Glueballs and Light-Meson Spectroscopy

V. Credé

Florida State University, Tallahassee, Florida

Int. Workshop on Hadron Structure and Spectroscopy

Venice, Italy 03/15/2010

Outline

- Introduction and Motivation
 - The Quark Model of Hadrons
 - Meson Spectroscopy
- Experimental Methods in Meson Spectroscopy
 - Glue-Rich Environments
 - Photoproduction
- Glueballs and Light Mesons
 - The Quest for the Scalar Glueball
 - Exotic Hybrid Mesons
- The GlueX Experiment at Jefferson Lab
- 5 Summary and Outlook

Outline

- Introduction and Motivation
 - The Quark Model of Hadrons
 - Meson Spectroscopy
- 2 Experimental Methods in Meson Spectroscopy
 - Glue-Rich Environments
 - Photoproduction
- Glueballs and Light Mesons
 - The Quest for the Scalar Glueball
 - Exotic Hybrid Mesons
- The GlueX Experiment at Jefferson Lab
- Summary and Outlook

The Quark Model of Hadrons

• Mesons (q \overline{q}) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$

• Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

Ordinary matter ...

The Quark Model of Hadrons

• Mesons (q \overline{q}) $q \otimes \overline{q} = 3 \otimes \overline{3} = 8 \oplus 1$

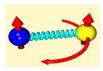
• Baryons (qqq) $q \otimes q \otimes q = 3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

However, QCD also predicts so-called exotic states

 \Rightarrow simplest possibility: $~q\otimes \overline{q}\otimes q=15\oplus 6\oplus 3\oplus 3$

"SU(3) Color"

Does not work: color singlets needed!


- → multiple of (qqq) and (qq̄) necessary
- Glueballs: $g \otimes g = 8 \otimes 8 = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 1$
- $\qquad \text{Hybrids: } q \otimes \overline{q} \otimes g = 27 \oplus 10 \oplus \overline{10} \oplus 8 \oplus 8 \oplus 8 \oplus \boxed{1} \quad \Rightarrow \boxed{ (q\overline{q})^l ((q)^3)^m (g)^n } \text{,}$

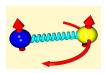
$$\overline{l+m} > 1$$
 for $n = 1$

Ordinary Mesons

$$J^{PC} \equiv {}^{2S+1}L_J$$

- Parity $P = (-1)^{L+1}$
- Charge Conjugation (defined for neutral mesons) $C = (-1)^{L+S}$
- G parity $G = C(-1)^{I}$

$$\frac{L=0, S=1:}{\rho, \omega, \phi \left(J^{PC}=1^{--}\right)}$$


$$L = 0, S = 0:$$

e.g. $\pi (J^{PC} = 0^{-+})$

Summary and Outlook

Ordinary and Exotic Mesons

$$J^{PC} \equiv {}^{2S+1}L_{I}$$

- Parity $P = (-1)^{L+1}$
- Charge Conjugation (defined for neutral mesons)
 C = (−1)^{L+S}
- G parity $G = C(-1)^I$

$$L = 0, S = 1 :$$
 $\rho, \omega, \phi (J^{PC} = 1^{--})$
 $L = 0, S = 0 :$

e.g.
$$\pi (J^{PC} = 0^{-+})$$

12 GeV CEBAF upgrade has high priority (DOE Office of Science, Long Range Plan) "[key area] is experimental verification of the powerful force fields (flux tubes) believed to be responsible for quark confinement."

