Experimental Hadronic Physics at FSU

V. Credé

Florida State University

Journal Club 11/05/2008

Outline

- Introduction
 - The Quark Model of Hadrons
 - The Search for Gluonic Excitations
- Baryon Spectroscopy
 - Photoproduction Experiments
 - The Next Generation: Linearly-Polarized Photon Beams
- 3 Double-Polarization Measurements
 - Experimental Setup(s)
 - Scientific Motivation
 - The CLAS FROST-Program
 - The CB-ELSA/TAPS Program
- Summary and Outlook

Outline

- Introduction
 - The Quark Model of Hadrons
 - The Search for Gluonic Excitations
- Baryon Spectroscopy
 - Photoproduction Experiments
 - The Next Generation: Linearly-Polarized Photon Beams
- 3 Double-Polarization Measurements
 - Experimental Setup(s)
 - Scientific Motivation
 - The CLAS FROST-Program
 - The CB-ELSA/TAPS Program
- Summary and Outlook

The Quark Model of Hadrons

• Mesons ($q\overline{q}$) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$

• Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

Ordinary matter ...

The Quark Model of Hadrons

• Mesons (q \overline{q}) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$

• Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

Ordinary matter, however, QCD also predicts so-called exotic states

→ simplest possibility: $q \otimes \overline{q} \otimes q = 15 \oplus 6 \oplus 3 \oplus 3$

Does not work: color singlets needed!

→ multiple of (qqq) and (qq̄) necessary

• Glueballs:
$$g \otimes g = 8 \otimes 8 = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus \boxed{1}$$

$$\bullet \ \ \text{Hybrids:} \ q \otimes \overline{q} \otimes g = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 8 \oplus \boxed{1} \quad \boldsymbol{\rightarrow} \boxed{ (q\overline{q})^l ((q)^3)^m (g)^n } \, ,$$

$$l+m \ge 1$$
 for $n=1$

The Search for New Forms of Matter

All exotic states of hadrons can be subdivided into three groups:

 States with explicitly exotic values of principal quantum numbers

$$\Theta^+$$
 with $S=1$
 Ξ^{--} with $Q=-2$

The Search for New Forms of Matter

All exotic states of hadrons can be subdivided into three groups:

 States with explicitly exotic values of principal quantum numbers

$$\Theta^+$$
 with $S = 1$
 Ξ^{--} with $Q = -2$

States with exotic combinations of J^{PC}

$$\Rightarrow$$
 forbidden for ordinary $q\overline{q}$ states: 0^{+-} , 0^{--} , 1^{-+} , 2^{+-} , 3^{-+} , etc.

$$\pi_1(1400) \to \eta \pi^- \\ \pi_1(1600) \to \eta' \pi^-$$
 } 1⁻⁺

The Search for New Forms of Matter

All exotic states of hadrons can be subdivided into three groups:

 States with explicitly exotic values of principal quantum numbers

$$\Theta^+$$
 with $S = 1$
 Ξ^{--} with $Q = -2$

- States with exotic combinations of J^{PC}
 - \Rightarrow forbidden for ordinary $q\overline{q}$ states: 0^{+-} , 0^{--} , 1^{-+} , 2^{+-} , 3^{-+} , etc.

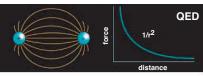
$$\pi_1(1400) \to \eta \pi^- \\ \pi_1(1600) \to \eta' \pi^-$$
 } 1⁻⁺

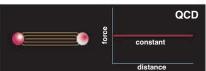
- States with hidden exotic properties
 - ⇒ Problem: predicted glueballs can mix with ordinary qq states

$$f_0(1500) \ \big\} \ \textit{J}^{\textit{PC}} = 0^{++}$$

Evidence far from solid

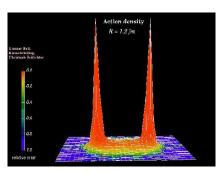
 \Rightarrow Details needed for a full understanding are missing


The Experimental Status of Glueballs


Nuclear seminar talk next month ... (or next semester)

In summary: Is there evidence for glueballs?

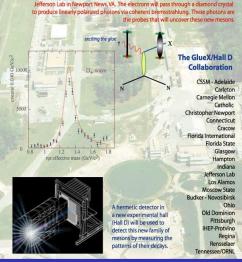
- Lightest 0^{++} glueball: possible ... $f_0(1370)$, $f_0(1500)$, $f_0(1710)$
- Lightest 0⁻⁺ glueball: maybe ... $\eta(1295)$, $\eta(1405)$, $\eta(1490)$
- Lightest 2⁺⁺ glueball: well, there is not even a candidate ...


The Search for Hybrids: Flux Tubes

Color Fields: Because of self interaction between gluons, confining flux tubes form between static color charges.

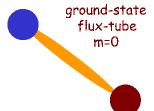
Confinement arises from flux tubes and their excitation leads to a new spectrum of mesons.

G. Bali et al., Phys. Rev. D62, (2000) 054503


The GlueX Collaboration

- $\bullet \approx 100 \text{ Physicists}$
- Members from 7 countries
 - Australia
 - Canada, Mexico, USA
 - Greece, Russia, Scotland
- Active group since 1998
- → http://www.gluex.org

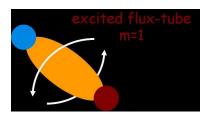
Our goal is to understand the nature of confinement in Quantum Chromodynamics by mapping the spectrum of mesons generated by the excitation of the gluonic field binding the quarks.

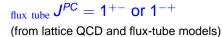

This experiment will use electrons from the energy-upgraded CEBAF accelerator at

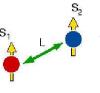
Ordinary Mesons

$$J^{PC} \equiv {}^{2S+1}L_J$$

- Parity $P = (-1)^{L+1}$
- Charge conjugation (defined for neutral mesons) $C = (-1)^{L+S}$
- G parity $G = C(-1)^{I}$

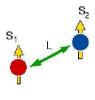



$$\frac{L=0, S=1:}{\rho, \omega, \phi \left(J^{PC}=1^{--}\right)}$$


$$L = 0, S = 0:$$

e.g. $\pi (J^{PC} = 0^{-+})$

Hybrid Mesons



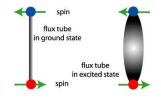
$$\begin{split} & \frac{L=0, \ S=1:}{\rho, \ \omega, \ \phi \ (J^{PC}=1^{--})} \\ & \frac{L=0, \ S=0:}{\text{e.g.} \ \pi \ (J^{PC}=0^{-+})} \end{split}$$

