightarrow p \eta$

$\eta \rightarrow 3\pi^0$

$N_\eta = 16105$

$\sigma = 9.71013$

$\gamma p \rightarrow p X$ (missing mass)

$(CLAS)$

$(CB - ELSA)$
Investigation of the reaction $\gamma p \rightarrow p \eta$

$R = 0.825 \pm 0.001 \pm 0.005$

$BR(\eta \rightarrow 3\pi^0) \approx 32.5 \%$

$BR(\eta \rightarrow \gamma\gamma) \approx 39.4 \%$

$R = \frac{BR(\eta \rightarrow 3\pi^0)}{BR(\eta \rightarrow 2\gamma)}$

for each bin in $d\sigma/d\Omega$

weighted by $1/\sigma^2$

PDG:

- 0.826 ± 0.024 SND
- 0.832 ± 0.013 TAPS
- 0.841 ± 0.037 CBAR

\Rightarrow Data for $\eta \rightarrow \gamma\gamma$ and $\eta \rightarrow 3\pi^0$ can be added up!
Differential cross sections for the reaction $\gamma p \rightarrow p \eta$

$\frac{d\sigma}{d\Omega}$ [μb/sr]

Differential cross sections for the reaction $\gamma p \rightarrow p \eta$

$\frac{d\sigma}{d\Omega}$ [μb/sr]

Models describing differential cross sections for $\gamma p \rightarrow p \eta$

- **Multipole analysis** *(L. Tiator et al.: PRC 60 (1999) 035210)*
 Bonn as well as Mainz cross section data,
 Graal beam polarization up to 1100 MeV
 \[\Rightarrow S_{11}(1535), D_{13}(1520), S_{11}(1650), D_{15}(1675), P_{11}(1440), F_{15}(1680) \]

- **Isobar model** *(ETA-MAID by W.T. Chiang, L. Tiator)*
 \[\Rightarrow S_{11}(1535), D_{13}(1520), S_{11}(1650), D_{15}(1675), F_{15}(1680), D_{13}(1700), P_{11}(1710), P_{13}(1720) + (\rho, \omega) \text{ exchange in the } t\text{-channel} \]

- **Coupled-channel analysis** *(C. Bennhold et al.: PRC 58 (1998), 457 PRC 59 (1999), 460)*
 \[\Rightarrow \text{all known spin–1/2 and spin–3/2 resonances included up to 2 GeV} \]
 \[+ (\rho, \omega) \text{ exchange in the } t\text{-channel} \]
 \[\Rightarrow \text{only } S_{11}(1535), D_{13}(1520), S_{11}(1650), D_{13}(1700) \text{ of importance} \]

- **Chiral constituent quark model** *(B. Saghai and Z. Li: proceedings of N* conference 2002)*
 \[\Rightarrow \text{all known *** and **** resonances included, no } t\text{-exchange contributions}! \]
 \[\Rightarrow \text{third } S_{11} \text{ (m = 1780 MeV, } \Lambda = 280 \text{ MeV): CLAS data up to } E_\gamma = 2 \text{ GeV} \]
Total cross section for the reaction $\gamma p \rightarrow p \eta$

The angular coverage of new CB–ELSA data allows determination of the total cross section.

⇒ No need for third S_{11}

Remaining questions:

- How do baryon resonances couple to η mesons?
- Is there evidence for a third S_{11} at 1780 MeV?
- How are η mesons produced at high energies?
Hidden symmetry for η decays?

