Center of

Mass

Rotational Motion
Angular Velocity Angular Acceleration

Torque

Moment of Inertia

Rotational

Dynamics
Kinetic Energy of Rotation

Angular Momentum

Physics A - PHY 2048C

Rotational Motion and Torque

11/06/2019

My Office Hours:
Thursday 2:00-3:00 PM
212 Keen Building

Warm-up Questions

(1) Did you read Chapter 12 in the textbook on Rotational Motion?
(2) Must an object be rotating to have a moment of inertia? Briefly explain.
(3) Can torque trigger rotational motion while the net force on the system is zero?

Outline

Center of Mass

Rotational Motion
Angular Velocity Angular Acceleration

Torque
Moment of Inertia
Rotational
Dynamics
Kinetic Energy of Rotation

Angular Momentum

(1) Center of Mass

(2) Rotational Motion

Angular Velocity Angular Acceleration
(3) Torque Moment of Inertia

4 Rotational Dynamics
(5) Kinetic Energy of Rotation
© Angular Momentum

Center of

It is important to distinguish between internal and external forces:

- Internal forces act between the particles of the system:

$$
\sum F_{\mathrm{int}}=0
$$

action-reaction pairs

- External forces come from outside the system:

$$
\sum F_{\mathrm{ext}}=M_{\mathrm{total}} a_{\mathrm{c} . \mathrm{m} .}
$$

where "c.m." stands for center of mass.

Forces

Center of Mass

Center of

 MassRotational Motion
Angular Velocity
Angular Acceleration
Torque
Moment of Inertia
Rotational Dynamics

What is the center of mass?

© Brooks/Cole, Cengage Learning

Center of Mass

Center of

 MassRotational Motion

What is the center of mass?

The center of mass can be thought of as the balance point of the system:

$$
\begin{aligned}
& x_{\text {c.m. }}=\frac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}}=\frac{\sum_{i} m_{i} x_{i}}{M_{\mathrm{tot}}} \\
& y_{\text {c.m. }}=\frac{\sum_{i} m_{i} y_{i}}{\sum_{i} m_{i}}=\frac{\sum_{i} m_{i} y_{i}}{M_{\mathrm{tot}}}
\end{aligned}
$$

In three dimensions also:

$$
z_{\mathrm{c} . \mathrm{m} .}=\frac{\sum_{i} m_{i} z_{i}}{\sum_{i} m_{i}}=\frac{\sum_{i} m_{i} z_{i}}{M_{\mathrm{tot}}}
$$

> The force exerted by m_{1} on m_{2} and the force exerted by m_{2} on m_{1} are internal forces.

Center of Mass: Example

$$
\begin{aligned}
x_{\mathrm{c} . \mathrm{m} .} & =\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}} \\
& =\frac{m_{1} \cdot 0+m_{2} \cdot 0+m_{3} \cdot L}{m_{1}+m_{2}+m_{3}} \\
& =\frac{m \cdot L}{3 m}=L / 3
\end{aligned}
$$

All the point particles must be included in the center of mass calculation:

- For a symmetric object, the center of mass is the center of symmetry of the object.
- The center of mass need not be located inside the object.

$$
\begin{array}{ll}
x_{2}=0 & x_{3}=L \\
y_{2}=0 & y_{3}=0
\end{array}
$$

Center of Mass: Example

All the point particles must be included in the center of mass calculation:

- For a symmetric object, the center of mass is the center of symmetry of the object.
- The center of mass need not be located inside the object.

$$
\begin{aligned}
y_{\mathrm{c} . \mathrm{m} .} & =\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}} \\
& =\frac{m_{1} \cdot L+m_{2} \cdot 0+m_{3} \cdot 0}{m_{1}+m_{2}+m_{3}} \\
& =\frac{m \cdot L}{3 m}=L / 3
\end{aligned}
$$

$$
\begin{array}{ll}
x_{2}=0 & x_{3}=L \\
y_{2}=0 & y_{3}=0
\end{array}
$$

Motion of the Center of Mass

The two skaters push off from each other:

- No friction, so momentum is conserved.
- The center of mass does not move although the skaters separate.
- Center of mass motion is caused only by the external forces acting on the system.

Question 1

An hourglass timer is first weighed when all the sand is in the lower chamber. The hourglass is then turned over and placed on the scale. While the sand falls, but before sand hits the bottom, the balance will show

A more weight than before.
B the same weight as before.
C less weight than before.
D unpredictable results.

