

Commissioning the TOF and the First Results from the GlueX Experiment

Aristeidis Tsaris Florida State University Nuclear Physics Seminar

(12/05/2014)

Outline

- Motivation
- GlueX overview
- TOF overview
- Current Status
- Future Plans

Quark Model Picture

Mesons in the constituent QM = bound states of $q \overline{q}$

Mesons described by J^{PC} qu	antum numbers	$n^{2s+1}L_J$	J^{PC}	I = 1 $u\bar{d}$	$I = \frac{1}{2}$	I = 0	I = 0
• Quark spins can be aligned or anti-			0^{-+} $1^{}$	π ρ	K K^*	η ω	 η' φ
 Quark relative orbital momentum L couples with S to yield total spin J=L⊕S 			1^{+-}	$b_1(1235)$	K_{1B} $K^*(1420)$	$h_1(1170)$ $f_2(1270)$	$h_1(1380)$
Example: • L=0	Parity:	$1^{3}P_{1}$ $1^{3}P_{2}$	1^{++} 2^{++}	$a_0(1450)$ $a_1(1260)$ $a_2(1320)$	$K_0(1430)$ K_{1A} $K_2^*(1430)$	$f_1(1285)$ $f_2(1270)$	$f_0(1710)$ $f_1(1420)$ $f_2'(1525)$
S=0: J=0, P=-1, C=+1 → 0 ⁻⁺ S=1: J=1, P=-1, C=-1 → 1 L=1 S=0: J=1, P=+1, C=-1 → 1 ⁺⁻ S=1: J=0, P=+1, C=+1 → 0 ⁺⁺ J=1, P=+1, C=+1 → 1 ⁺⁺	P=(-1) ^{L+1}	$1^{1}D_{2}$ $1^{3}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)$ $K^*(1680)$	$\eta_2(1645)$	$\eta_2(1870)$
	Charge conjugation	$1^{3}D_{2}$ $1^{3}D_{3}$	$2^{}$ $3^{}$	$\rho_{3}(1690)$	$K_2(1820)$ $K_2^*(1780)$	ω_{1050}	$\phi'_{3}(1850)$
	$C = (-1)^{L+S}$	$1^{1}F_{4}$ $1^{3}G_{5}$	4 ⁺⁺ 5	$a_4(2040)$ $\rho_5(2350)$	$K_4^*(2045)$	$f_4(2050)$	
> J=2, P=+1, C=+1 → 2^{++}		$\frac{1^{3}H_{6}}{2^{1}S_{0}}$	6 ⁺⁺ 0 ⁻⁺	$a_6(2450)$ $\pi(1300)$	K(1460)	$f_6(2510)$ $\eta(1295)$	$\eta(1475)$
		$2^{3}S_{1}$	1	$\rho(1450)$	$K^{*}(1410)$	$\omega(1420)$	$\phi(1680)$

GlueX: Study **Gluon Excitations**

- In the constituent quark model:
 - Mesons $\rightarrow q \overline{q}$ with $J^{PC} = 0^{-+}, 0^{++}, 1^{+-}, 1^{+-}, 2^{-+}, 2^{++}$
 - Baryons $\rightarrow q q q q$
- QCD (much richer spectrum):
 - Hybrid states $(q \overline{q} g)$ and gluon – gluon interactions (g g)with $J^{PC} = 0^{-+}, 0^{++}, 0^{+-}, 1^{++}, 1^{+-}, 2^{-+}, 2^{++}, 2^{+-}$
 - Role of gluons in the structure of matter
 - Observe evidence of gluonic degrees of freedom in the spectrum of meson states?

Lattice QCD Meson Spectrum

Dudek J. Phys Rev. D84 074023 (2011)

Photo-production of Exotic Hybrids

- GlueX has 9 GeV linearly polarized photon beam (12 GeV electron beam)
- LQCD calculations indicate similar radiative decay widths for hybrids and normal mesons*
 - Photons have spin-1, allow easier production of exotics compare to pion beam where a spin flip must occur $\gamma \, \sim$
 - Small data world wide with photon beam
- Linearly polarized beam
 - Helps determine production mechanism
 - Provides additional particle quantum numbers and so it helps to break the ambiguity in the angular distributions

р

p

Jefferson Lab 12 GeV Upgrade

The Hall D Complex at Jefferson National Lab

GlueX Detector in Hall D

GlueX Detector

- Hermetic detection of charged and neutral particles in solenoid magnet (Bmax=2.2T)
- $\rightarrow 10^8$ tagged $\chi/s(8.4-9.0 \, GeV)$
- \rightarrow Fixed target (*LH*₂)
- → 18,000 fADCs
- → 4,000 pipeline TDCs
- → 300 MB/s to tape

Linearly Polarized Photon Beam

Photon Polarization

- 20 mm diamond radiator
- 40% linear polarization

Aristeidis Tsaris

Neutral Particle Detection

Barrel Calorimeter

University of Regina

Pb-scintillating fiber calorimeter

- 48 4-m long modules
- $15.5X_{o}$, 12.5% sampling fraction
- $\sigma_{E}/E = 5\%/\sqrt{E} + 1\%$
- $\sigma_z = 5 \text{mm}/\sqrt{\text{E}}$
- $\sigma_t = 74 \text{ps/}{\sqrt{E}} + 33 \text{ps}$
- angular coverage $11_{\circ} < \theta < 120_{\circ}$

