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Properties of the proton and neutron in the quark model

A good way to introduce the ideas encoded in the quark 
model is to understand how it simply explains properties of 
the ground-state baryons and mesons 

The most common of those, although not necessarily the 
simplest, are the proton and neutron

To understand how to explain their magnetic moments in 
the quark model, we have to understand their spin and 
flavor structure, the exchange group S3, isospin, color, and 
how these can be used to evaluate matrix elements of 
operators
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Properties of the Proton

Proton has mass 1.67262158 × 10−27 kg	



It is a fermion, with J = 1/2

In more useful units: 938 MeV/c2, or just 938 MeV (use c = 1)

If you invert the coordinates (r to −r) of its constituents, 
wave function stays the same; it has positive intrinsic 
(coordinate inversion) parity

Its charge is +1.602 x 10−19 C, or +e

 (�r1,�r2, . . . ) = + (r1, r2, ...)

It has a magnetic moment of  +2.79µN = +2.79
e~

2mp

It is not point-like; charge radius is 0.88 x 10−15 m = 0.88 fm



Florida State University              Simon Capstick SPS S.E. section @ NHMFL   4/14/2012 3

Fundamental constituents of the Proton

Most of the proton’s properties are	


determined by its three valence quarks

Because of the strength of the interaction binding the quarks 
to each other, the proton can contain any number of quark-
antiquark pairs, called (Dirac) sea quarks

up (u) quark is a fundamental spinor (fermion with J=1/2), 
charge +2/3 e

d u

u

down (d) quark is also a fermion with J=1/2, charge −1/3 e

The exchange quantum of this interaction is called a gluon, 
and has vector quantum numbers; the proton can contain any 
number of gluons
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Excitations that change the quarks

These are called different ‘flavors’

Simplest: change one of the up quarks for a down quark

Neutron has mass ~1.3 MeV larger than the proton:

electrostatic repulsion weaker in the neutron:	


2(+2/3)(−1/3)+(−1/3)(−1/3) = −1/3 (units e2/<r>)	


than in the proton:	


2(+2/3)(−1/3)+(+2/3)(+2/3) = 0, lowers mass by ~3 MeV

d quark has mass ~ 5 MeV larger than the u
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Properties of the Neutron

Neutron decays slowly (886 s) via beta (weak) decay to 
proton:

Magnetic moment is 

Neutral, but has a distribution of charge, with 

negative charge outside a positive core; up quark on 
average inside the two down quarks

Has JP = 1/2+ like the proton

n! p e� ⌫̄e

�1.91 µN = �1.91
e~

2mp

h
X

i

eir
2
i i = �0.12 fm2

down quark has decayed to an up: d! u W� ! u e� ⌫̄e
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Nucleon (p and n) magnetic moments

SU(3)f symmetry showed that baryons were made up of 
three ‘valence’ quarks which carried their quantum numbers

What are the possible spin wave functions of three spin-
½ objects?

Natural to assume these quarks are spin-½ objects, like all 
other fundamental matter particles

(1/2 ⊗ 1/2) ⊗ 1/2 = (0  ⊕  1) ⊗ 1/2 
                      = 1/2 ⊕ (1⊗ 1/2 )	


                      = (1/2)ρ ⊕ (1/2)λ ⊕ 3/2

We can determine the spin wave functions using the rules 
for combining representations of SU(2) encoded in the 
Clebsch-Gordan coefficients (e.g., from the Particle Data 
Group table):
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Spin wave functions

| 0 0⟩ = (1/√2)(↑↓ − ↓↑)  
| 1 1⟩ = ↑↑,  | 1 0 ⟩ = (1/√2)(↑↓ + ↓↑),  | 1 −1⟩ =↓↓

Define ↑ ≔| ½ ½⟩ ↓ ≔| ½ −½⟩, then

(1/2 ⊗ 1/2) ⊗ 1/2 = (0  ⊕  1) ⊗ 1/2 
                      = 1/2 ⊕ (1⊗ 1/2 )	