Question 2

An hourglass timer is first weighed when all the sand is in the lower chamber. The hourglass is then turned over and placed on the scale. While the sand falls from the upper chamber in a steady stream and hits the bottom, the balance will show

A more weight than before.
B the same weight as before.
C less weight than before.
D unpredictable results.

Question 3

An hourglass timer is first weighed when all the sand is in the lower chamber. The chamber is then turned over and placed on the scale. When the upper chamber runs out of sand, but sand is still hitting the bottom, the balance will show

A more weight than before.
B the same weight as before.
C less weight than before.
D unpredictable results.

Outline

(1) Center of Mass

(2) Rotational Motion

Angular Velocity
Angular Acceleration
(3) Torque

Moment of Inertia
4) Rotational Dynamics
(5) Kinetic Energy of Rotation
© Angu'ar Momentum

Rotational Motion

So far, objects have been treated as point particles:

- Newton's Laws apply to point particles as well as all other types of particles (extended objects).
- The size and shape of the object will have to be taken into account.

```
Perspective view of a
CD in the x-y plane.
The rotation axis is
along z.
```

Need to define rotational quantities:
(1) Angular position
(2) Angular velocity
(3) Angular acceleration

Angular Velocity

The angular velocity, ω, describes how the angular position is changing with time.

For some time interval, Δt, the average angular velocity is:

$$
\omega_{\mathrm{ave}}=\frac{\Delta \theta}{\Delta t}
$$

The instantaneous angular velocity is:

$$
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}
$$

Units are rad/s:

- May also be rpm. (revolutions / minute)
θ increases with time
$\Rightarrow \omega>0$ (counter-
clockwise motion).

$-\mathrm{A} \quad$

© Brooks/Cole, Cengage Learning

Angular Velocity

The angular velocity, ω, describes how the angular position is changing with time.

Since angular velocity is a vector quantity, it must have a direction:

- If θ increases with time, then ω is positive.

Therefore:
(1) A counterclockwise rotation corresponds to a positive angular velocity.
(2) Clockwise would be negative.

Angular Acceleration

The angular acceleration, α, is the rate of change of the angular velocity.

For some time interval, Δt, the average angular acceleration is:

$$
\alpha_{\mathrm{ave}}=\frac{\Delta \omega}{\Delta t}
$$

Instantaneous angular acceleration is:

$$
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}
$$

Units are rad $/ \mathrm{s}^{2}$.
θ increases with time
$\Rightarrow \omega>0$ (counter-
clockwise motion).

A

Angular Acceleration

Angular acceleration and centripetal acceleration are different.
As an example, assume a particle is moving in a circle with a constant linear velocity:

- The particle's angular position increases at a constant rate, therefore its angular velocity is constant.
- Its angular acceleration is 0 .
- Since it is moving in a circle, it experiences a centripetal acceleration of:

$$
a_{c}=\frac{v^{2}}{r}
$$

- The centripetal acceleration refers to the linear motion of the particle.
- The angular acceleration is concerned with the related angular motion.

Angular and Linear Velocities

When an object is rotating, all the points on the object have the same angular velocity:

- Makes ω a useful quantity for describing the motion.
- The linear velocity is not the same for all points. (depends on distance from rotational axis)
The linear velocity of any point on a rotating object is related to its angular velocity by:

$$
v=\omega r
$$

where r is the distance from the rotational axis to the point. For $r_{A}>r_{B}$:

$$
v_{A}>v_{B}
$$

Angular and Linear Velocities

When an object is rotating, all the points on the object have the same angular velocity:

- Makes ω a useful quantity for describing the motion.
- The linear velocity is not the same for all points. (depends on distance from rotational axis)
The linear velocity of any point on a rotating object is related to its angular velocity by:

$$
v=\omega r
$$

where r is the distance from the rotational axis to the point. Similarly:

$$
a=\alpha r
$$

Outline

(1) Center of Mass
(2) Rotational Motion

Angular Velocity Angular Acceleration
(3) Torque

Moment of Inertia
4) Rotational Dynamics
(5) Kinetic Energy of Rotation

6 Angular Momentum

Torque

A connection between force and rotational motion is needed. Specifically, how forces give rise to angular accelerations.

Torque

A connection between force and rotational motion is needed. Specifically, how forces give rise to angular accelerations.

Torque is the product of an applied force and the distance it is applied from the support point. It is denoted by τ.

Torque is the product of an applied force and the distance it is applied from the support point. It is denoted by τ.
When the force is perpendicular to a line connecting its point of application to the pivot point, the torque is given by:

$$
\tau=F r \quad \text { Unit }[\mathrm{Nm}]
$$

Torque is the product of an applied force and the distance it is applied from the support point. It is denoted by τ.