Forward Calorimeter

Tracking of Charge Particles

Central Drift Chamber

Central Drift Chamber (CDC): 28 layers total (stereo layers: +/- 6^{0}) Gas mixture: ~60/40 Ar/CO₂ Angular Coverage: 6°-155° 3500 straw tubes r=8mm dE/dx for p < 450 MeV/c Readout: FADC-125MHz Resolution: $\sigma_{r\phi}$ ~ 150 µm σ_z ~1.5 mm

Carnegie Mellon

Forward Drift Chamber

Forward Drift Chamber (FDC): Gas Mixture: 40/60 Ar/CO₂

Gas Mixture: 40/60 Ar/CO₂ Angular Coverage: 1º - 30º Readout:

2300 anode wires → F1TDC 10200 cathode strips → FADC-125 3 measured projections per plane Resolution: 200µm wires 200µm strips

FDC is being installed into magnet in April 2014

Complete FDC in the lab prior to being moved to Hall-D

Particle ID

Identify the Mass of the particle Expected Separation

Barrel Calorimeter

PID is done primarily through time of flight with some help from dE/dx in chambers. Space left in design for future PID detector

Time-of-Flight

Central Drift Chamber

Time-of-Flight Wall

TOF Detector Overview

- Particle id ($\pi/K/p$) up to 2-3 GeV/c at 4σ
- Two independent TOF planes: horizontal and vertical (~3m x 3m)
- 92 modules with 176 H10534 Hamamatsu PMTs
- 176 fADC (250 MHz) and TDC (25 psec) readout channels
- Angular coverage $2^{\circ} < \theta < 11^{\circ}$

Time-of-Flight Construction at FSU

TOF construction Fall 2013 completion and tested of modules

Aristeidis Tsaris

Time-of-Flight Assembly & Installation by FSU

Spring 2014 assembly & installation

Aristeidis Tsaris

Fall 2014 Commissioning Goals

- CW electron beam to tagger with acceptable radiation levels (~10.5 GeV).
- Create unpolarized photon beam and tune it through:
 - Collimators
 - Target location
 - Photon beam dump
- Detectors and trigger check out, optimization, calibration and alignment.

Commissioning time-line

TOF Calibration and Commissioning

TOF Voltage Controls

Discriminator Scaler Read-out and Viewer

Aristeidis Tsaris

TOF Stand Alone Viewer

TOF Monitoring

TDC Occupancy

Hit Position Horizontal Plane

TOF Monitoring

Aristeidis Tsaris

Hall-D Event Display

(Implemented by Aristeidis Tsaris, FSU)

Aristeidis Tsaris

Timing PID with SC-TOF coincidence

Use SC as t_0 and β is calculated with the SC and TOF times and path lengths between SC and TOF

$$\beta = \frac{pathlength(TOF - SC)}{c \cdot (t_{TOF} - t_{SC})}$$

CBataset with solenoid at 1200 A:

- BCAL trigger
- 8.5 M events with BCAL trigger 10^{-4}
- Tracking FOM >
- POCA to beam line: 50 < Z < 80 cm
- Using only fADC hits
- Require track has matched hit in SC and TOF

$$\beta = \frac{p}{\sqrt{p^2 + m^2}}$$

Aristeidis Tsaris

Future Plans – Spring 2015 Commissioning Run

- We want to have the best calibration we can get at the start of this run.
- We would like to come into with our calibration and alignment procedures working.
- Our ultimate goal is to achieve physics quality data at some point during this run.

JEFFERSON LAB ELECTRONIC LOGBOOK

https://logbooks.jlab.org/book/halld

Aristeidis Tsaris

Experimental evidence for 1⁻⁺ exotic

$\pi_1(1400)$

 $I^{G}(J^{PC}) = 1^{-}(1^{-+})$

Unlikely Hybrid Dynamical origin?

See also the mini-review under non- $q\overline{q}$ candidates in PDG 06, Journal of Physics, G **33** 1 (2006).

$\pi_1(1400)$ MASS

GlueX Data Rates

		Front End DAQ Rate	Event Size	L1 Trigger Rate	Bandwidth to mass Storage		
JLab	GlueX	3 GB/s	15 kB	200 kH2	300 MB/s	hat.	
	CLAS12	0.1 GB/s	20 kB	10 kHz	100 MB/s	priv con	
LHC	ALICE	500 GB/s	2,500 kB	200 kHz	200 MB/s	U E	
	ATLAS	113 GB/s	1,500 kB	75 kHz	300 MB/s	007 talk Chapeli	
	CMS	200 GB/s	1,000 kB	100 kHz	100 MB/s	CHEP2(Sylvain	
	LHCb	40 GB/s	40 kB	1000 kHz	100 MB/s	U,	
BNL	STAR	50 GB/s	1,000 kB	0.6 kHz	450 MB/s	*	
	PHENIX	0.9 GB/s	~60 kB	~ 15 kHz	450 MB/s	**	

* Jeff Landgraf Private Comm. 2/11/2010

** CHEP2006 talk Martin L. Purschke. current capability is 800MB/s peak, 500MB/s sustained (priv. comm. 2/14/2010)