Overview of CLAS Physics

Volker Credé

Florida State University
Tallahassee, FL

14th International QCD Conference
Montpellier, 07/08/2008
Outline

1. Introduction
 - Physics with the CLAS Detector
 - The CLAS Detector at Jefferson Lab

2. The CLAS Excited Baryon Program
 - Double-Pion Production
 - Transition Form Factors

3. The CLAS Polarization Program
 - Hyperon Photoproduction

4. Summary and Outlook
Outline

1. Introduction
 - Physics with the CLAS Detector
 - The CLAS Detector at Jefferson Lab

2. The CLAS Excited Baryon Program
 - Double-Pion Production
 - Transition Form Factors

3. The CLAS Polarization Program
 - Hyperon Photoproduction

4. Summary and Outlook

V. Credé Overview of CLAS Physics
Outline

1. Introduction
 - Physics with the CLAS Detector
 - The CLAS Detector at Jefferson Lab

2. The CLAS Excited Baryon Program
 - Double-Pion Production
 - Transition Form Factors

3. The CLAS Polarization Program
 - Hyperon Photoproduction

4. Summary and Outlook
Wide range of experiments covering mostly

- **Meson spectroscopy**

 → P. Eugenio, Tuesday: 10h20

- **N* Program (baryon spectroscopy, transition form factors)**

 → M. Williams, K. Park, V.C., this session

- **Nucleon structure (through)**

 - Elastic scattering
 - Deep inelastic scattering

 → S. Niccolai (GPD’s), Monday: 14h00

- **Nuclear transparency and nucleon correlations in nuclei**
What are the relevant degrees of freedom?

What are the corresponding effective interactions responsible for hadronic phenomena?

Models

Quarks and Gluons as Quasiparticles

ChPT

Nucleon and Mesons

pQCD

$q, g, q\bar{q}$
Search for *missing* resonances

Quark models predict many more baryons than have been observed

<table>
<thead>
<tr>
<th>N Spectrum</th>
<th>***</th>
<th>**</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Δ Spectrum</th>
<th>***</th>
<th>**</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

⇒ according to PDG

⇒ little known
(many open questions left)

Possible solutions:

1. Quark-diquark structure

 one of the internal degrees of freedom is frozen

2. Have not been observed, yet

 Nearly all existing data result from \(\pi N \) scattering experiments

 ⇒ If the missing resonances did not couple to \(N\pi \), they would not have been discovered!!
Introduction
The CLAS Excited Baryon Program
The CLAS Polarization Program
Summary and Outlook

Physics with the CLAS Detector
The CLAS Detector at Jefferson Lab

Overview of CLAS Physics

CLAS Spectrometer

- **Torus**
- **Tagger**
- **Drift Chambers**
- **TOF**
- **Cerenkov**
- **Calorimeters**

Characteristics:

- **Electron Coverage:** $\theta : 15–50^\circ$
- **Hadron Coverage:** $\theta : 15–140^\circ$, $\phi : 80\%$ 2π
- **Resolution:** $\Delta p/p \sim 1–2\%$
 $\Delta \theta, \Delta \phi \sim 2 \text{ mrad}$

$\mathcal{L} = 1 \times 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$

$\mathcal{F}_\gamma = 1 \times 10^7 /\text{s}$
Outline

1. Introduction
 - Physics with the CLAS Detector
 - The CLAS Detector at Jefferson Lab

2. The CLAS Excited Baryon Program
 - Double-Pion Production
 - Transition Form Factors

3. The CLAS Polarization Program
 - Hyperon Photoproduction

4. Summary and Outlook
The excited baryon program has two main components:

- **Establish the systematics of the spectrum**
 - Provides information on the nature of effective degrees of freedom in strong QCD

- **Probe resonance transitions at different distance scales**
 (electron beams are ideal to measure transition form factors)
 - Provides information on the confining forces of the 3-quark system
Resonances in $\gamma(\ast)p \rightarrow p\pi^+\pi^-$

- 2π channel sensitive to N*’s heavier than 1.4 GeV
- Provides complementary information to the 1π channel
- Many higher lying N*’s decay preferably to $N\pi\pi$ final states via intermediate states

Solid curves are from fits using the recent JM06 model with and without a new $\rho(1720)P_{33}$ state

- $3/2^+(1720)$
- $P_{33}(1720)$
Resonances in $\gamma(\ast)p \rightarrow p\pi^+\pi^-$

- **Background**
- **Resonances**

Combined analysis of preliminary real (M. Bellis) and also published virtual photon data (M. Ripani):

Fit needs both the candidate $\rho(1720)P_{33}$ and the $N(1720)P_{13}$ state.

Authors claim that combined fit of various single differential cross sections allowed to establish all significant mechanisms.
The CLAS-Collaboration phenomenological models (UIM/DR/JM) reproduce reasonably well comprehensive CLAS/world data on all observables in $N\pi/N\pi\pi$ electroproduction:

- **Isobars used in $N\pi\pi$ electroproduction**
 1. All well-established $N^* \to \pi^- \Delta^{++}$ decays + $3/2^+(1720)$
 2. All well-established $N^* \to \rho\pi$ decays + $3/2^+(1720)$
 3. Observed for the first time in CLAS data: $\pi^+D_{13}^0(1520)$, $\pi^+F_{15}^0(1685)$, and $\pi^-P_{33}^{++}(1640)$

- **Models can be used to evaluate N^* electrocouplings**
 ➔ Information on contributing mechanisms will be used by EBAC for N^* studies in advanced coupled channel analysis (Julia-Diaz, Lee, Phys. Rev. C76, 065201 (2007))
Roper Electro-Coupling Amplitudes $A_{1/2}, S_{1/2}$

Is Roper a 3-quark state?