When the force is perpendicular to a line connecting its point of application to the pivot point, the torque is given by:

$$
\tau=F r \quad \text { Unit }[\mathrm{Nm}]
$$

For a single rotation axis, the direction of the torque is specified by its sign:
(1) A positive torque is one that would produce a counterclockwise rotation.
(2) A negative torque would produce a clockwise rotation.

Clockwise direction $=$ negative torque

Counterclockwise direction $=$ positive torque

Torque and Direction

We could imagine breaking the clock hand up into many infinitesimally small pieces and finding the torques on each piece.
A more convenient approach is to use the center of gravity of the hand. The clockwise torque will be negative.

For the purposes of calculating the torque due to a gravitational force, you can assume all the force acts at a single location:
center of gravity
= center of mass.

Rotational Equilibrium

An object can be in equilibrium with regard to both its translation and its rotational motion. Its linear acceleration must be zero and its angular acceleration must be zero.

The total force being zero is not sufficient to ensure both accelerations are zero:

$$
\tau=\vec{F}_{1} r_{1}+\vec{F}_{2} r_{2} \neq 0
$$

$$
F_{1}+F_{2}=0
$$

Lever Arm and Torque

In linear motion, a force is responsible for a change in the acceleration (according to Newton's Second Law):

$$
\vec{F}=m \vec{a}
$$

In rotational motion, Newton's Second Law can be written as:

$$
\sum \vec{\tau}=I \vec{\alpha}
$$

Analogy with translational motion:

translational motion	rotational motion
force, \vec{F}	torque, $\vec{\tau}$
mass, m	moment of inertia, I
acceleration, \vec{a}	angular acceleration, $\vec{\alpha}$

Moment of Inertia

The moment of inertia enters into rotational motion in the same way that mass enters into translational motion.

For a point mass, the moment of inertia is:

$$
I=m r^{2}
$$

For an object composed of many pieces of mass located at various distances from the pivot point, the moment of inertia of the object is:

$$
I=\sum_{i} m_{i} r_{i}^{2}
$$

- I depends on the mass and also on how that mass is distributed relative to the axis of rotation.

Moment of Inertia

The value of I depends on the choice of rotation axis.

In the figure, m and L are the same:

$$
\begin{aligned}
& \text { A } I_{A}=m\left(\frac{L}{2}\right)^{2}+m\left(\frac{L}{2}\right)^{2}=m \frac{L^{2}}{2} \\
& \text { B } I_{B}=0+m L^{2}=m L^{2} \neq I_{A}
\end{aligned}
$$

Moments of inertia are different due to the difference in rotation axes.

Various Moments of Inertia

Center of

Mass

Rotational Motion
Angular Velocity Angular Acceleration

Torque

Moment of Inertia
Rotational Dynamics

Kinetic Energy of Rotation

Table 8.2 Moment of Inertia for Some Common Objects ${ }^{\text {a }}$

${ }^{2}$ In each case, m is the total mass of the object.
© Brooks/Cole, Cengage Learning

Outline

(1) Center of Mass
(2) Rotational Motion

Angular Velocity Angular Acceleration
(3) Torque Moment of Inertia
(4) Rotational Dynamics
(5) Kinetic Energy of Rotation

6 Angular Momentum

Kinematic Relationships

Once the total torque and moment of inertia are found, the angular acceleration can be calculated: $\sum \tau=I \alpha$.

For constant angular acceleration:

$$
\begin{aligned}
\omega & =\omega_{0}+\alpha t \\
\theta & =\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
\end{aligned}
$$

Table 8.3 Kinematic Relations for Constant Angular Acceleration α and Corresponding Relations for Linear Motion with Constant
Acceleration a

Rotational Motion	Equation Number	Translational Motion
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$	8.35	$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$\omega=\omega_{0}+\alpha t$	8.34	$v=v_{0}+a t$
$\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$	8.36	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

Outline

(1) Center of Mass
(2) Rotational Motion

Angular Velocity Angular Acceleration
(3) Torque Moment of Inertia
(4) Rotational Dynamics

(5) Kinetic Energy of Rotation

(6) Angular Momentum

Kinetic Energy of Rotation

For a single point particle of mass m moving with a linear speed v, the kinetic energy is $K E=1 / 2 m v^{2}$.

Rotational motion is concerned with extended objects:

- Each small piece has the $K E$ of a point particle with speed $v_{i}=\omega r_{i}$.