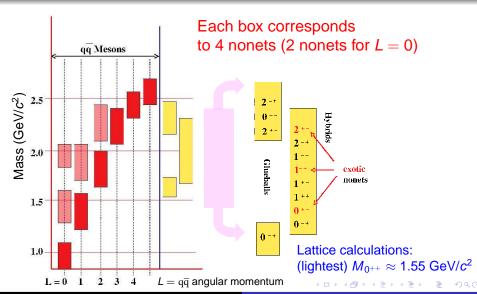
excited flux-tube m=1

Forbidden States (Exotics): $J^{PC} = 0^{+-}, 0^{--}, 1^{-+}, \cdots$

Mesons and their Quantum Numbers

		J PC	^{2S+1} L _J	<i>I</i> = 1	$I=0\ (n\bar{n})$	$I=0$ ($s\bar{s}$)	Strange
L=0	S = 0	0-+	¹ S ₀	π	η	η'	К
	S = 1	1	${}^{3}S_{1}$	ρ	ω	ϕ	K*
L = 1	S = 0	1+-	¹ P ₁	<i>b</i> ₁	<i>h</i> ₁	h_1'	K ₁
	S = 1	0++	$^{3}P_{0}$	a ₀	f_0	f_0'	K ₀ *
	S = 1	1++	$^{3}P_{1}$	a ₁	f_1	f' ₁	K ₁
	S = 1	2++	$^{3}P_{2}$	a ₂	f_2	f_2'	K ₂ *

Notation

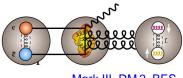

- \bigcirc J^{PC} s are measured quantities.
- $^{2S+1}L_J$ s are internal quantum numbers in a non-relativistic quark model.

Mesons and their Quantum Numbers

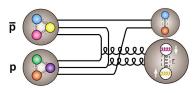
		J PC	^{2S+1} L _J	<i>I</i> = 1	$I=0\ (n\bar{n})$	$I=0$ ($s\bar{s}$)	Strange
<i>L</i> = 0	S = 0	0-+	¹ S ₀	π	η	η'	K
	S = 1	1	${}^{3}S_{1}$	ρ	ω	ϕ	K*
<i>L</i> = 1	S = 0	1+-	¹ <i>P</i> ₁	<i>b</i> ₁	h_1	h' ₁	K_1
	S = 1	0++	${}^{3}P_{0}$	a ₀	f_0	f ' ₀	K_0^*
	S = 1	1++	${}^{3}P_{1}$	a ₁	f_1	f ' ₁	K_1
	S = 1	2++	${}^{3}P_{2}$	a ₂	f_2	f' ₂	K_2^*

Notation

- \bigcirc J^{PC} s are measured quantities.
- $^{2S+1}L_J$ s are internal quantum numbers in a non-relativistic quark model.

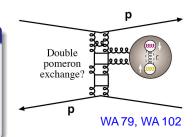

Outline

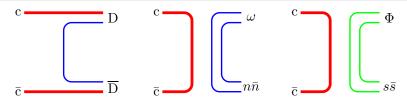
- Introduction and Motivation
 - The Quark Model of Hadrons
 - Meson Spectroscopy
- Experimental Methods in Meson Spectroscopy
 - Glue-Rich Environments
 - Photoproduction
- Glueballs and Light Mesons
 - The Quest for the Scalar Glueball
 - Exotic Hybrid Mesons
- The GlueX Experiment at Jefferson Lab
- Summary and Outlook



Glue-Rich Environments

Pictures: Ulrich Wiedner


Mark III, DM 2, BES

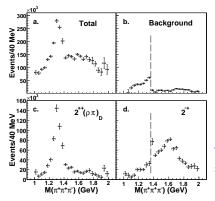

Asterix, Obelix, Crystal Barrel

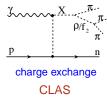
Different Production Mechanisms

- **1** J/ψ may convert into 2 gluons and a photon.
- In $p\bar{p}$ annihilation, $q\bar{q}$ pairs annihilate into gluons forming glueballs.
- Central production: two hadrons scatter diffractively, no exchange of valence quarks.

The OZI Rule and Flavor-Tagging Approach

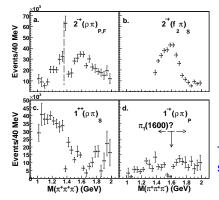
The decay of J/ψ into mesons with open charm (left) is forbidden due to energy conservation.

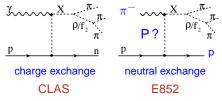

The two right diagrams require annihilation of $c\bar{c}$ into gluons:


- Recoiling against ω , mesons with $n\bar{n}$ quark structure are expected.
- If a ϕ is observed, we expect mesons with hidden strangeness $s\bar{s}$.
 - → OZI rule, e.g. ratio $\phi \eta'/\omega \eta'$ ~ ratio of $s\bar{s}/n\bar{n}$ in η' w.f.