                      = (1/2)ρ ⊕ (1/2)λ ⊕ 3/2
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Spin wave functions

|3/2 3/2⟩ = ↑↑↑ 
|3/2 1/2⟩  = (1/√3)|1 1⟩ ↓ + √(2/3)|1 0⟩ ↑	


                 = (1/√3)(↑↑↓ + ↑↓↑ + ↓↑↑)	


|3/2 −1/2⟩ = √(2/3)|1 0⟩ ↓ + (1/√3)|1 −1⟩ ↑	


                 = (1/√3)(↑↓↓ + ↓↑↓ + ↓↓↑)	


|3/2 3/2⟩ = ↓↓↓

(1/2 ⊗ 1/2) ⊗ 1/2 = (0  ⊕  1) ⊗ 1/2 
                      = 1/2 ⊕ (1⊗ 1/2 )	


                      = (1/2)ρ ⊕ (1/2)λ ⊕ 3/2

These wave functions are totally symmetric under exchange of 
the quarks
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Exchange symmetry

S2 = (S1+S2+S3)2 = s1(s1+1) + s1(s1+1) + s1(s1+1)  
                                 + 2(S1⋅S2 + S1⋅S3 + S2⋅S3)	


                          = 9/4 + 2(S1⋅S2 + S1⋅S3 + S2⋅S3)	


and Sz = (S1+S2+S3)z

This is no accident: they are eigenfunctions of total spin

S2 and Sz are totally symmetric under exchange, so  
[S2, OS3] = [Sz, OS3] = 0 and all simultaneous eigenfunctions 
of S2 and Sz must represent the operators of S3 (i.e., must 
belong to a representation of the group)

The group of all exchange operations OS3 for three objects is 
called S3: consists of the identity, the two-cycles (12), (13), 
(23), and the three-cycles (123) and (132)
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Exercise : exchange symmetry

Prove, by considering their effect on abc, that the three-
cycles (123) and (132) can be written as the product of two 
two-cycles
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OS3 S2 |S MS⟩ = S(S+1) OS3|S MS⟩ 
S2 (OS3|S MS⟩) = S(S+1) OS3|S MS⟩  since commutator is zero

11

Exchange symmetry

|S MS⟩ satisfies S2 |S MS⟩ = S(S+1) |S MS⟩, i.e. is an 
eigenfunction of the operator S2

OS3|S MS⟩ is also an eigenfunction of S2 with the same 
eigenvalue (similarly for Sz)

Act on both sides with any operator OS3 of the exchange 
group S3

S=3/2 case: there is only one eigenfunction of S2 and Sz with 
the eigenvalues S(S+1) and MS, then  OS3|S MS⟩ is the same as 
|S MS⟩, up to a phase, +1 in the case of |3/2 MS⟩



Florida State University              Simon Capstick HUGS @ JLab   5/2-5/2014 12

Exchange symmetry

S2 (OS3|S MS⟩) = S(S+1) OS3|S MS⟩

There are two S = ½ eigenfunctions |1/2 MS⟩ of S2, so  
OS3|S MS⟩ is in general a linear combination of these two 
eigenfunctions that conserves probability (i.e., a rotation)

(1/2 ⊗ 1/2) ⊗ 1/2 = (0  ⊕  1) ⊗ 1/2 
                      = 1/2 ⊕ (1⊗ 1/2 )	


                      = (1/2)ρ ⊕ (1/2)λ ⊕ 3/2

The two eigenfunctions |1/2 MS⟩, which we will denote  
|1/2ρ MS⟩ and |1/2λ MS⟩, form a two-dimensional mixed-
symmetry representation of S3
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|1/2 1/2⟩ρ   = |0 0⟩ ↑	


                   = (1/√2)(↑↓ − ↓↑) ↑	


                   = (1/√2)(↑↓↑ − ↓↑↑)  
!
|1/2 −1/2⟩ρ = |0 0⟩ ↓	


                   = (1/√2)(↑↓ − ↓↑) ↓	


                   = (1/√2)(↑↓↓ − ↓↑↓)  