Hybrid Mesons

$$_{\text{flux tube}} J^{PC} = 1^{+-} \text{ or } 1^{-+}$$

$$L = 0, S = 1:$$
 $\rho, \omega, \phi (J^{PC} = 1^{--})$
 $L = 0, S = 0:$

e.g.
$$\pi (J^{PC} = 0^{-+})$$

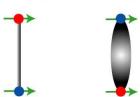

Pseudoscalar Mesons: $J^{PC} \otimes_{\text{flux tube}} J^{PC} = 1^{--}, 1^{++}$

Vector Mesons:
$$q_{uarks} J^{PC} \otimes_{flux \ tube} J^{PC} = 0^{-+}, 1^{-+}, 2^{-+}$$

 $0^{+-}, 1^{+-}, 2^{+-}$

Hybrid-Meson Production

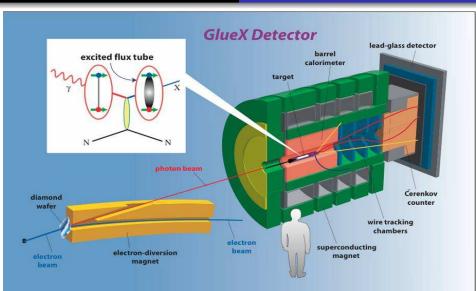
One result of the scattering process of an incoming probe off the target particle can be the excitation of the flux tube:


 Not favored for qq̄ probe in L = 0 and S = 0

Normal Mesons

Hybrid Mesons

- Favored for incoming vector probes with L = 0 and S = 1
- → Photoproduction


The GlueX Experiment

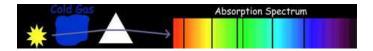
To establish the existence of gluonic excitations, the existence and nonet nature of the 1^{-+} state needs to be established.

→ Also, 0⁺⁻ and 2⁺⁻ nonets need to be established.

Decay pattern are crucial:

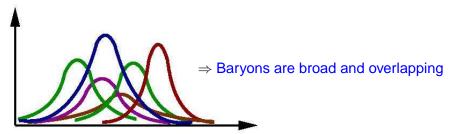
Have provided the most sensitive information in the scalar glueball sector

Outline


- Introduction
 - The Quark Model of Hadrons
 - The Search for Gluonic Excitations
- Baryon Spectroscopy
 - Photoproduction Experiments
 - The Next Generation: Linearly-Polarized Photon Beams
- Double-Polarization Measurements
 - Experimental Setup(s)
 - Scientific Motivation
 - The CLAS FROST-Program
 - The CB-ELSA/TAPS Program
- Summary and Outlook

Spectroscopy

Atomic spectra allow access to QED



- Discrete spectrum of absorption and emission lines
- ⇒ Does excitation spectrum of nucleon provide access to QCD?

The Challenges in Baryon Spectroscopy

Unfortunately, N* spectral lines look more like

- Rescattering Effects
 - ⇒ Require Coupled-Channel Analysis (need to measure as many final states as possible)
- Polarization (need complete experiments)

General Physical Motivation

Search for *missing* resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

- ⇒ according to PDG (Phys. Rev. **D66** (2002) 010001)
- ⇒ little known (many open questions left)

Possible solutions:

a) Quark-diquark structure

one of the internal degrees of freedom is frozen

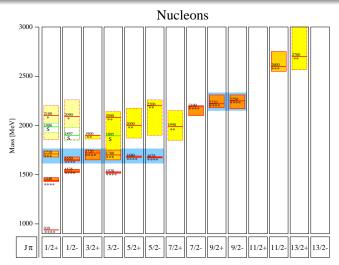
b) They have not been observed, yet

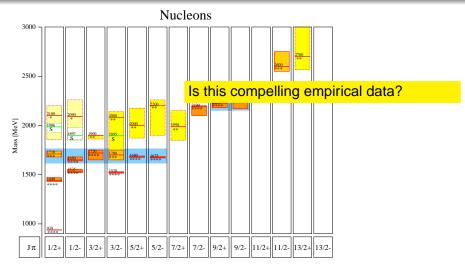
Nearly all existing data result from πN scattering experiments

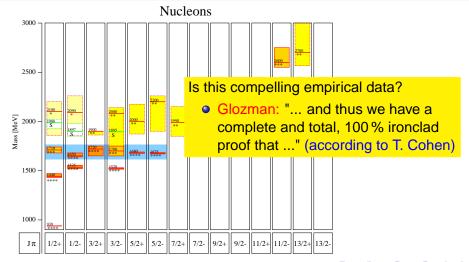
 \Rightarrow If the missing resonances did not couple to N π , they would not have been discovered!!

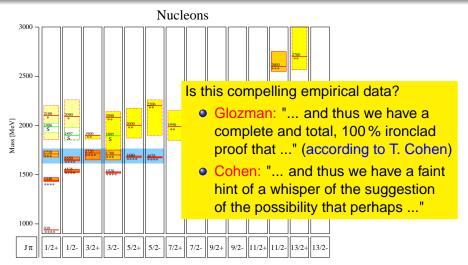
Quark Models and Experimental Overview

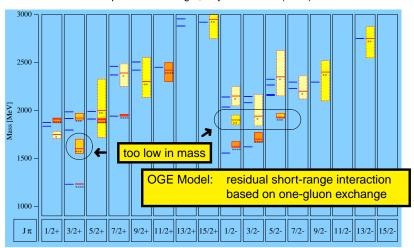
Effective theories and models necessary to make spectroscopic predictions

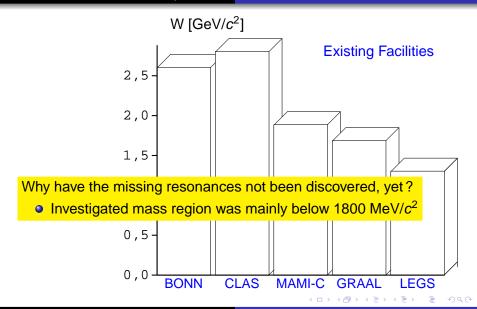

Basic assumption: linear confinement potential + residual short-range interaction

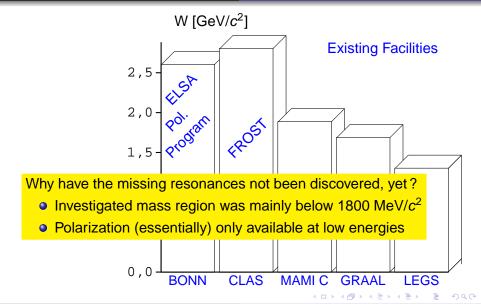

- Goldstone-boson (pion) exchange
 (L.Y. Glozman, W. Plessas, K. Varga and R.F. Wagenbrunn, Phys. Rev. D58 (1998) 094030)
- One-gluon exchange (S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809)
 (relativized quark model)
 - 1. Wrong spin-orbit couplings
 - 2. No explanation for parity doublets
- Instanton-induced interaction (relativistic quark model)
- Acceptable Regge trajectories
- 2. Natural explanation for parity doublets

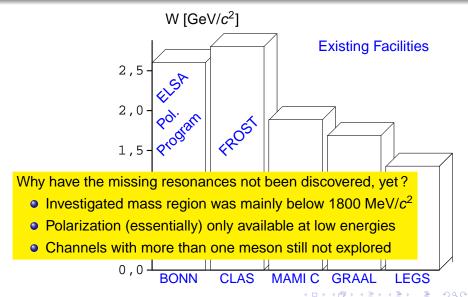

- ⇒ Which is the right model?
 - Do we have the correct model?
 - Does one interaction dominate?