$L=3$

<table>
<thead>
<tr>
<th>$S=3/2$</th>
<th>$S=1/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J=3/2$</td>
<td>$J=5/2$</td>
</tr>
<tr>
<td>$J=7/2$</td>
<td>$J=9/2$</td>
</tr>
</tbody>
</table>

$L=2$

<table>
<thead>
<tr>
<th>$S=3/2$</th>
<th>$S=1/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J=1/2$</td>
<td>$J=3/2$</td>
</tr>
<tr>
<td>$J=5/2$</td>
<td>$J=7/2$</td>
</tr>
<tr>
<td>$J=9/2$</td>
<td></td>
</tr>
</tbody>
</table>

$L=1$

<table>
<thead>
<tr>
<th>$S=3/2$</th>
<th>$S=1/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J=1/2$</td>
<td>$J=3/2$</td>
</tr>
<tr>
<td>$J=5/2$</td>
<td>$J=7/2$</td>
</tr>
<tr>
<td>$J=9/2$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19</th>
<th>17</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>N(2200)D</td>
<td>N(2190)G</td>
</tr>
<tr>
<td></td>
<td>N(2250)G</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1535)S</td>
<td>N(1675)D</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1680)F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1720)P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1900)P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1700)D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1680)F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2000)F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2080)G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2080)D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2000)D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2190)G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1990)F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2100)P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1650)S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1535)S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1720)P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1650)S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1520)D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1680)F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1990)F</td>
</tr>
</tbody>
</table>
Investigation of the reaction $\gamma p \rightarrow p \pi^0 \eta$

Data comprises full statistics of a 2001 production run with $E_{e^-} = 3.2$ GeV:

\[
\begin{array}{c}
\text{CL}_{p\pi^0\gamma\gamma} > 10\% \\
\text{CL}_{p\pi^0\gamma\gamma} > 10\% \text{ and } \text{CL}_{p\pi^0\eta} < 1\% \\
\text{CL}_{p\pi^0\gamma\gamma} > 10\% \text{ and } \text{CL}_{p\pi^0\pi^0} < 1\%
\end{array}
\]

Selection
- 5-particle final states
- proton identification: inner detector
- kinematic fitting
 - energy as well as momentum conservation
 - mass constraints

\Rightarrow Signal to background ratio for mesons:
- for η meson in the reaction $\gamma p \rightarrow p \pi^0 \eta$: $\approx 16 : 1$
- for π^0 meson in the reaction $\gamma p \rightarrow p \pi^0 \pi^0$: $\approx 30 : 1$
Mass plots for the reaction $\gamma p \rightarrow p \pi^0 \eta \ (E_{e^-} = 3.2 \text{ GeV})$

1.8 < \sqrt{s} < 2.0 (in GeV/c²)

forming invariant $p\pi^0$ mass for (b)

Do we observe $\Delta^* \rightarrow \Delta(1232)\eta$?

2.2 < \sqrt{s} < 2.35 (in GeV/c²)

forming invariant $p\pi^0$ mass for (c)
Mass plots for the reaction \(\gamma p \rightarrow p \pi^0 \eta\) \((E_{e^-} = 3.2\ \text{GeV})\)

\(\gamma p \rightarrow p \pi^0 \eta\)

forming invariant \(\pi^0 \eta\) mass

Parameters for \(a_0(980)\) production:
- \(E_{\text{threshold}} \approx 1490\ \text{MeV}\)
 \(\Rightarrow \sqrt{s} \approx 1920\ \text{MeV}/c^2\)

Do we observe \(\gamma p \rightarrow \Delta^* \rightarrow a_0(980) p\)?
Total cross section of $\gamma p \rightarrow p\pi^0\eta$

Performing a PWA: first results

Total cross sections with 20 MeV bin size

- New resonances necessary in order to describe data:
 \Rightarrow evidence for $(I = \frac{3}{2}^-, J = \frac{3}{2}^-)$ at ≈ 2.2 GeV
- Hints for contributions from the reaction $\Delta^* \rightarrow a_0(980)p$
- Question of negative-parity Δ states around 1900 MeV:
 \Rightarrow solutions ambiguous
 (polarization necessary)
 \Rightarrow CB/TAPS

Unbinned maximum likelihood fit:
- event-based fit (important for $\#\text{particles} \geq 3$)
- takes all correlations properly into account
 (5 independent variables)
Investigation of the reaction $\gamma p \rightarrow p \pi^0 \pi^0$ ($E_{e^-} = 3.2$ GeV)

