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Motivation

Good fitting techniques are essential to extract maximum and
most accurate information from experiments.
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"l can proveit or disproveit !
/'\\ What do you want me to do?"
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Motivation

Good fitting techniques are essential to extract maximum and
most accurate information from experiments.

wwwvApLocom o Method of least squareg? fits)-
Most common fitting technique
for data with huge statistics.

@ Event-based maximum likelihooc
fitting (ML fits)- very useful for
extracting maximum information
from low statistics datasets.

\“l

“I can prove it or disprove it! What do you want me to do?”
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The Method of Least Squares

Bin the data and plot histograms. Based on the as- . ..
sumption that each datapoint is Gaussian dlstrlbuted % ‘
minimize Pl

)\

experiment _ theory .
X2 — Z(yL o.iyl (aj))z L
and get the best estimate of the fit parametenéﬂ“ N

Q. P.R. Bevington, 'Data Reduction and Analysis for the Physice
Sciences’ (McGraw-Hill, 1992)
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The Method of Least Squares

Bin the data and plot histograms. Based on the as- _.
sumption that each datapoint is Gaussian dlstrlbuted [ ‘
minimize

experiment theory(a )

% _Z(y Uiy J )2

and get the best estimate of the fit parametenéff
@;. High statistics - easy to fit

Bad fit - datapoints not Gaussian
distributed.
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Bin the data and plot histograms. Based on the as- . - —
sumption that each datapoint is Gaussian dlstrlbuted %"
minimize :

experiment _ theory
—y; (o)

X* = (% - 2)?

and get the best estimate of the fit parametenéff T
Q.

t
For example: fitting an angular distribution- ¥ X = co9

ytheory(a, b) = a + beos?(6)
Calculatey? and minimize it to get the best values of :
aandb. _ L Iililfgll

L. Lyons, 'Statistics for Nuclear and Particle PhysicigGUP, 1986)
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The Method of Least Squares

Disadvantage Each bin should have enough statistics so that it is Gaussic
distributed. Need coarse binning for data with low statistics. This can lead
loss of information.
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The Event-based Maximum Likelihood Method

We calculate the probability density for observiegch eventas a function of
the fit parameterP(y;(«)), and construct a likelihood L -
L =[]P(y;(«)) over all events.

1
Maximize L as a function of the fit parameterto find the best value fat.
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The Event-based Maximum Likelihood Method

We calculate the probability density for observiegch eventas a function of
the fit parameterP(y;(«)), and construct a likelihood L -
L =[]P(y;(«)) over all events.

1
Maximize L as a function of the fit parameterto find the best value fat.

Example : Fitting the angular distribution (slide 2 data) -

Probability densityy; (2) = m[l + (2)cos?6;] for theit" event.
L|kel|h00d,L(g) = Hm[l + (2)608297;] T
y

Event-based - no loss of information due to binning !

1
L. Lyons, "Statistics for Nuclear and Particle Physici¢GUP, 1986) 11 i1 i IR
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ML or 2 - which one to use ?

x? fitting ML fitting
Pros- Pros-
o fastest and easiest. @ Most robust.
o Gives goodness-of-fit indication. o No Gaussian error assumption.
Cons - @ No loss of information.

@ Makes (incorrect) Gaussian error Cons -
assumption on low statistics bins. ¢ No goodness-of-fit indication.

@ Binning problem - misses Needs Monte-Carlo studies for
information for feature size: bin verification.
size. o Computationally expensive for
large N.
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@ Applications in Hadron Spectroscopy

Priyashree Roy, Florida State University =~ 24 Oct 2014, FSU 6/13



Fitting Techniques Research Motivation
Applications in Hadron Spectroscopy
Outlook

Why are Polarization Observables Important?
Volker Crede, Nuclear Physics Seminar Talk, Sept 26, 2014
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Atomic Spectrum of Hydrogen

Hydrogen lamp

Diffration grating

Narrow slit
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Spin Observables fofp — pr™n~ at CLAS, JLAB

5 independent kinematic variables
needed -

E’Y! ¢;’;+' Cose;’;-&-)i Cose;‘m‘)! Mgt -

For linearly polarized photon beam and transversely polarized protons,

reaction rate- W. Robertst al., Phys. Rev. @1, 055201 (2005)
o=o0o{(1+A,Pc+A,Py)
+0i[sin2B8(1° + A, PS5 + A, P3)
+cos2B(I° + A, PS + A, PS)]}

d0; . deg. of beam polarization, : deg. of target polarization
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ML Fit Example 1

Event-Based Qfactor Method for Signal-Bkg Separation

Butanol Polyethylene

Carbon

=0 0

@ Polarized Target: Butanol
has free polarized p + unpolarized
bound p and n.
Reactions from bound nucleons
contribute to the background.