13

Spin wave functions

(1/2 ⊗ 1/2) ⊗ 1/2 = (0  ⊕  1) ⊗ 1/2 
                      = 1/2 ⊕ (1⊗ 1/2 )	


                      = (1/2)ρ ⊕ (1/2)λ ⊕ 3/2
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|1/2 1/2⟩λ   = √(2/3)|1 1⟩ ↓ − (1/√3)|1 0⟩ ↑	


                   = √(2/3)↑↑↓ − (1/√6)↑↓↑ − (1/√6)↓↑↑	


                   = −(1/√6)(↑↓↑ + ↓↑↑ − 2 ↑↑↓)  
!
|1/2 −1/2⟩λ = (1/√3)|1 0⟩ ↓ − √(2/3)|1 −1⟩ ↑	


                   = (1/√6)↑↓↓  − (1/√6)↓↑↓  − √(2/3)↓↓↑	


                   = (1/√6)(↑↓↓ + ↓↑↓ - 2 ↓↓↑)

14

Spin wave functions

(1/2 ⊗ 1/2) ⊗ 1/2 = (0  ⊕  1) ⊗ 1/2 
                      = 1/2 ⊕ (1⊗ 1/2 )	


                      = (1/2)ρ ⊕ (1/2)λ ⊕ 3/2
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Exchange symmetry

The two eigenfunctions |1/2 MS⟩, denoted |1/2ρ MS⟩ and  
|1/2λ MS⟩, form a two-dimensional mixed-symmetry 
representation of S3 = {1,(12),(13),(23),(123),(132)}

1 |1/2 1/2⟩ρ = |1/2 1/2⟩ρ

(12) |1/2 1/2⟩ρ = (12) (1/√2)(↑↓ − ↓↑) ↑ = − |1/2 1/2⟩ρ

(13) |1/2 1/2⟩ρ = (13) (1/√2)(↑↓↑ − ↓↑↑)	


               = (1/√2)(↑↓↑ − ↑↑↓)	


               = (1/√2)[2↑↓↑ + (− ↓↑↑ + ↓↑↑) − 2↑↑↓]/2	


               = (1/√2)(↑↓↑ − ↓↑↑ + ↑↓↑ + ↓↑↑− 2↑↑↓)/2	


               = (1/2) |1/2 1/2⟩ρ −√6/(2√2) |1/2 1/2⟩λ 	



                       = (1/2) |1/2 1/2⟩ρ −(√3/2) |1/2 1/2⟩λ
(a rotation by −60°)
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Exercise: exchange symmetry

a. Prove that (13) |1/2 1/2⟩λ  is the orthogonal linear 
combination −(√3/2) |1/2 1/2⟩ρ − (1/2) |1/2 1/2⟩λ

b. Without doing an explicit calculation, can you find	


(23) |1/2 1/2⟩ρ using the action of (12) on |1/2 1/2⟩ρ and on 
|1/2 1/2⟩λ and knowing that  
(13) |1/2 1/2⟩ρ = (1/2) |1/2 1/2⟩ρ −(√3/2) |1/2 1/2⟩λ ?
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Nucleon (p and n) magnetic moments

In order to calculate the magnetic moments of the spin-½ 
nucleons N={n,p} we need to know how each quark’s charge 
is correlated with its spin (assume MS = +½)

This is equivalent to knowing the flavor (correlated with 
charge, since qu = + 2/3 and qd = − 1/3) and spin parts of 
the wave function

μN = ⟨N ½ ½| ∑i μqi |N ½ ½⟩	


     = ⟨N ½ ½| ∑i qi Szi /(2 mi) |N ½ ½⟩

The strong interactions are almost identical for up and down 
quarks due to their very similar masses md − mu ≃ 5 MeV 
compared to  the scale of the strong interactions ΛQCD ≃ 
200 MeV or the proton mass 938 MeV
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u =   cos(θ) u + sin(θ) d 
d = − sin(θ) u + cos(θ) d