V. Credé
Overview of CLAS Physics
Is Roper a 3-quark state? Hybrid (glue) nature ruled out.
Roper Electro-Coupling Amplitudes $A_{1/2}$

- Bare electrocouplings (from I. Aznauryan)
- Dressed electrocouplings (accounting for only $N\pi$ in dressing)

Much better data (description) at $Q^2 < 0.6$ GeV2 offer evidence for sizable contribution from meson-baryon cloud.
S_{11}(1535) Electro-Coupling Amplitudes A_{1/2}, S_{1/2}
Outline

1. Introduction
 - Physics with the CLAS Detector
 - The CLAS Detector at Jefferson Lab

2. The CLAS Excited Baryon Program
 - Double-Pion Production
 - Transition Form Factors

3. The CLAS Polarization Program
 - Hyperon Photoproduction

4. Summary and Outlook
\begin{align*}
\bar{\gamma}p &\rightarrow K^+ + \bar{\Lambda} \\
\text{Circularly-polarized beam} \\
C_x/C_z \text{ characterize polarization transfer from beam to recoiling hyperon}
\end{align*}

(\(C_x\) and) \(C_z\) in Hyperon Photoproduction

Circularly-polarized beam

Possible relation: \(C_z \approx C_x + 1\)

Introduction
The CLAS Excited Baryon Program
The CLAS Polarization Program
Summary and Outlook

Hyperon Photoproduction

\(C_x \) and \(C_z \) in Hyperon Photoproduction

\[R^2 \equiv P^2 + C_x^2 + C_z^2 \leq 1 \]

Conclusion:
\(\Lambda \) hyperons appear 100 \% spin polarized.

Kinematically not required, unknown origin!

V. Credé
Overview of CLAS Physics
The Double-Polarization Program (FROST) at JLab:

- E 02-112 ⇒ Photoproduction of Hyperons ($K^+\Lambda (\Sigma^0)$, $K^0\Sigma^+$)
- E 03-105 ⇒ $\pi^0 p$, $\pi^+ n$ Photoproduction
- E 04-102
- E 05-012 ⇒ η Photoproduction
- E 06-013 ⇒ $\pi^+\pi^-$ Photoproduction

The Polarized Deuterium-Target Program (HD-Ice target from BNL):

- E 06-101 ⇒ $\gamma n \rightarrow \pi^- p$, $\pi^+\pi^- n$, $K Y (K^0\Lambda$, $K^0\Sigma^0$, $K^+\Sigma^-$)

Polarized photon beams on unpolarized targets:

- g1, g8 ⇒ Reactions on Hydrogen (\checkmark)
- g13 ⇒ Reactions on Deuterium (\checkmark)
Many channels being analyzed:
- High statistics > 10 billion events
- High photon polarization from 1.3 – 2.1 GeV

Preliminary analysis of $\gamma p \rightarrow N\pi$
- P_γ estimated at 0.8
- SAID prediction
- Data with statistical errors (no systematic)

V. Credé
Overview of CLAS Physics
Introduction
The CLAS Excited Baryon Program
The CLAS Polarization Program
Summary and Outlook

Hyperon Photoproduction

Summary
- Polarized photons
 - 1.1 - 2.3 GeV (linear)
 - 0.4 - 2.5 GeV (circular)
- Deuterium target
- 5·10^{10} events

Status
- Data collected Nov 2006 – Jun 2007
- Calibration soon complete
- At least 7 PhD theses in progress

N* Physics: γn → N* → ...
- K^0 Λ, K^0 Σ^0, K^+ Σ^−, K^{0*} Λ, K^+ Σ(1385)
- π^− p, π^− π^0 p, ω p

Nuclear effects, YN interactions, pQCD: γd → ...
- π^− p p, K^+ Λ p, K^0 Λ p, K^0 Σ^0 p, Φ n
- π^0 d, η d, ω d, ρ d, η' p n, p n

Raw Beam Asymmetry

Raw asymmetry (assumed beam P = 1.0) vs. cos theta in CMS, Energy range 1.85 - 1.90 GeV

Very Preliminary!
Outline

1. Introduction
 - Physics with the CLAS Detector
 - The CLAS Detector at Jefferson Lab

2. The CLAS Excited Baryon Program
 - Double-Pion Production
 - Transition Form Factors

3. The CLAS Polarization Program
 - Hyperon Photoproduction

4. Summary and Outlook
Successful Excited-Baryon (Meson) Program using CLAS

- Improved statistics for previous measurements
- $P_{11}(1440)$, $D_{13}(1520)$, $S_{11}(1535)$ electrocouplings determined from CLAS data for the first time at $0.2 < Q^2 < 4.5$ GeV2
- New data has revealed some hints for new N* resonances

Double-Polarization Program

- Complete determination of $K\Lambda$ amplitude
- Almost complete sets for $N\pi$, $N\eta$, $N\pi\pi$, ...

FROST completed with longitudinal target polarization

\Rightarrow Program on transversely-polarized target in 2009

HD program scheduled to run in 2010