Results on light mesons from CLAS at Jefferson Lab

Search for the photo-excitation of exotic mesons in the $\pi^+\pi^+\pi^-$ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))

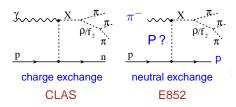




The authors don't observe a resonant structure in the 1^{-+} ($\rho\pi$) $_P$ partial wave.

Results on light mesons from CLAS at Jefferson Lab

Search for the photo-excitation of exotic mesons in the $\pi^+\pi^+\pi^-$ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))

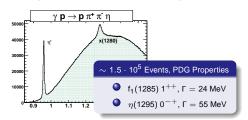


The authors don't observe a resonant structure in the $\mathbf{1}^{-+}$ $(\rho\pi)_P$ partial wave.

Results on light mesons from CLAS at Jefferson Lab

Search for the photo-excitation of exotic mesons in the $\pi^+\pi^+\pi^-$ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))

A $J^{PC}=1^{-+}$ gluonic hybrid should be photo-produced at the same rate as the $a_2(1320)$, whereas in pion production it should be suppressed by a factor of 10. (Close & Page, Phys. Rev. D **52**, 1706 (1995))



- Upper limit for the $\pi_1(1600)$ of 13.5 nb, less than 2% of the $a_2(1320)$.
- New HyCLAS data have an order of magnitude more statistics.
 - → e.g. $\gamma p \rightarrow p \pi^+ \pi^+ \pi^-$, $\gamma p \rightarrow p \pi^+ \pi^- \pi^0$ ($J^{PC} = 1^{-+}$ isoscalar production?)
- GlueX proposed to map out the light exotic spectrum.

Results on light mesons from CLAS at Jefferson Lab

- Search for the photo-excitation of exotic mesons in the $\pi^+\pi^+\pi^-$ system (M. Nozar *et al.*, Phys. Rev. Lett. **102**, 102002 (2009))
- First measurement of direct $f_0(980)$ photoproduction on the proton (M. Battaglieri *et al.*, Phys. Rev. Lett. **102**, 102001 (2009))
- Production and decay of the f_1/η (1285) [in the g11 data set] (R. Dickson et al., Ph.D. thesis)

Channel	Measurements		
$\eta\pi\pi$ $m{a}_0\pi$	$d\sigma/d\Omega$, mass, and Γ Dalitz plot analysis		
$KK\pi ho^0\gamma$	$d\sigma/d\Omega$, B. F. B. F. (upper limit)		

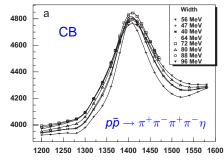
Outline

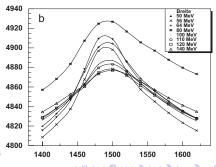
- Introduction and Motivation
 - The Quark Model of Hadrons
 - Meson Spectroscopy
- Experimental Methods in Meson Spectroscopy
 - Glue-Rich Environments
 - Photoproduction
- Glueballs and Light Mesons
 - The Quest for the Scalar Glueball
 - Exotic Hybrid Mesons
- The GlueX Experiment at Jefferson Lab
- Summary and Outlook

The I = 0, $J^{PC} = 0^{-+}$ (Pseudoscalar) Mesons

Name	Mass [MeV/c ²]	Width [MeV/c ²]	Decays
η (548) *	547.51 ± 0.18	$1.30\pm.07~\text{keV}$	$\gamma\gamma$, 3π
η ′(958) *	957.78 ± 0.14	$\boldsymbol{0.203 \pm 0.016}$	$\eta\pi\pi,\rho\gamma,\omega\gamma,\gamma\gamma$
η(1295) *	1294 \pm 4	55 ± 5	$ηππ$, $a_0π$, $γγ$, $ησ$, $K\bar{K}π$
η (1405) *	1409.8 ± 2.5	51.1 ± 3.4	$K\bar{K}\pi$, $\eta\pi\pi$, $a_0\pi$, $f_0\eta$, 4π
η(1475) *	1476 ± 4	87 ± 9	$oxed{Kar{K}\pi,Kar{K}^*+cc,a_0\pi,\gamma\gamma}$
η (1760)	1760 ± 11	60 ± 16	$\omega\omega$, 4π
η (2225)	2220 ± 18	$150^{+300}_{-60}\pm60$	KKKK

Five pseudoscalar states < 1500 MeV/ c^2 listed in the PDG summary table


→ Too many for two nonets!!