Striking feature in the spectra: States of same total angular momentum but opposite parity

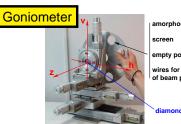







△ Resonances

S. Capstick and N. Isgur, Phys. Rev. **D34** (1986) 2809



The CB-ELSA/TAPS Experiment

amorphous radiators

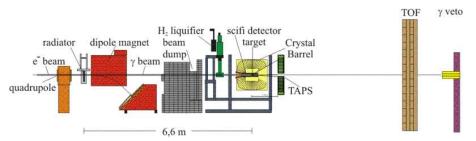
empty position

wires for determination of beam profiles

diamond crystal

(un)polarized beam

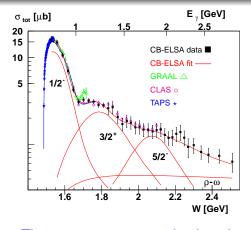
Sep. 2002 - Dec. 2003


- liquid H₂, deuterium
- solid targets

TAPS

- 512 BaF Crystals
- Forward detector
 - High Granularity
 - Fast Trigger

Experimental Setup



Tagged Photons ($E_{e^-} = 3.2 \text{ GeV}$):

- $\bullet \ 0.25 \cdot \textit{E}_{e^-} \leq \textit{E}_{\gamma} \leq 0.95 \cdot \textit{E}_{e^-}$
- → 800 MeV ≤ *E*_γ ≤ 3000 MeV

Previous Study of the Reaction $\gamma { m p} ightarrow { m p} \eta$

Isospin Filter

→ Only N* resonances can contribute!

Hint for N* resonance N(2070)D₁₅ (Phys. Rev. Lett. **D94**, 012004 (2005))

- Needs confirmation!
- No need for third S₁₁

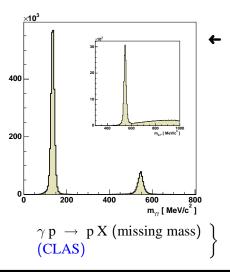
Three resonances are dominantly contributing! $N(1535)S_{11}$, $N(1720)P_{13}$, $N(2070)D_{15}$

Partial Wave Analysis: $\gamma \mathbf{p} \rightarrow \mathbf{p} \eta$

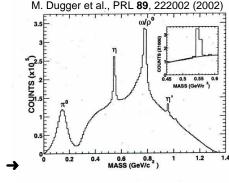
PWA: Operator (Tensor) Formalism (Rarita–Schwinger)

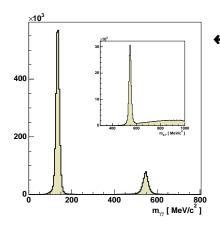
- Relativistically invariant
- Based on kinematic factors related to momenta of incoming and outgoing particles

Observables	Reference	$N_{ m data}$	χ^2/N
$\sigma(\gamma \mathrm{p} o \mathrm{p} \eta)$	CB-ELSA	667	0.91
$\sigma(\gamma { m p} ightarrow { m p} \eta)$	TAPS	100	1.6
$\Sigma(\gamma p o p \eta)$	GRAAL 98	51	2.27
$\Sigma(\gamma p o p \eta)$	GRAAL 04	100	1.75
$\sigma(\gamma { m p} ightarrow { m p} \pi^0)$	CB-ELSA	1106	1.50
$\Sigma(\gamma p o p \pi^0)$	GRAAL 04	469	3.43
$\Sigma(\gamma p o p\pi^0)$	SAID	593	2.87
$\sigma(\gamma { m p} ightarrow { m n}\pi^+)$	SAID	1583	2.86


Resonance	M (MeV)	Γ (MeV)	Fraction	
N(1520)D ₁₃	1523 \pm 4	105 ⁺⁶	0.020	
PDG	1520^{+10}_{-5}	120^{+15}_{-10}		
N(1535)S ₁₁ *	1501 ± 5	215 ± 25		
PDG	1505 ± 10	170 ± 80	0.430	
N(1650)S ₁₁ *	1610 ± 10	190 ± 20	0.430	
PDG	1660 ± 20	160 ± 10		
N(1675)D ₁₅	1690 ± 12	125 ± 20	0.001	
PDG	1675^{+10}_{-5}	150^{+30}_{-10}		
N(1680)F ₁₅	1669 ± 6	85 ± 10	0.005	
PDG	1680^{+10}_{-5}	130 ± 10		
N(1700)D ₁₃	1740 ± 12	84 ± 16	0.004	
PDG	1700 ± 50	100 ± 50		
N(1720)P ₁₃	1775 ± 18	325 ± 25	0.300	
PDG	1720^{+30}_{-70}	250 ± 50		
N(2000)F ₁₅	1950 ± 25	230 ± 45	0.007	
N(2070)D ₁₅	2068 ± 22	295 ± 40	0.171	
N(2080)D ₁₃	1943 ± 17	82 ± 20	0.011	
N(2200)P ₁₃	2214 ± 28	360 ± 55	0.051	
* 1/ 1/1-4-1 [14				

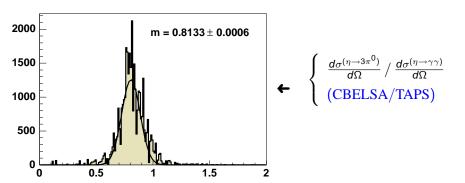
^{*} K-Matrix Fit,


Fraction for the total K-matrix contribution


New Data: Study of $\gamma \mathbf{p} \to \mathbf{p} \eta$ with CB-ELSA/TAPS

$$\left\{ egin{array}{l} \eta
ightarrow 3\pi^0, \gamma\gamma \ (CB-ELSA/TAPS) \end{array}
ight.$$

New Data: Study of $\gamma \mathbf{p} \to \mathbf{p} \eta$ with CB-ELSA/TAPS

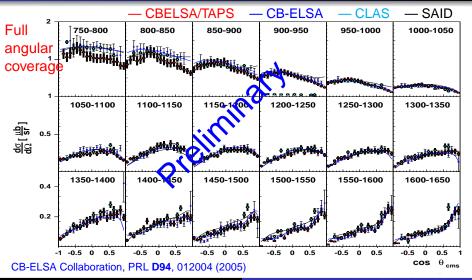


$$\left\{\begin{array}{l} \eta \to 3\pi^0, \gamma\gamma \\ (\text{CB} - \text{ELSA/TAPS}) \end{array}\right.$$