1.6 < \sqrt{s} < 1.75 (in GeV)

1.87 < \sqrt{s} < 1.98 (in GeV)

2.0 < \sqrt{s} < 2.1 (in GeV)
New challenges: linear polarization and CB–TAPS

Crystal Barrel
- 180 CsI crystals removed in the forward direction

- (un)polarized photon beam
- liquid H₂, deuterium
- solid targets

TAPS
- 512 BaF crystals
- forward detector
 - high granularity
 - fast trigger
Polarization observables provide additional pieces of information
⇒ Results of PWA for the reaction $\gamma p \to p \pi^0 \eta$ are ambiguous

Calculation $\to (P_T = 100\%)$

Example for 2-body final state (E fixed): $N(\phi) = N_0(1 + P_T \cdot \Sigma \cdot \cos(2\phi))$

P_T: transversal photon polarization
Σ: photon asymmetry of the reaction
P_y: $P_T \cdot \Sigma$ (one for 2-body decay)
⇒ more for 3-body decay

$\left\{ \begin{array}{l}
J^P = 1/2^+ \text{ (polarized and unpolarized)} \\
J^P = 3/2^- \text{ (unpolarized)} \\
J^P = 3/2^- \text{ (polarized)}
\end{array} \right.$
Diamond crystal used to create coherent bremsstrahlung

Agreement between polarization and observed asymmetry very good!

$E_{\text{pol}} = 1600 \text{ MeV}$

$E_{\text{photon}} [\text{MeV}]$
CB–TAPS (2003 data): $\gamma p \rightarrow p \pi^0 \eta$

Discrimination of ambiguous solutions in the PWA of the unpolarized data
\rightarrow higher sensitivity
(small contributions may have a big effect in certain polarization variables)

170,000 events of the type $\gamma p \rightarrow p \pi^0 \eta$
(30 % of total statistics)

\[
\begin{align*}
\Phi_{\pi^0} & \text{ for different } \cos \Theta_{\pi^0} \text{ bins} \\
& \text{(data is not yet acceptance corrected!)} \\
& \text{(1440 MeV} \leq E_{\gamma} \leq 1640 \text{ MeV})
\end{align*}
\]
A: Baryon spectroscopy: Touching upon the question of *missing resonances*

- Observation of baryon cascades in $\gamma p \rightarrow p \pi^0 \pi^0$ as well as $\gamma p \rightarrow p \pi^0 \eta$
- Hint for new N* resonance $N(2080) D_{15}$ observed in its decay to $p\eta$ (V. Credé et al., submitted to Phys. Rev. Lett.)
- Hints for further states: $\Delta_{3/2}^-$ around 2.2 GeV/c^2 (in the reaction $\gamma p \rightarrow p \pi^0 \eta$)

There is yet a lot more to be discovered!

\Rightarrow Polarization (beam and target)

Crystal Barrel at ELSA
CLAS at JLab, etc.
Summary and conclusion

A: Baryon spectroscopy: Touching upon the question of missing resonances

- Observation of baryon cascades in $\gamma p \rightarrow p \pi^0 \pi^0$ as well as $\gamma p \rightarrow p \pi^0 \eta$
- Hint for new N* resonance $N(2080)D_{15}$ observed in its decay to $p\eta$
 (V. Credé et al., submitted to Phys. Rev. Lett.)
- Hints for further states: $\Delta^{3-}_{\frac{3}{2}}$ around 2.2 GeV/c^2 (in the reaction $\gamma p \rightarrow p \pi^0 \eta$)

There is yet a lot more to be discovered!

\Rightarrow Polarization (beam and target)

Crystal Barrel at ELSA
CLAS at JLab, etc.

B: Meson spectroscopy: The search for new forms of matter

There are certainly striking observations ($\Rightarrow J^{PC} = 1^{-+}$)!
(\Rightarrow However, our knowledge is far from solid!)

CLAS at JLab
CLEO-c at Cornell
GlueX at JLab