The Search for the Lightest Pseudoscalar Glueball

In 1990, Mark III reported two pseudoscalar states in the 1400 MeV/ c^2 region in radiative J/ψ decays (with $J/\psi \to a_0(980)\pi$ and $J/\psi \to K^*K$).

- Both states confirmed by Crystal Barrel and Obelix at LEAR
- But: CB did NOT observe the $\eta(1295)$

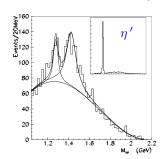
The Quest for the Scalar Glueball Exotic Hybrid Mesons

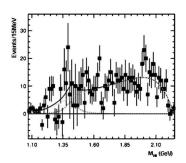
The Search for the Lightest Pseudoscalar Glueball

In 2001, L3 observed $\eta(1475) \rightarrow K\bar{K}\pi$ in two-photon collisions.

• No observation by L3 of the second state, the $\eta(1405)$ \rightarrow Glueball?

The Search for the Lightest Pseudoscalar Glueball

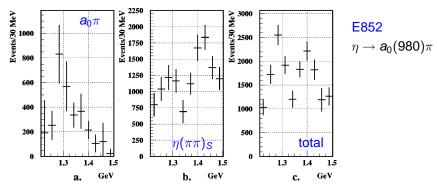

In 2001, L3 observed $\eta(1475) \to K\bar{K}\pi$ in two-photon collisions.


- No observation by L3 of the second state, the $\eta(1405)$ \rightarrow Glueball?
- In 2005, CLEO published (high-statistics) negative results on both states.

The Flavor Filter in the Decay $J/\psi \to \gamma [\gamma V]$

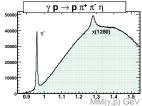
BES-II studied $J/\psi \rightarrow \gamma \gamma V(\rho, \phi)$

- Clear observation of peak at $M \approx 1424 \text{ MeV/} c^2$ in $X(1424) \rightarrow \gamma \rho$ (left)
- No observation of $X(1424) \rightarrow \gamma \phi$ (right)!
 - → Glueball should decay to both final states.



What about the $\eta(1295)$?

Often interpreted as first radial excitation of the η meson.


- Ideal mixing: degenerate in mass with $\pi(1300)$
- Problem: only observed in pion-induced reactions!

Study of the $\eta(1295)$ in Photoproduction at CLAS

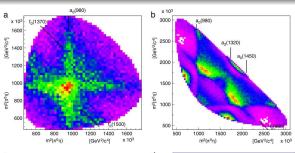
First photoproduction measurements of x(1280) (Preliminary conclusions from talk at APS Spring Meeting 2009)

- Mass and width of the state consistent with the PDG values for $f_1(1285)$, not the $\eta(1295)$
- Cross sections being compared to models for both 0⁻ and 1⁺
- Dalitz plot analysis of $\eta\pi\pi$ final state shows clear $a_0(980)$ intermediate state, with no charge asymmetry
- $KK\pi$ and $\eta\pi\pi$ final states measured; no $\rho^0\gamma$ final state seen
 - inconsistent with f_1 (1285) (PDG: $(5.5 \pm 1.3)\%$ for $f_1 \rightarrow \gamma \rho^0$)

The 2⁺⁺ Tensor Glueball

Evidence essentially non-existent!

Two quark configurations yield 2⁺⁺:


2
$$L=3$$
, $S=1$, $J=2$: 3F_2

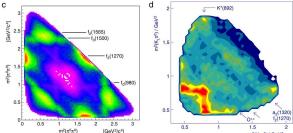
- For both nonets, radial excitations are expected.
- Situation premature: none of the states can be assigned definitely to any of the above nonets.