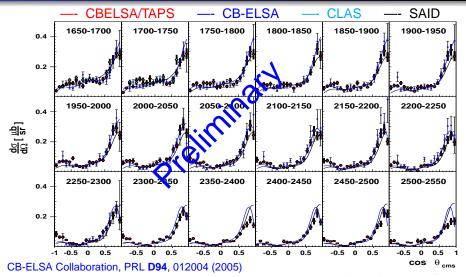
Reconstruction

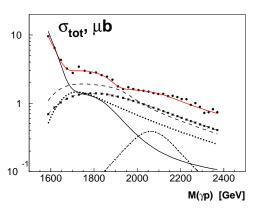
- Number of photons: $N_{\gamma} = 2$, 6
- Proton identification: TAPS and inner scintillating fibre detector
 Missing proton kinematic fit
- Data quality
 - \approx 422,300 events for $\eta \rightarrow \gamma \gamma$: $\sigma \approx$ 13 MeV
 - \approx 126,300 events for $\eta \to 3\pi^0$: $\sigma \approx 10$ MeV

New Data: Study of $\gamma \mathbf{p} \to \mathbf{p} \eta$ with CB-ELSA/TAPS



Both decay modes can be added! We have used:


- BR $(\eta \to \gamma \gamma) = 39.43 \%$
- BR $(\eta \to 3\pi^0)$ = 32.51 %


Differential Cross Sections for $\gamma {f p} ightarrow {f p} \eta$

Differential Cross Sections for $\gamma {f p} ightarrow {f p} \eta$

Total Cross Section for the Reaction $\gamma \mathbf{p} \to \mathbf{p} \eta$

The angular coverage of CB-ELSA data allows determination of the total cross section

Hint for N* resonance (2070)D₁₅ (Phys. Rev. Lett. **D94**, 012004 (2005))

- Needs confirmation!
- No need for third S₁₁

New Data: Study of $\gamma p \rightarrow p \eta'$ with CB-ELSA/TAPS

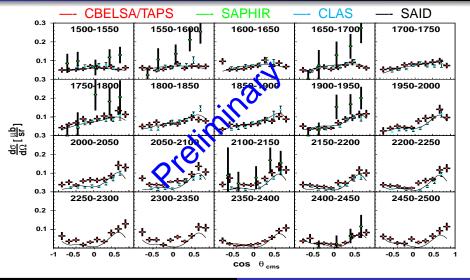
```
Isospin Filter: only N* resonances can contribute
```

1968: 11 events from the ABBHHM bubble chamber experiment

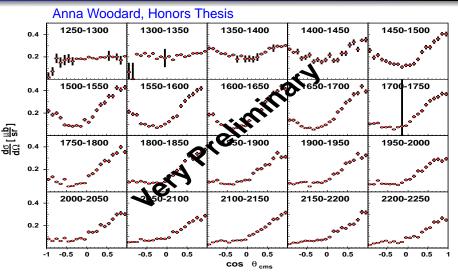
1976: 7 events from the AHHM streamer chamber experiment

1998: 250 events from SAPHIR collaboration

→ First differential cross sections

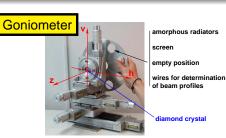

2006: over $2 \cdot 10^5$ events from CLAS

(Contributions from N(1535)S₁₁, N(1710)P₁₁, J = 3/2 states)


2007: New data from CBELSA/TAPS over the full angular range

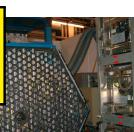
No published asymmetry data for η' ... (Data available from CLAS and ELSA)

Differential Cross Sections for $\gamma p \rightarrow p \eta$



Differential Cross Sections for $\gamma \boldsymbol{p} \to \boldsymbol{\Delta} \eta$

Linearly-Polarized Photons: CB-ELSA/TAPS



Sep. 2002 - Dec. 2003

- (un)polarized beam
- liquid H₂, deuterium
- solid targets

TAPS

- 512 BaF Crystals
- forward detector
 - High Granularity
 - Fast Trigger

Beam-Target Polarization Observables

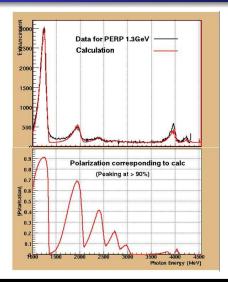
$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} = \sigma_0 \left\{ 1 - \delta_I \sum \cos 2\phi \right. \\ \left. + \Lambda_X \left(-\delta_I \mathbf{H} \sin 2\phi + \delta_\odot \mathbf{F} \right) \right. \\ \left. - \Lambda_y \left(-\mathbf{T} + \delta_I \mathbf{P} \cos 2\phi \right) \right. \\ \left. - \Lambda_Z \left(-\delta_I \mathbf{G} \sin 2\phi + \delta_\odot \mathbf{E} \right) \right\} \right. \\ \left. \left. \left(7 \right) \right\} \right\}$$
 \leftarrow Single-Meson Final States (7 Observables)

$$I = I_0 \{ (\mathbf{1} + \vec{\mathsf{\Lambda}}_i \cdot \vec{\mathsf{P}}) \\ + \delta_{\odot} (\mathbf{I}^{\odot} + \vec{\mathsf{\Lambda}}_i \cdot \vec{\mathsf{P}}^{\odot}) \\ + \delta_I [\sin 2\beta (\mathbf{I}^{\mathsf{S}} + \vec{\mathsf{\Lambda}}_i \cdot \vec{\mathsf{P}}^{\mathsf{S}}) \\ \cos 2\beta (\mathbf{I}^{\mathsf{C}} + \vec{\mathsf{\Lambda}}_i \cdot \vec{\mathsf{P}}^{\mathsf{C}})] \}$$

The CLAS Polarization Program

The Double-Polarization Program (FROST) at JLab:

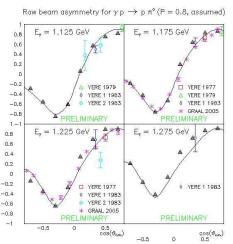
- E 02-112 \Rightarrow Photoproduction of Hyperons ($K^+ \land (\Sigma^0), K^0 \Sigma^+$)
- E 03-105 \Rightarrow $\pi^0 p$, $\pi^+ n$ Photoproduction E 04-102
- E 05-012 \Rightarrow η *Photoproduction*
- E 06-013 \Rightarrow $\pi^+\pi^-$ Photoproduction

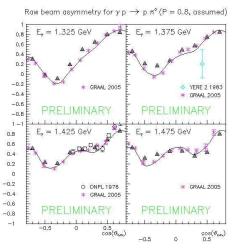

The Polarized Deuterium-Target Program (HD-Ice target from BNL):

• E 06-101
$$\Rightarrow \gamma n \rightarrow \pi^- p, \ \pi^+ \pi^- n, \ K \ Y \ (K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^-)$$