Kinetic Energy of Rotation

For a single point particle of mass m moving with a linear speed v, the kinetic energy is $K E=1 / 2 m v^{2}$.

Rotational motion is concerned with extended objects:

- Each small piece has the $K E$ of a
point particle with speed $v_{i}=\omega r_{i}$.

The total $K E$ energy of the object can be found by adding up all the kinetic energies of the small pieces:

$$
\begin{aligned}
K E_{\mathrm{rot}} & =\sum_{i} \frac{1}{2} m v_{i}^{2} \\
& =\sum_{i} \frac{1}{2} m\left(\omega r_{i}\right)^{2}
\end{aligned}
$$

Piece i

Kinetic Energy of Rotation

For a single point particle of mass m moving with a linear speed v, the kinetic energy is $K E=1 / 2 m v^{2}$.

Rotational motion is concerned with extended objects:

- Each small piece has the $K E$ of a
point particle with speed $v_{i}=\omega r_{i}$.

Piece i
The total $K E$ energy of the object can be found by adding up all the kinetic energies of the small pieces:

$$
\begin{aligned}
K E_{\text {rot }} & =\sum_{i} \frac{1}{2} m v_{i}^{2} \\
& =\sum_{i} \frac{1}{2} m\left(\omega r_{i}\right)^{2}=\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Outline

(1) Center of Mass
(2) Rotational Motion

Angular Velocity Angular Acceleration
(3) Torque Moment of Inertia
(4) Rotational Dynamics
(5) Kinetic Energy of Rotation
(6) Angular Momentum

Angular Momentum

Center of

 MassRotational Motion
Angular Velocity Angular Acceleration

Torque
Moment of Inertia

Rotational

Dynamics
Kinetic Energy of Rotation

Linear momentum was defined as:

$$
\vec{p}=m \vec{v}
$$

Angular Momentum

Linear momentum was defined as:

$$
\vec{p}=m \vec{v}
$$

In the case of a single rotation axis that does not change direction during the motion, the angular momentum is given by (figure to the right):

$$
\begin{aligned}
|\vec{L}| & =I \omega \\
& =I \frac{v_{\text {perpendicular }}}{r} \\
& =m r^{2} \frac{v_{\text {perpendicular }}}{r} \\
& =m r v_{\text {perpendicular }}
\end{aligned}
$$

Angular Momentum

A rotating object will maintain its angular momentum provided no external torque acts on it. In this case, the total angular momentum of the object will be conserved.

In the case of a single rotation axis that does not change direction during the motion, the angular momentum is given by (figure to the right):

$$
\begin{aligned}
|\vec{L}| & =I \omega \\
& =I \frac{v_{\text {perpendicular }}}{r} \\
& =m r^{2} \frac{v_{\text {perpendicular }}}{r} \\
& =m r v_{\text {perpendicular }}
\end{aligned}
$$

Angular Momentum

Example of conservation of angular momentum: $L=I \omega$.

The skater has no external torque acting on her:

- Assume the ice is frictionless.
- The normal force and gravity do not produce torques.

Pulling both her arms and legs in decreases her moment of inertia.

- Her mass is distributed closer to the axis of rotation.

Since her total angular momentum is conserved, her angular velocity increases.

$$
L_{i}=I_{i} \omega_{i} \quad=\quad \underset{\substack{\text { Smaller } \\
\text { than } I_{i}}}{I_{f} \omega_{f}=L_{f}} \begin{aligned}
& \text { Larger } \\
& \text { than } \omega_{i}
\end{aligned}
$$

B

Angular Momentum

Remember: In inelastic collisions momentum is conserved, but kinetic energy is not.
Even when angular momentum is conserved, kinetic energy may not be conserved. With $L_{i}=L_{f}$:
$K E_{i}=\frac{1}{2} l_{i} \omega_{i}^{2} \quad K E_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}$

$$
K E_{f}=\frac{I_{i}}{I_{f}} K E_{i}
$$

The skater does work to pull in her arms.

$$
L_{i}=I_{i} \omega_{i} \quad=\underset{\substack{I_{f} \\ \text { Smaller }}}{I_{f}=L_{f}}
$$

$$
\text { than } I_{i} \text { than } \omega_{i}
$$

Angular Momentum

In many applications, recognizing the vector nature of rotational quantities is very important.
The right-hand rule provides a way to determine the direction:

- If the fingers of your right hand curl in the direction of motion of the edge of the object, your thumb will point in the direction of the rotational velocity vector.