Name	Mass [MeV/c²]	
f ₂ (1270) *	1275.4 ± 1.1	
f ₂ (1430)	1430	
f ₂ '(1525) *	1525 ± 5	
f ₂ (1565)	1546 ± 12	
f ₂ (1640)	$\textbf{1638} \pm \textbf{6}$	
f ₂ (1810)	1815 ± 12	
f ₂ (1910)	1915 ± 7	
f ₂ (1950) *	1944 ± 12	
f ₂ (2010) *	2011 ⁺⁶⁰ ₋₈₀	
f ₂ (2150)	2156 ± 11	
f ₂ (2300) *	2297 ± 28	
f ₂ (2340) *	2339 ± 60	

The I = 0, $J^{PC} = 0^{++}$ (Scalar) Mesons

Name	Mass [MeV/c ²]	Width [MeV/c ²]	Decays
			Doodyo
$f_0(600) *$	400 – 1200	600 - 1000	$\pi\pi$, $\gamma\gamma$
f ₀ (980) *	980 ± 10	40 - 100	$\pi\pi$, K $ar{K}$, $\gamma\gamma$
f ₀ (1370) *	1200 — 1500	200 - 500	$\pi\pi$, $\rho\rho$, $\sigma\sigma$, π (1300) π , $a_1\pi$, $\eta\eta$, $K\bar{K}$
f ₀ (1500) *	1507 ± 5	109 ± 7	$\pi\pi$, $\sigma\sigma$, $\rho\rho$, π (1300) π , $a_1\pi$, $\eta\eta$, $\eta\eta'$
			$K\bar{K}, \gamma\gamma$
f ₀ (1710) *	1718 ± 6	137 ± 8	$\pi\pi$, $K\bar{K}$, $\eta\eta$, $\omega\omega$, $\gamma\gamma$
f ₀ (1790)			
f ₀ (2020)	1992 ± 16	442 ± 60	$\rho\pi\pi$, $\pi\pi$, $\rho\rho$, $\omega\omega$, $\eta\eta$
f ₀ (2100)	2103 ± 7	206 ± 15	$\eta\pi\pi$, $\pi\pi$, $\pi\pi\pi\pi$, $\eta\eta$, $\eta\eta'$
f ₀ (2200)	2189 ± 13	238 ± 50	$\pi\pi$, K $ar{K}$, $\eta\eta$

Summary and Outlook


Crystal Barrel

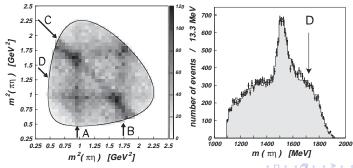
a
$$oldsymbol{p}ar{p} o\pi^0\eta\eta$$

b $oldsymbol{p}ar{p} o\pi^0\pi^0\eta$
c $oldsymbol{p}ar{p} o\pi^0\pi^0\pi^0$

d $p\bar{p} \rightarrow \pi^0 K_L K_L$

Good description with

- Two isoscalar states: $f_0(1370) / f_0(1500)$
 - In addition:
 Both have dominant
 4π decay modes.
 - → n\(\bar{n}\) structure

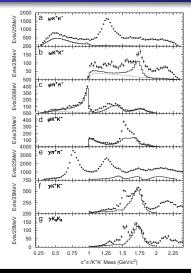

V. Credé

m²(K, π⁰) / GeV²

The $f_0(1710)$ Scalar Meson in Crystal Barrel

First discovered by Crystal-Ball in radiative J/ψ decays into $\eta\eta$

- Spin (J = 0 or 2) remained controversial for a long time
- No satisfactory Crystal Barrel signal around 1700 MeV/ c^2 for a scalar or a tensor state in $\pi^0\pi^0\pi^0$ or $\pi^0\eta\eta$

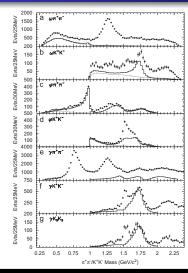


The $f_0(1710)$ Scalar Meson

First discovered by Crystal-Ball in radiative J/ψ decays into $\eta\eta$

- Spin (J = 0 or 2) remained controversial for a long time
- No satisfactory Crystal Barrel signal around 1700 MeV/ c^2 for a scalar or a tensor state in $\pi^0\pi^0\pi^0$ or $\pi^0\eta\eta$
- Consistent with a dominant ss assignment
 - → Confirmed by WA102 reporting a much stronger $K\bar{K}$ coupling of $f_0(1710)$ than $\pi\pi$ coupling

BES spoils the Glueball Picture ...



Flavor Tagging

 ωK^+K^- → Peak around 1700 MeV/ c^2 (OZI rule: $n\bar{n}$ structure)

 $\phi K^+ K^- \rightarrow \text{No peak around 1700 MeV}/c^2$

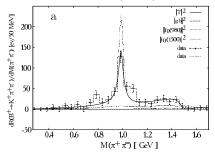
BES spoils the Glueball Picture ...