Polarized photon beams on unpolarized targets:

- g1, g8 \Rightarrow Reactions on Hydrogen (\checkmark)
- g13 \Rightarrow Reactions on Deuterium (\checkmark)


The Coherent Bremsstrahlung Facility at CLAS

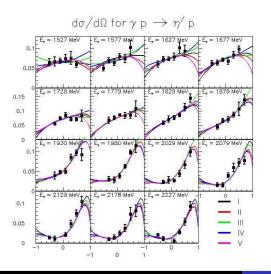

g8b Run Group (data from 2005)

Bremsstrahlung in 50 μ diamond:

- 40 cm liquid hydrogen target located 20 cm upstream
- Two linear polarization states (vertical & horizontal)
- Incident electron energy from CEBAF of 4.55 GeV
 - → 1.0 GeV < E_{γ} < 2.1 GeV
- Single-charged particle trigger

- Many channels being analyzed:
- High statistics > 10 billion events
- High photon polarization from 1.3 – 2.1 GeV
- \Leftarrow Preliminary analysis of $\gamma p \rightarrow p \pi^0$ (Mike Dugger, ASU)
 - P_{γ} estimated at 0.8
 - SAID prediction
 - Data with statistical errors (no systematic)

- Many channels being analyzed:
- High statistics > 10 billion events
- High photon polarization from 1.3 – 2.1 GeV
- \Leftarrow Preliminary analysis of $\gamma p \to p \pi^0$ (Mike Dugger, ASU)
 - P_{γ} estimated at 0.8
 - SAID prediction
 - Data with statistical errors (no systematic)

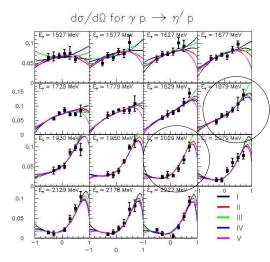


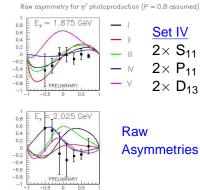
Good agreement with other data

 Interpretation of Bonn (PWA) and CLAS data (SAID) different:
 P₁₃(1720) ⇔ P₁₁(1710)

Preliminary analysis of $\gamma p \rightarrow p \eta$ (Mike Dugger, ASU)

- P_{γ} estimated at 0.8
- SAID prediction
- Data with statistical errors (no systematic)


Set IV


N(1535)S₁₁, N(2090)S₁₁ N(1710)P₁₁, N(2100)P₁₁ N(1700)D₁₃, N(2080)D₁₃

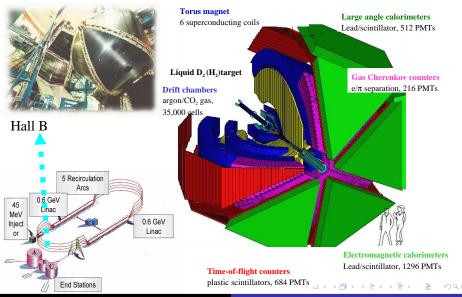
Similar to η analysis:

 $N(1535)S_{11}$ and $N(1710)P_{11}$ dominant (SAID, MAID)!

Analysis of $\gamma p \to p \eta \prime$ Phys. Rev. Lett. **96**, 062001 (2006)

Analysis of $\gamma p \rightarrow p \eta \prime$

Phys. Rev. Lett. 96, 062001 (2006)



Outline

- Introduction
 - The Quark Model of Hadrons
 - The Search for Gluonic Excitations
- Baryon Spectroscopy
 - Photoproduction Experiments
 - The Next Generation: Linearly-Polarized Photon Beams
- 3 Double-Polarization Measurements
 - Experimental Setup(s)
 - Scientific Motivation
 - The CLAS FROST-Program
 - The CB-ELSA/TAPS Program
- Summary and Outlook

EBAF Large / cceptance Spectrometer

Planned Measurements ...

The Double-Polarization Program (FROST) at JLab:

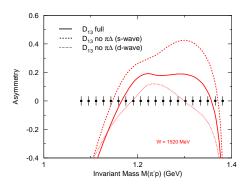
- E 02-112 \Rightarrow Photoproduction of Hyperons ($K^+\Lambda$, $K^+\Sigma^0$, $K^0\Sigma^+$)
- E 03-105 $\Rightarrow \pi^0 p, \pi^+ n$ Photoproduction E 04-102
- E 05-012 \Rightarrow η Photoproduction
- E 06-013 \Rightarrow $\pi^+\pi^-$ Photoproduction

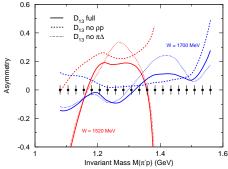
The Double-Polarization Program at ELSA (Crystal Barrel Experiment): (among many other proposals)

- ELSA 6/2005 \Rightarrow $\pi^0\pi^0$ Photoproduction
- ELSA 7/2005 \Rightarrow $\pi^0 \eta$ Photoproduction

Beam-Target Polarization Observables

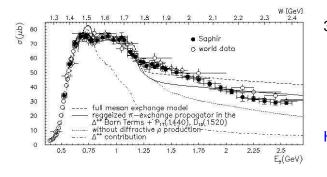
$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} = \sigma_0 \left\{ 1 - \delta_I \sum \cos 2\phi \right. \\ \left. + \Lambda_X \left(-\delta_I \mathbf{H} \sin 2\phi + \delta_\odot \mathbf{F} \right) \right. \\ \left. - \Lambda_Y \left(-\mathbf{T} + \delta_I \mathbf{P} \cos 2\phi \right) \right. \\ \left. - \Lambda_Z \left(-\delta_I \mathbf{G} \sin 2\phi + \delta_\odot \mathbf{E} \right) \right\} \right.$$
 $\left. \in$ Single-Meson Final States (7 Observables)


$$I = I_0 \{ (\mathbf{1} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}) \\ + \delta_{\odot} (\mathbf{I}^{\odot} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}^{\odot}) \\ + \delta_I [\sin 2\beta (\mathbf{I}^{\mathbf{S}} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}^{\mathbf{S}}) \\ \cos 2\beta (\mathbf{I}^{\mathbf{C}} + \vec{\Lambda}_i \cdot \vec{\mathbf{P}}^{\mathbf{C}})] \}$$


Motivation for $\gamma p \rightarrow p \pi^+ \pi^-$: Low-Energy Regime

- P₁₁(1440) (Roper Resonance) → too low in mass?
 - dynamically-generated resonance effect
 - state with a strong gluonic component
 - small (qqq)-component with a substantial contribution from the meson cloud
 - ⇒ Parameters depend strongly on data and analysis
- Contribution of D₁₃(1520) to $\gamma p \to p \pi^+ \pi^-$ cross section
 - Different interpretations of $\gamma p \to p \pi^+ \pi^-$ total cross section data
 - Oset et al.: $D_{13}(1520) \rightarrow \Delta \pi$ dominant contribution
 - Laget et al.: $P_{11}(1440) \rightarrow p\sigma$ dominant
 - $D_{13}(1520) \rightarrow \Delta \pi$ in D-wave (PDG: 10–14%) and S-wave (5–12%)?
- P₃₃(1600) (Roper Resonance of Δ system) → too low in mass?