18

Isospin symmetry

This gives rise to a symmetry of the strong interactions

Broken only at the ~1% scale, by quark-mass differences 
and electromagnetic interactions between the quarks

Even though quarks can only be up or down, the strong 
interactions are invariant under a rotation

This approximate SU(2) symmetry is called isospin

Isospin wave functions of u = | ½ ½⟩ and d = | ½ −½⟩ 
are the exact equivalent of the ↑ ≔| ½ ½⟩ and  
↓ ≔| ½ −½⟩ spin-½ wave functions
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Isospin symmetry

We already know the isospin (flavor) wave functions of the 
proton and neutron!

They are an almost degenerate doublet so  
 |I I3⟩ = |1/2 1/2⟩ for p,  |1/2 −1/2⟩ for n

Must be isospin-½ combination of three isospin-½ 
objects, of which there are two mixed-symmetry variants:

φpρ = (1/√2)(udu − duu)	


φpλ = (1/√6)(udu + duu − 2 uud)

φnρ = (1/√2)(udd − dud)	


φnλ = (1/√6)(udd + dud − 2 ddu)
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Isospin symmetry

If isospin symmetry is real, there should also be a quartet of 
states with

|I I3⟩ = |3/2 3/2⟩, |3/2 1/2⟩, |3/2 − 1/2⟩, |3/2 −3/2⟩

φΔ++ = uuu	


φΔ+  = (1/√3)(uud + udu + duu)  
φΔ0  = (1/√3)(ddu + dud + udd)  
φΔ-  = ddd

This is realized in nature in the form of strongly-decaying 
(and so extremely short-lived) particle called the Δ, which 
has mass ~1232 MeV and decays Δ → N π, which can be 
thought of as an excited nucleon
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Isospin symmetry

Study of the angular distribution of the decay products of the 
Δ++ → p π+ shows a P-wave angular distribution

total pπ+ cross section differential cross section

  10.0 2000.0Tlab(MeV) 10/21/98

SM95 A55J05 46261/21739 P+=22616/10197 P-=18883/ 9421 CX=
PN982f  PI-N data VPI&SU   5/98   Arndt  5/14/98

 PI+P  SGT    ACM =    0.00 UN-Normalized

     0.00

   207.00

 Plotted data is for ACM =   0.00 to ACM =   0.00

 CA(71) 3
 PE(78) 3
 TR(66) 1
 DA(72) 1
 BI(66) 1
 CA(68) 3
 BA(76) 3
 DE(65) 1
 ST(66) 1
 BA(70) 0

  10.0  180.0ec.m.(deg) 10/21/98

SM95 A55J05 46261/21739 P+=22616/10197 P-=18883/ 9421 CX=
PN982f  PI-N data VPI&SU   5/98   Arndt  5/14/98

 PI+P  DSG    WCM = 1230.00 UN-Normalized

     0.00

    36.30

 Plotted data is for WCM =1210.00 to WCM =1250.00

 BU(73) 0
 PA(97)P3

(Overall) spin and parity JP for proton is 1/2+, for the pion is 
0−, so JP for Δ is (1/2+)(0−) in a P (Lπ=1−) wave, so it either 
has JP =1/2+ or 3/2+; it has JP = 3/2+
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Exercise: isospin symmetry

a. The Δ0 can be formed by the reaction π− p → Δ0, and it 
subsequently decays via Δ0 → π− p or π0 n essentially 100% 
of the time.  Since the decay is a strong decay, the decay 
operator must be approximately isospin-symmetric. What 
proportion of the final states are π− p, and what proportion 
are π0 n ?

b. No other strong decays of Δ0 are possible because  
MΔ − MN ~ 294 MeV is much smaller than the mass of every 
meson except the pion. Can you think of another way the Δ0 
could decay? Can you estimate what fraction of the time it 
decays this way?
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Exchange symmetry