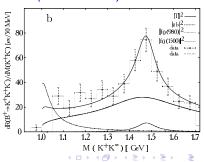
Flavor Tagging

 ωK^+K^- → Peak around 1700 MeV/ c^2 (OZI rule: $n\bar{n}$ structure)

 $\phi \pi^+ \pi^ \rightarrow$ Enhancement at 1790 MeV/ c^2

 $\phi K^+ K^- \rightarrow \text{No peak around 1700 MeV/}c^2$

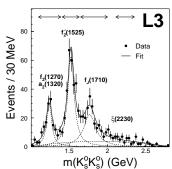

Solution: Two distinct scalar states


- The known $f_0(1710)$ decaying to $K\bar{K}$
- New broad $f_0(1790)$ coupling strongly to $\pi\pi$
 - Not confirmed by other experiments!
 - Mystery why $s\bar{s}$ recoils against ω

Belle makes it even worse ...

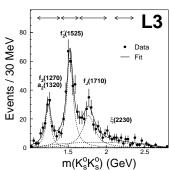
Belle measured scalar mesons in $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ (Results essentially confirmed by BaBar)

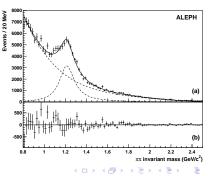
- No peak at 1500 MeV/ c^2 for the $f_0(1500)$ (left),
- But a clear peak around 1500 MeV/ c^2 decaying to K^+K^-
 - \rightarrow Structure of $f_0(1500)$ remains unclear (or two states)!



Results on Scalar Mesons from $\gamma\gamma$ Fusion

Results were reported by the LEP collaborations at CERN:


- Three clear peaks in the $K_S^0 K_S^0$ mass by L3 (dominated by tensors)
- No peak for the $f_0(1500)$
 - → Consistent with known small $s\bar{s}$ component! What about $\pi\pi$ spectrum?



Results on Scalar Mesons from $\gamma\gamma$ Fusion

Results were reported by the LEP collaborations at CERN:

- Three clear peaks in the $K_S^0 K_S^0$ mass by L3 (dominated by tensors)
- No peak for the $f_0(1500)$
 - → Consistent with known small $s\bar{s}$ component! What about $\pi\pi$ spectrum?

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

- What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)
- Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or perhaps, it does not exist ...

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

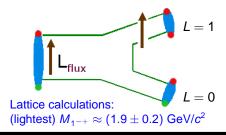
- What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)
- Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or perhaps, it does not exist ...
- Is the $f_0(1500)$ the scalar glueball? Data on $J/\psi \to \gamma f_0(1500)$ is still statistically limited \Rightarrow BES-III

Scalar Mesons: Key Questions

The following key questions account for the major differences in the models on scalar mesons and need to be addressed in the future:

- What is the nature of the $f_0(980)$ and $a_0(980)$? (There is the possibility of an exotic nonet below 1 GeV/ c^2 .)
- Is the $f_0(1370)$ a true $q\bar{q}$ resonance or of different nature, e.g. generated by $\rho\rho$ molecular dynamics? Or perhaps, it does not exist ...
- Is the $f_0(1500)$ the scalar glueball? Data on $J/\psi \to \gamma f_0(1500)$ is still statistically limited \Rightarrow BES-III
- Are the two states, $f_0(1710)$ and $f_0(1790)$ distinct states?
- **5** ...

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.


→ The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions.

→ Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception.

Hybrid-Meson Decays:

(angular momentum in the flux tube stays in one of the daughter mesons)

Multi-particle final states with neutral and charged particles!

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.

→ The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions.

→ Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception.

In summary:

→ Tetraquark? (too low in mass for hybrid, decuplet state)

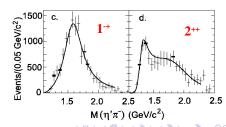
$$\pi_1(1400) \to \eta \pi \\ \text{Resonant Interpretation} \begin{cases} \text{E852, Phys. Rev. D 60 (1999) 092001.} \\ \text{VES, Phys. Atom. Nuc. D 68 (2005) 3.} \\ \text{Crystal Barrel, Phys. Lett. B 423 (1998) 175.} \end{cases}$$

$$\text{Non-Resonant Interpretation} \end{cases} \begin{cases} \text{E852 (IU), Phys. Rev. Lett. 91 (2003) 092002.} \end{cases}$$

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.