@ C andC H, to study background.

Priyashree Roy, Florida State University

Pion mass distribution
from butanol

Signal +
Background

2 E
S 4000
3 E
© E

50 100 150 200 250 300 350 400 450 5
MM (MeV)

Signal-background separation -
Assign anevent-based dilution fac-
tor or "Qfactor" to each event which
shows the chance that it came from
the signal distribution.
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Event-Based Qfactor Method with Likelihood Fits

Pictorial depiction” - X -y
4 Of NN search N Nearest . 3 _F
B S Neighbors L Sl
; : 8 Fanoie
: @ s~
2 8 F Q=S/(S+B)
3 S
B oL g F
H 9 2 aoF
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8 5 30f- ‘
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X E | h s L ,
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4 3 2 -4 0 2 3 4 wmass (MeV)
coordinatel

Seed event's mass

@ A multivariate analysis - For each event ("seed event"), find N nearest
neighbors in 4-D kinematic phase spaég (6%, ¢*, cos(6,)>™). Plot mass
distribution of theN + 1 events and fit.
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Event-Based Qfactor Method with Likelihood Fits

Pictorial depiction” -

o OfNNsearch  NNearest | g E
B Neighbors HE T i
: : 8 Fanoie

; @ 60

2L 8 | Q=Si(s+8)
& 5 o
® o H £
% of £ a0l

5 s+8 d

8 ;

20—

|

E | h ) |
it L L 0 50 106 150 200 250 300 350 40
2 3 4 wmass (MeV)
Seed event's mass

@ A multivariate analysis - For each event ("seed event"), find N nearest
neighbors in 4-D kinematic phase spaég (6%, ¢*, cos(6,)>™). Plot mass
distribution of theN + 1 events and fit.

@ Since N is.small (300), use ML method to fit the mass distrdouti
L =115 ma, ) + £259 (i, B)]

Signal (mO abest
>

Qsced —event = [FSmamat (g abest) 1 FBFa (mg goesty] » Mo~ S€ed event's mass.
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Event-Based Qfactor Method with Likelihood Fits

@ A multivariate analysis - For each event ("seed event"), find N't{¢arest
neighbors in 4-D kinematic phase spaég (6%, ¢*, cos(6,)>™). Plot mass
distribution of theN + 1 events and fit.

@ Since N is small (300), use ML method to fit the mass distrdauti
L = ][5 (mi, o) + f5F9 (mi, B)]

Signal (mO abest
>

Qsced —event = [FSmamat (g abest) 1 FBFa (mg goesty] » Mo~ S€ed event's mass.
@ Computation time reasonably minimized-fits 10,000 events in 30 min.
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Polarization Observables? vs. Unbinned ML Fit

b

-1.0¢ €os(0_) <-0.8 F-0.8¢ cos(d, ) <-0.6} -0.6¢ cos(8, ) <-0.4F-0.4< cos¢hT <02} 0.2C <-0.0)

solig curve-Fourtfer fit to g8b

i
i

I

©
o

@ For linearly pol. beam and

unpolarized target, ey e s e b
a—oL _ )
g ‘o1 B

207" [1°c0s(2¢1ab) +1°5in(2¢141)] 1

;

2+(8] =67 ) [[1°cos(261a0)+155in(26100)]  fopprrgpgt 4 P O\
@ Unbinned ML fit to the angular WW

d|Str|but|On a”OWed eXtraCtIOn Of L o f19¢ c080,) <08 08¢ 0os(0,) ¢06]-0.6¢ 086, 04104 508(,) <02/ 02¢ c05(0,) 0O

I*°in 4D 4
(E., ¢, cOSH:.), COSH5™ ). W%ﬁm T

Q
©®
T T

Not pOSSIb|e W|th}(2 fItS Solid curve -Fourfer fit to g8b
0.0¢ cos(6_) <02 }0.2¢ cos(s,) 0.4 F0.4¢ cos(p,) <06 F0.6¢ cos(f.) <08 F0.8¢ cos(s, ) <1.0
-2 o 2 2 o 2 -2 o 2 -2 o 2 -2 o 2 ¢
-
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Observabld®in yp'— prtn—, B, : 1.1 — 1.2 GeV
-1.0< cos(f5™ ) < 0.0 0.0< cos(f;™) < 1.0