There are three kinds of representations of S3

One-dimensional totally symmetric (S) 
representations,  e.g., the spin-3/2 or isospin-3/2 
wave functions

Two-dimensional mixed-symmetry {Mρ, Mλ}
representations that transform into each other, e.g., 
the pair |1/2 1/2⟩ρ and |1/2 1/2⟩λ

One-dimensional totally anti-symmetric (A) 
representations
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Exchange symmetry, the Pauli principle, and color

The Δ is the lightest of many excited states of the nucleon 
which have isospin 3/2, and so is likely in its spatial ground 
state; in other bound systems LP = 0+ ground states are 
exchange symmetric 

Consider Δ++, with the isospin (flavor) wave function  
φΔ++ = uuu, must be exchange symmetric

If it has spin-3/2, its spin wave function is exchange 
symmetric

If these are the only degrees of freedom of the quarks, then 
there is a problem with the Pauli principle

ΨΔ++ = ψS(r1,r2,r3) |S=3/2 MS⟩ |I=3/2 I3⟩
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Exchange symmetry, the Pauli principle, and color

A simple way out: propose that quarks carry a three-valued 
degree of freedom, called color; make this part of the wave 
function totally antisymmetric under quark exchange

CA = (1/√6)(rgb + brg + gbr − rbg − bgr − grb )

Δ++ with |S MS⟩ =|3/2 3/2⟩

Under all actions of S3 this transforms into itself up to a sign 
OS3 CA = − CA and so forms a 1-dimensional (antisymmetric) 
representation 

ΨΔ++ = CA ψS(r1,r2,r3) |S=3/2 MS⟩ |I=3/2 I3⟩ and the Pauli 
principle is intact!
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Nucleon (p and n) wave functions

Focus for now on the proton; for convenience use notation 
χρ = |1/2 MS⟩ρ, χλ = |1/2 MS⟩ρ

Ψp(MS) = CA ψS(r1,r2,r3) {χρ or χλ} {φpρ or  φpλ}

We need to arrange for the product of spin and isospin wave 
functions to be totally symmetric to satisfy the Pauli principle

There are the equivalent of the Clebsch-Gordan coefficients 
which tell us how to combine representations of S3
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Combining representations of S3 exchange group 

Combining two representations: Sa ⇥ Sb = Sab

Sa ⇥Ab = Aab

Aa ⇥Ab = Sab

1⇤
2
(M⇥

a ⇥M⇥
b + M�

a ⇥M�
b ) = Sab

1⇤
2
(M⇥

a ⇥M�
b �M�

a ⇥M⇥
b ) = Aab

1⇤
2
(M⇥

a ⇥M�
b + M�

a ⇥M⇥
b ) = M⇥

ab

1⇤
2
(M⇥

a ⇥M⇥
b �M�

a ⇥M�
b ) = M�

ab
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(1/√2)[χρ(MS) φpρ + χλ(MS) φpλ]

28

Nucleon (p and n) wave functions

The symmetric combination of spin and isospin wave 
functions is 

and similarly for the neutron with φp → φn

Ψp(MS) = CA ψS(r1,r2,r3)(1/√2)[χρ(MS) φpρ + χλ(MS) φpλ]

The totally anti-symmetric proton wave function is 
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Exercise: proton wave function

a. Prove, by writing out expanding  
   [χρ(MS) φpρ + χλ(MS) φpλ] into 13 terms like u↑d↓u↑, that  
   it is symmetric under any exchange (12), (13), or (23)

b. Similarly, prove that [χρ(MS) φpλ − χλ(MS) φpρ] is 
   totally antisymmetric
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μN = ⟨N ½ ½| ∑i qi Szi /(2 mi) |N ½ ½⟩

30

Nucleon (p and n) magnetic moments

We now have all the ingredients we need to calculate

Let’s start with the proton; we can get the neutron result 
by the transformation u ↔ d

μp =CA†CA ∫d3r |ψS(r1,r2,r3)|2 (1/2)[χρ(½) φpρ + χλ(½) φpλ]† 	


                              ∑i qi Szi/(2 mi) [χρ(½) φpρ + χλ(½) φpλ]	