→ The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions.


→ Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception.

In summary:

1
$$\pi_1(1400) \to \eta \pi \neq \pi'_1(1400) \to \rho \pi$$
 (CB & Obelix, Proceedings 2004)

→ Tetraquark?

②
$$\pi_1(1600)[\to \eta'\pi, \to f_1(1285)\pi]$$

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.

→ The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions.

→ Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception.

In summary:

- ① $\pi_1(1400) \rightarrow \eta \pi \neq \pi'_1(1400) \rightarrow \rho \pi$ (CB & Obelix, Proceedings 2004)
 - → Tetraquark? (too low in mass for hybrid, decuplet state)
- ② $\pi_1(1600)[\rightarrow \eta'\pi, \rightarrow f_1(1285)\pi] \neq \pi'_1(1600)[\rightarrow \rho\pi, \rightarrow b_1(1235)\pi]$

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.

→ The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions.

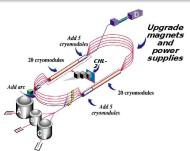
→ Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception.

In summary:

- ① $\pi_1(1400) \rightarrow \eta \pi \neq \pi'_1(1400) \rightarrow \rho \pi$ (CB & Obelix, Proceedings 2004)
 - → Tetraquark? (too low in mass for hybrid, decuplet state)

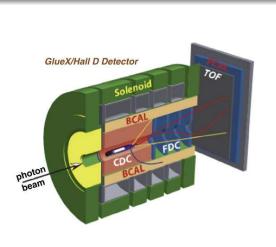
②
$$\pi_1(1600)[\rightarrow \eta'\pi, \rightarrow f_1(1285)\pi] \neq \pi'_1(1600)[\rightarrow \rho\pi, \rightarrow b_1(1235)\pi]$$

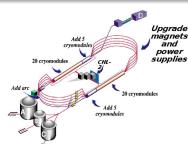
- $\rightarrow \eta' \pi^-$: dominant 1⁻⁺ partial wave (E852, 2001; VES, 2005)
- $\rightarrow
 ho^0\pi^-$: small relative structure with leakage from other waves (Evidence: E852, '02; COMPASS, '09; Negative: VES, '04; IU, '06; CLAS, '09)
- $\rightarrow b_1(1235)\pi/f_1(1285)\pi$: structure in 1⁻⁺ partial wave (E852, '05, '04; VES, '99, '05)


Outline

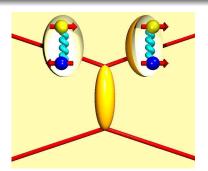
- Introduction and Motivation
 - The Quark Model of Hadrons
 - Meson Spectroscopy
- Experimental Methods in Meson Spectroscopy
 - Glue-Rich Environments
 - Photoproduction
- Glueballs and Light Mesons
 - The Quest for the Scalar Glueball
 - Exotic Hybrid Mesons
- The GlueX Experiment at Jefferson Lab
- Summary and Outlook

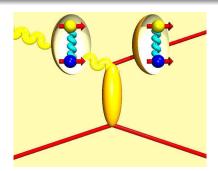
The GlueX Experiment at Jefferson Laboratory





The GlueX Experiment at Jefferson Laboratory

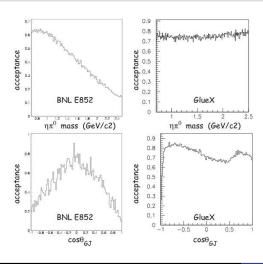

The GlueX Experiment at Jefferson Laboratory



The Advantage of a Photon Beam

Pion Beam

- π with S = 0, L = 0 and m = 1• $J^{PC} = 1^{++}$, 1^{--}
- Spin flip required for exotic quantum numbers



Photon Beam

- γ with S = 1, L = 0 and m = 1• $J^{PC} = 0^{-+}, 0^{+-}, 1^{-+}, 1^{+-}, ...$
- No spin flip needed for exotic QN's