Model Calculations of P_z^{\odot} (known as E) by A. Fix

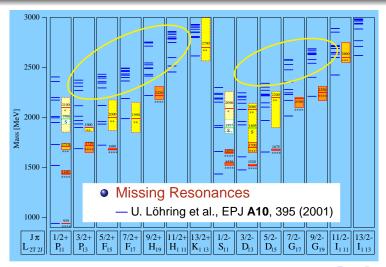


- \Rightarrow Can clearly distiguish between solutions if $\Delta A < 0.05$
- ⇒ Reality will be a mixture of S-/D-wave!
- Needs very small errors to distinguish between different contributions!

Motivation for $\gamma p \rightarrow p \pi^+ \pi^-$: Medium-Energy Regime

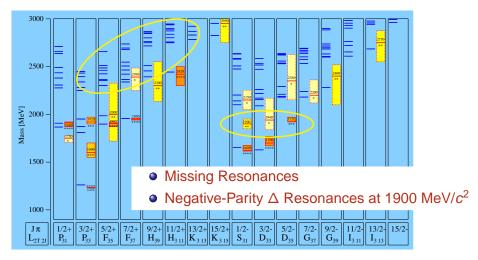
3rd resonance region

- F₁₅(1680)
- D₁₃(1700)
- D₃₃(1700)
- P₁₃(1720)

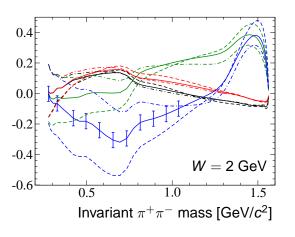

How to disentangle?

Discrepancy of CLAS P₁₃(1720) with PDG: two close-by P₁₃ states?

⇒ This would be in contradiction with quark models!



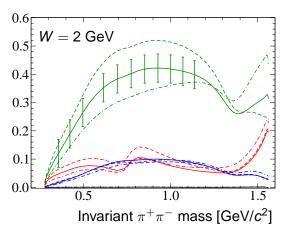
Motivation: High-Energy Regime → N* Spectrum


Scientific Motivation
The CLAS FROST-Program
The CB-ELSA/TAPS Program

Motivation: High-Energy Regime $\rightarrow \Delta^*$ Spectrum

Model Calculations of P_x by W. Roberts

$$\phi = 0.0035 \text{ rad (almost 0)}, \ \phi = 0.56 \text{ rad}, \ \phi = 2.09 \text{ rad}, \ \phi = 3.04 \text{ rad (almost } \pi)$$


Circ. Beam → Trans. Target

- Solid Line
 Full Calculation
- Dashed Line S₁₁(1900) Omitted
- Dashed-Dotted Line P₃₁(1910) Omitted

$$\Rightarrow$$
 goal: $\Delta P_{x}^{\odot} \leq 0.05$

Model Calculations of P_v[⊙] by W. Roberts

$$\phi=0.0035$$
 rad (almost 0), $\phi=0.56$ rad, $\phi=2.09$ rad, $\phi=3.04$ rad (almost π)

Circ. Beam → Trans. Target

- Solid Line
 Full Calculation
- Dashed Line S₁₁(1900) Omitted
- Dashed-Dotted Line P₃₁(1910) Omitted

$$\Rightarrow$$
 goal: $\Delta\,P_v^{\odot} \leq 0.05$

Circular Beam and Longitudinal Target Polarization

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,x_i} = \sigma_0\left\{\left(1 + \Lambda_z \cdot \mathbf{P_z}\right) + \delta_\odot\left(\mathbf{I}^\odot + \Lambda_z \cdot \mathbf{P_z}^\odot\right)\right\}$$

$$(\rightarrow \Rightarrow - \leftarrow \Rightarrow) := \frac{d \, \sigma(\rightarrow \Rightarrow)}{d \, x_i} - \frac{d \, \sigma(\leftarrow \Rightarrow)}{d \, x_i} = 2 \cdot \sigma_0 \, \{\delta_{\odot} \, (\blacksquare^{\odot} + \Lambda_z \cdot {\textcolor{red} P_z^{\odot}}) \}$$

$$(\leftarrow \Leftarrow - \rightarrow \Leftarrow) := \frac{\mathrm{d}\,\sigma(\leftarrow \Leftarrow)}{\mathrm{d}\,x_{i}} - \frac{\mathrm{d}\,\sigma(\rightarrow \Leftarrow)}{\mathrm{d}\,x_{i}} = 2 \cdot \sigma_{0} \left\{ \delta_{\odot} \left(-\mathbf{I}^{\odot} + \Lambda_{z} \cdot \mathbf{P}_{z}^{\odot} \right) \right\}$$

1)
$$(\rightarrow \Rightarrow - \leftarrow \Rightarrow) + (\leftarrow \Leftarrow - \rightarrow \Leftarrow) := \frac{\mathrm{d} \, \sigma_{3/2}}{\mathrm{d} \, x_i} - \frac{\mathrm{d} \, \sigma_{1/2}}{\mathrm{d} \, x_i} = 4 \cdot \sigma_0 \cdot \delta_{\odot} \cdot (\Lambda_z \cdot \mathbf{P}_z^{\odot})$$

$$2) \quad (\leftarrow \Leftarrow - \leftarrow \Rightarrow) - (\rightarrow \Rightarrow - \rightarrow \Leftarrow) \, := \quad - \, 4 \cdot \sigma_0 \cdot \left(\Lambda_z \cdot \textcolor{red}{P_z} \right)$$

Polarizing Spin

Any ensemble of atoms or nuclei with a magnetic moment can be polarized via the Zeeman interaction: $\vec{\mu} \, \vec{B}$

$$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \qquad B_{\text{ext}} = 0 \\
P = 0 \qquad \downarrow \qquad P > 0$$

- Zeeman interaction tends to orient (polarize) the magnetic moments
- Oscillating EM fields produced by atomic vibrations tend to randomize (de-polarize) the magnetic moments:
 - ⇒ Characterized by thermal energy kT

Polarization and Thermal Equilibrium

In general, the populations of the Zeeman levels (once equilibrium has been reached) will obey a Boltzmann distribution:

$$\frac{N(\uparrow)}{N(\downarrow)} = e^{\frac{-2\vec{\mu}\vec{B}}{kT}} \qquad \Rightarrow \qquad P_{\text{te}} = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)} = \tanh\left(\frac{\vec{\mu}\vec{B}}{kT}\right)$$

 $(T = \text{Temperature}, P_{\text{te}} = \text{Thermal Equilibrium Polarization})$

The polarization will approach thermal equilibrium with a characteristic 1/e time constant t_1 :

$$P(t) = P_{te} (1 - e^{-t/t_1})$$
 "Spin-Lattice Relaxation Rate"

Brute Force Polarization

$$P_{\mathrm{te}} = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)} = \tanh{(\frac{\vec{\mu}\vec{B}}{kT})}$$

⇒ maximize B minimize T

Disadvantages:

- Requires very large magnet
- 2 Low temperatures mean low luminosity
- Polarization can take a very long time
- ⇒ We need a trick!