(1.0 005(0,) 0.8 [:08¢ £o3(0,) COE-06¢ 5080, €O404< co8(0,) 0202 co5(0,) <00 L 1,0¢ cos(6_) <-0.8

°

-0.8¢ c0s(0) <-0.6[ -0.6¢ €080, ) <04 0.4< cos(0. ) <-0.2} -0.2¢ cos(0, ) <-0.0

FEREER T TN e LA

g9b g9b
Solid cufve - Fourier fit to g8b Solidl curve -Fourjer fit to g8b
0.0< cos(..) <0.2 £0.2< cos(6.) <0.4 | 0.4< cos(n.) <0.6 L0.6<cos(6.)<0.8 [0.8¢ cos(s.)<1.0 0.0< cos(f_) <0.2 F0.2< cos(6, ) <0.4 [0.4< cos(6, ) <0.6 F0.6< cos(6,)<0.8 F0.8¢ cos(s_) <1.0

TR e 2 0 2 0 2 EINL B IR S T T B 2 R T A
Tt T

FROST g9b run (preliminary) C. Hanretty et al., CLAS-g8b run, to be published

Fourier fit to g8b

4-dim. phase space: {E¢; ., cos@,), cosf ")) Good agreement of

| =lo{a[I*sinEB) + 1°cos@B)]} experimental data.
5 : angle between beam pol. and reaction plane.
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Observable® in g — prtn, E, : 1.1 — 1.2 GeV

-1.0< cos(f5™ ) < 0.0 0.0< cos(f;™) < 1.0

4N [+ 4+
+ + %
e QW - o F T Csriry
- + - + 7
e
4 -1.0¢ cos(6..) <-0.8 [-0.8¢ cos(6, ) <-0.6} -0.6< cos(6, ) <-0.4}-0.4< cos(6, ) <-0.2}-0.2¢< cos(d, ) <-0.0| @ _ -1.0< cos(6 ) <-0.8 [-0.8< cos(0, ) <-0.6] -0.6< cos(A.) <-0.4F-0.4¢ cos(0. ) <-0.2F-0.2¢ cos(0, ) <-0.0

A% 7 £F
| 2 | +
TN [\\d *%% T %%%m

g9%b
Solid curve | Fourier fit to g8b

I

Solid curvel- Fourier fit to g8b
0.0< cos(6..) <0.2 £0.2< cos(6.) <0.4 | 0.4< cos(n.) <0.6 L0.6<cos(6.)<0.8 [0.8¢ cos(s.)<1.0 0.0< cos(6_) <0.2 £0.2< cos(6,) <0.4 [0.4< cos(6, ) <0.6 F0.6< cos(6.) <0.8 [0.8< cos(s, ) <1.0
2 0z 2 0 z 2 0 2z £ 0 z 2 0 24 EA R R I R R R
k2 T

FROST g9b run (preliminary) C. Hanretty et al., CLAS-g8b run, to be published

Fourier fit to g8b

4-dim. phase space: {E¢; ., cos@,), cosf ")) Good agreement of

| =1o{&[1* sin@B) + 1°cos@A)]} experimental data.
5 : angle between beam pol. and reaction plane.
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@ Unbinned ML technique - very useful to optimize fit parameters of any
general distribution with low statistics.
Assumption -the model or fit function has the right form. Works very
well for the extraction of polarization observables sirtoe fit function

is well-known.
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@ Unbinned ML technique - very useful to optimize fit parameters of any
general distribution with low statistics.
Assumption -the model or fit function has the right form. Works very
well for the extraction of polarization observables sirtoe fit function
is well-known.

@ Bayesian analysis goes one step further - compare models
guantitatively.
Example: New particle in the mass spectrum ?
Model 1 - No new particle, fit function jf Background
Model 2 - A new particle, fit function ;fNerrewGaussian | ¢Background

Construct "evidence ratios" using Bayes’ theorem to compiae
models. D.G. Irelandet al., arXiv:0709.3154v2 [hep-ph] 12 Dec 2007

@ Learn more about Bayesian analysis in the next talk by Raditg !
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