Case Study: GlueX versus E852 Acceptance

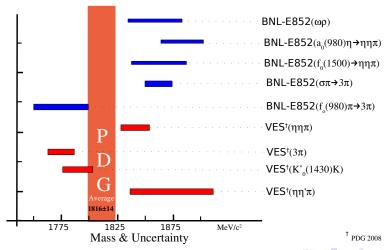
- High, and reasonably uniform acceptance up to 2.5 GeV/c².
- Sensitive to charged particles and photons.
- Some particle ID in the initial phases, plans to upgrade this.
- Able to fully reconstruct the 4-12 particle final states.
- $\rightarrow \pi^0 \eta$ Photoproduction

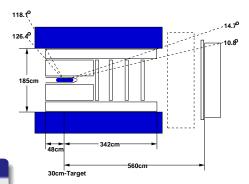
Outline

- Introduction and Motivation
 - The Quark Model of Hadrons
 - Meson Spectroscopy
- Experimental Methods in Meson Spectroscopy
 - Glue-Rich Environments
 - Photoproduction
- Glueballs and Light Mesons
 - The Quest for the Scalar Glueball
 - Exotic Hybrid Mesons
- The GlueX Experiment at Jefferson Lab
- Summary and Outlook

Summary and Outlook

QCD predicts glueballs and nonets of mesons with exotic quantum numbers.


- There is fair evidence for a scalar glueball.
- There are hints for some states with exotic quantum numbers; two states are consistent with a π_1 state. What about the other states?
 - → We have just started to see results from COMPASS.
- The first searches in photoproduction have come up negative, but the acceptance has been poor, and the lower energy regime may not have been optimal.
- The GlueX experiment at Jefferson Lab is now under construction with first beam in the hall expected in 2014.
- GlueX has high acceptance for multi-particle final states, sensitivity to photons, and a linearly-polarized photon beam.



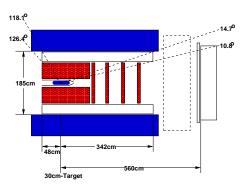
Introduction and Motivation xperimental Methods in Meson Spectroscopy Glueballs and Light Mesons The GlueX Experiment at Jefferson Lab Summary and Outlook

Backup Slides

The Mass of the π (1800)

Magnet and Target

- 2 T Solenoid, Superconducting
- LH₂ Target


Tracking Chambers

Central Drift Chamber (CDC)

- Straw-Tube Chamber (N = 3522)
 - → d = 1.6 cm, I = 150 cm $(\sigma_{\phi} = 150 \ \mu\text{m}, \ \sigma_{z} = 1.5 \ \text{mm})$
- dE/dx for PID

Forward Drift Chamber(s) (FDC)

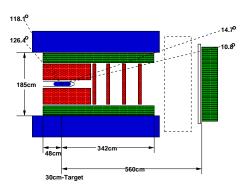
- 2304 wires, 10368 cathode strips
- $\sigma_{\rm X, V} \sim 200 \ \mu {\rm m}$

Calorimetry

Barrel Calorimeter

15.5 radiation lengths

$$\bullet \quad \frac{\sigma_E}{E} = \frac{5.5 \,\%}{\sqrt{E}} \,\oplus\, 1.6 \,\%$$

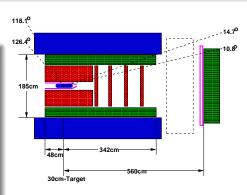

$$\bullet$$
 $\frac{\sigma_{\Delta T}}{E} = \frac{74 \text{ ps}}{\sqrt{E}} \oplus 33 \text{ ps}$

Forward Calorimeter

- F8-00 lead glass, 2800 blocks
- 14.5 radiation lengths

$$\frac{\sigma_E}{F} = \frac{5.7\%}{\sqrt{F}} + 2\%$$

• $\sigma_r \approx 5 - 6 \text{ mm}$


Timing

Start Counter

- Event start time
 - → Designed to operate at $10^8 \gamma/s$
- 40 detectors, 500 mm in length
- $\sigma_t \approx 0.26 \text{ ns to } 0.16 \text{ ns}$

Forward Time-of-Flight

- Two planes of scintillator paddles
- 250 cm x 6 cm x 2.5 cm
- $\sigma_{\Delta t} \approx 80 \text{ ps}$