The Trick – Dynamic Nuclear Polarization

Use brute force to polarize free electrons in the target material

- Microwaves transfer this polarization to nuclei
 - ⇒ Mutual electron-nucleus spin flips re-arrange the nuclear Zeeman populations to favor one spin state over the other

For best results:

DNP is performed at B/T conditions where electrons t_1 is short (ms) and nuclear t_1 is long (minutes):

JLab:
$$B = 5 T$$

 $T = 1 K$

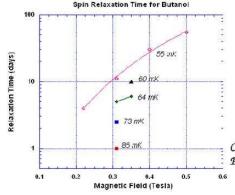
Materials for DNP Targets

Choice of material dictated by:

- Maximum polarization
- Resistance to ionizing radiation
- Presence of unpolarized nuclei
- And unwanted, polarized nuclei

Free electrons must be embadded into target material:

- Chemical doping
 - ⇒ Paramagnetic radicals created by ionizing radiation



Materials for DNP Targets

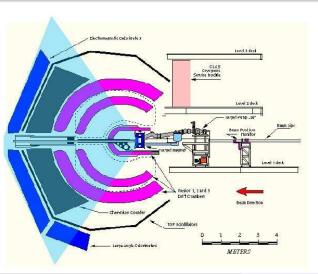
Compromise: Butanol (C₄H₉OH)

Quality (dilution) factor:

$$f = \vec{N}/N_{total} = 10/74 \approx 0.13$$

Choice of material dictated by:

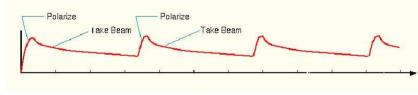
- Maximum polarization
- Resistance to ionizing radiation
- Presence of unpolarized nuclei
- And unwanted, polarized nuclei


Free electrons must be embadded into target material:

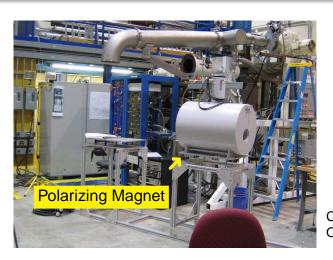
- Chemical doping
 - ⇒ Paramagnetic radicals created by ionizing radiation

Ch. Bradtke PhD Thesis, Univ. Bonn, 1999

The Old Hall-B Polarized Target: ¹⁵NH₃ (¹⁵ND₃)


Protons (and deuterons) continuously polarized by 140 GHz microwaves at 5 T and 1 K.

- Proton polarization: $\approx 75 85\%$
- D polarization: $\approx 25 35\%$
- Limited acceptance: $\theta < 65^{\circ}$
- ⇒ Need 4π target!

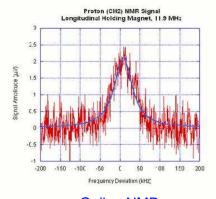

The Frozen-Spin Target

- Polarize target (material) via DNP at 5 T and 0.5 K outside CLAS
- Turn off microwaves and magnet when optimum polarization has been obtained
- Use a 2nd (holding) magnet (\approx 0.5 T) and very low temperatures to "freeze" the polarization
- Polarization will decay very slowly with a time constant of days
- **1** When polarization decays to $\approx 50 \%$ of its initial value \Rightarrow Step 1

Polarizing Magnet

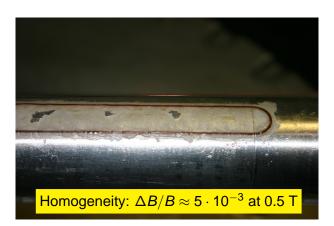
Max. Field: 5.0 T

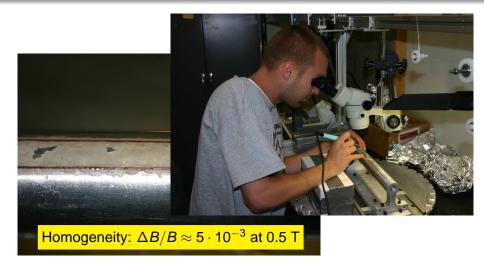
• \triangle B/B: $< 3 \times 10^{-5}$


Bore: 127 mmm

Cryomagnetics, Inc.
Oak Ridge, TN, USA

Holding Magnet: Solenoid for Longitudinal Polarization


Homogeneity: $\Delta B/B \approx 3 \cdot 10^{-3}$ at 0.5 T


Online NMR

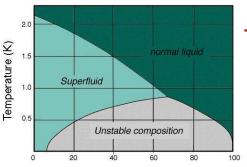
Transverse Holding Magnet: Dipole (Race-Track Coils)

Transverse Holding Magnet: Dipole (Race-Track Coils)

Evaporative Cooling

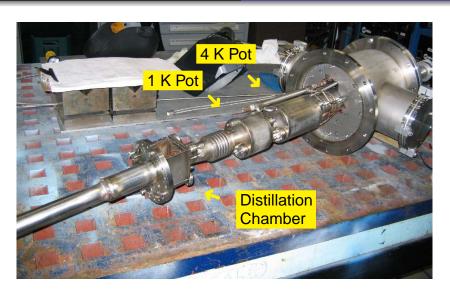
In order to evaporate 1 mole of ⁴He, heater must supply:

 $L \approx 80$ J/mol (L is latent heat of vaporazation)


 \Rightarrow In absence of a heater, liquid will absorb heat from surroundings and temperature will drop ($T \approx 1.5 \text{ K}$)

- Evaporative Cooling
 - In order to evaporate 1 mole of ⁴He, heater must supply:
 - $L \approx 80$ J/mol (L is latent heat of vaporazation)
 - \Rightarrow In absence of a heater, liquid will absorb heat from surroundings and temperature will drop ($T \approx 1.5 \text{ K}$)
 - ⇒ Insufficient for freezing the spin!