     = (1/2)[χρ(½) φpρ + χλ(½) φpλ]† 	


                              ∑i qi Szi/(2 mi) [χρ(½) φpρ + χλ(½) φpλ]
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Nucleon (p and n) magnetic moments

The combined spin-flavor wave function  
(1/√2)[χρ(½) φpρ + χλ(½) φpλ] is totally symmetric, so the 
result is three times the magnetic moment of  quark 3

μp = (3/2) [χρ(½) φpρ + χλ(½) φpλ]† 	


                             μq3 [χρ(½) φpρ + χλ(½) φpλ]

φpρ† μq3 φpρ = (1/2)(udu−duu)† μq3 (udu−duu) = μu

φpλ† μq3 φpλ = (1/6)(udu+duu−2uud)† μq3 (udu+duu−2uud)  
                  = (1/6)(μu + μu + 4μd)

The operator q3 only measures the third quark’s charge and 
can’t change the flavor of any quark
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Nucleon (p and n) magnetic moments

μp = 3 [χρ(½) φpρ + χλ(½) φpλ]† 	


                              μq3 [χρ(½) φpρ + χλ(½) φpλ]

φpρ† μq3 φpρ = μu,  φpλ† q3 φpλ = (1/6)(μu + μu + 4μd)

φpλ† μq3 φpρ = (1/√2)(udu−duu)† μq3 (1/√6)(udu+duu−2uud)	


                    = 0	


φpρ† μq3 φpλ = 0

μq3 can’t change the (12) symmetry of the wave 
function:

μp = 3 χρ(½)† μ3u χρ(½)  
            + 3 χλ(½)† (1/6)(μ3u + μ3u + 4μ3d) χλ(½)
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Nucleon (p and n) magnetic moments

χρ(½)† S3z χρ(½) = (1/2)(↑↓↑ − ↓↑↑)† S3z (↑↓↑ − ↓↑↑)	


                          = +1/2	


χλ(½)† S3z χλ(½) = (1/6)(↑↓↑ + ↓↑↑ − 2 ↑↑↓)† S3z 	



	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (↑↓↑ + ↓↑↑ − 2 ↑↑↓)	


                          = (1/6)[+1/2 +1/2 + 4(−1/2)] = −1/6

Putting this all together, we have

μp = 3 [χρ(½)† μ3u χρ(½)  
                  + χλ(½)† (1/6)(μ3u + μ3u + 4μ3d) χλ(½)]

μp = (3/2)μu + 3(1/6)(−1/6)(μu + μu + 4μd)  
     = (4/3)μu − (1/3)μd

Which implies μn = (4/3)μd − (1/3)μu
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 Similarly (or by isospin) μd  = (4μn + μp)/5

34

Nucleon (p and n) magnetic moments

If the quark model has any validity, then we should have

Experimentally, μp = 2.79 μN  = 2.79 e/(2 mN)  
                                  μn = −1.91 μN

Solve for μu : 4μp + μn = (16/3 − 1/3) μu	



                                           μu  = (4μp + μn)/5

μp = (4/3)μu − (1/3)μd,    μn = (4/3)μd − (1/3)μu

μu  = μN[4(2.79)−1.91]/5 = +1.85 μN

μd  = μN[4(−1.91)+2.79]/5 = −0.97 μN
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Nucleon (p and n) magnetic moments

μu  = μN[4(2.79)−1.91]/5 = +1.85 μN

μd  = μN[4(−1.91)+2.79]/5 = −0.97 μN

These are very close to the ratio +2/3 : −1/3 of the up and 
down quark charges

If we assume μu = (+2/3)e/(2mu,d), μd = (−1/3)e/(2mu,d) then 
the light-quark mass needs to be approximately mu,d≃mN/3

This observation was an early success of the quark model; 
corrected by relativity and the presence of quark-antiquark 
pairs in the nucleon
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Questions?