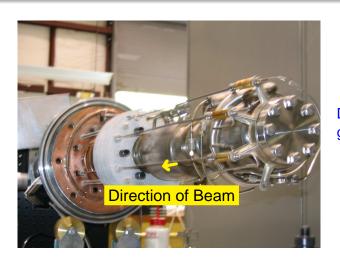
- Evaporative Cooling
 - In order to evaporate 1 mole of ⁴He, heater must supply:
 - $L \approx 80$ J/mol (L is latent heat of vaporazation)
 - \Rightarrow In absence of a heater, liquid will absorb heat from surroundings and temperature will drop ($T \approx 1.5 \text{ K}$)
 - ⇒ Insufficient for freezing the spin!
- ³He/⁴He Dilution Refrigeration
 - Below 0.8 K, a ³He/⁴He mixture will separate into two phases:
 - Lighter concentrated phase rich in ³He
 - ② Heavier *dilute phase* rich in 4 He (concentration of 3 He $\geq 6\%$)
 - ⇒ Thus, ³He will absorb energy when it dissolves (evaporates) into the dilute phase providing highly-effective cooling


- Below 0.8 K, a ³He/⁴He mixture will separate into two phases:
 - Lighter concentrated phase rich in ³He
 - ② Heavier *dilute phase* rich in 4 He (concentration of 3 He $\geq 6\%$)

→ Thus, ³He will absorb energy when it dissolves (evaporates) into the dilute phase providing highly-effective cooling

Molar fraction of He-3 in the mixture (%)

Experimental Setup(s) Scientific Motivation The CLAS FROST-Program The CB-ELSA/TAPS Program



Precooling Coil for ³He Gas

Dilution Refrigerator goes here ...

Another View of the Refrigerator ...

Dilution Refrigerator goes here ...

Dilution Refrigerator: Leak Checks (Oct./Nov. '05)

Experimental Setup(s)
Scientific Motivation
The CLAS FROST-Program
The CB-ELSA/TAPS Program

Dilution Refrigerator: Leak Checks (Oct./Nov. '05)

FROST Run Summary: Sungkyun Park (Chef)

g9a run period: Nov. 3, 2007 - Feb. 12, 2008

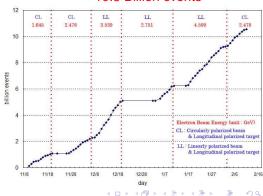
Data set: 603 Runs, 17,676 files, 35 TBytes

The current calibration: pass 0, version 3

Production Data

Beam current: 15 nA

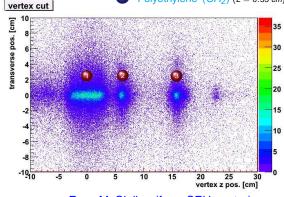
Torus current: 1920 A


Target:

- Longitudinal polarized target
- Average target polarization ~ 80 %

Photon beam:

- Circularly and linearly polarized photon beam 0.5 - 2.4 GeV
- Electron beam polarization ~ 85 %


10.5 Billion events

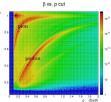
Targets

- Polarized Butanol (C_4H_9OH) (L=5.0 cm, $\phi=1.5$ cm) ~ 5 g
- Carbon (^{12}C) (L=0.15 cm) (6 cm from CLAS center)

Polyethylene (CH_2) (L = 0.35 cm) (16 cm from CLAS center)

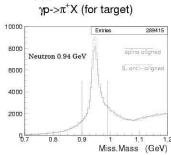
Evan McClellan (from CEU poster)

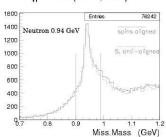
The Manpower List of Cooking and Calibration


Item	Contact	Prerequisite
Cooking	Sungkyun Park (FSU)	all calibrated
Tagger Calibration	Liam Casey (CUA), Franz Klein (CUA)	none
TOF Calibration	Robert Coyne (UMASS), Hideko Iwamoto (GWU), Arthur Sabintsev (GWU)	TAG
ST Calibration	Mukesh Saini (FSU)	TAG
DC Calibration	Sean Kuvin (FSU), Evan McClellan (FSU)	TOF
	Sungkyun Park (FSU), Volker Crede (FSU)	
EC Calibration	Simona Malace (USC)	TOF
Beam Polarization (Lin.)	Stuart Fegan (Uof Glasgow)	none
Target Polarization	Jo McAndrew (Uof Edinburgh)	none
DC Alignment	Sungkyun Park (FSU)	DC
Energy loss corrections	Jo McAndrew (Uof Edinburgh)	none

Eugene Pasyuk (ASU)

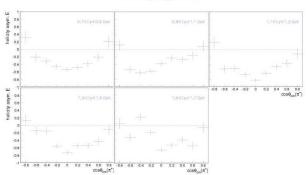
Steffen Strauch (USC): Official Analysis Coordinator

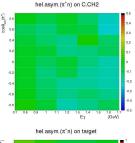

Sample analysis of E for the Reaction $\gamma p \rightarrow \pi^+ n$

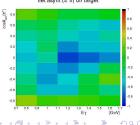

The data used

Franz Klein

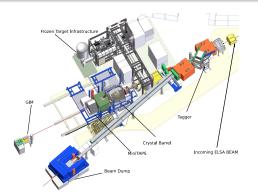
- All runs with circularly polarized beam (A05) from pass0/v2 + runs 55521 - 55676 (A01, A10, and A15) from pass0/v1 (for enough statistics)
- using 5% of the total statistics with circularly polarized beam.

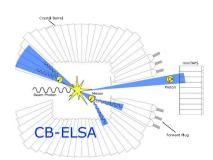

Sample analysis $\gamma p \rightarrow \pi^+ n$


Helicity asymmetry for $\gamma p \rightarrow \pi^+ n$

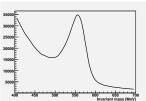

$$E_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$
 (N^+ is positive photon helicity, N^- is negative photon helicity)

E_{raw} is scaled with 0.85 for average target polarization


hel.asym.($\gamma p -> \pi^+ n$)



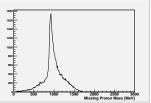
CB-ELSA Layout



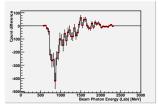
- Polarized Target
- Polarized Beam Photons
- Excellent Photon Energy Detection
- Charged Particle Identification

Helicity Difference E for $\gamma p \rightarrow p\eta$ (Andrew Wilson)

η Invariant Mass


2.4 GeV Circularly Polarized Photon Beam (Positive and Negative Helicity)
Longitudinally Polarized Butanol Target

Kinematic Cuts


- η Invariant Mass (500,600) MeV
- Missing Proton Invariant Mass (862,1000) MeV
- Timing Cuts

 \sim 40,000 $p\eta$ events

Missing Proton Mass

Helicity Difference

Outline

- Introduction
 - The Quark Model of Hadrons
 - The Search for Gluonic Excitations
- Baryon Spectroscopy
 - Photoproduction Experiments
 - The Next Generation: Linearly-Polarized Photon Beams
- 3 Double-Polarization Measurements
 - Experimental Setup(s)
 - Scientific Motivation
 - The CLAS FROST-Program
 - The CB-ELSA/TAPS Program
- Summary and Outlook

Summary and Outlook