Physics A - PHY 2048C

Gravitation

11/13/2019

My Office Hours:
Thursday 2:00-3:00 PM
212 Keen Building

Warm-up Questions

(1) Did you read Chapter 13 on Newton's Theory of Gravity?
(2) Consider a binary star system. The mass of star 2 is twice the mass of star 1 . Compared to $\vec{F}_{1 \text { on } 2}$, the magnitude of the force $\vec{F}_{2 \text { on } 1}$ is ...
(3) A space station astronaut is working outside the station as it orbits the Earth. If he drops a hammer, will it fall to Earth? Explain.

Outline

Newton's Law of Gravitation

There is a gravitational attraction between any two objects. If the objects are point masses m_{1} and m_{2}, separated by a distance r the magnitude of the force is:

$$
F_{\text {grav }}=\frac{G m_{1} m_{2}}{r^{2}}
$$

(1) The gravitational force is always attractive.
(2) The magnitude of the gravitational force exerted by mass 1 on mass 2 is equal in magnitude to the force exerted by mass 2 on mass 1.
(3) Universal Gravitational Constant:

$$
G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
$$

Newton's Law of Gravitation

There is a gravitational attraction between any two objects. If the objects are point masses m_{1} and m_{2}, separated by a distance r the magnitude of the force is:

$$
F_{\text {grav }}=\frac{G m_{1} m_{2}}{r^{2}}
$$

(1) The gravitational force is always attractive.
(2) The two forces form an action-reaction pair.

(3) We can now calculate the value of g :

$$
\begin{aligned}
m_{\text {person }} g & =\frac{G m_{\text {person }} m_{\text {Earth }}}{r_{\text {Earth }}^{2}} \\
g & =\frac{G m_{\text {Earth }}}{r_{\text {Earth }}^{2}} \approx 9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Gravitation and the Moon's Orbit

The Moon follows an approximately circular orbit around the Earth:

- Since the Moon travels in a circle, it experiences a centripetal force.
- This force is provided by gravity:

$$
\begin{aligned}
F_{\text {grav }} & =\frac{G M_{\text {Earth }} M_{\text {Moon }}}{r_{\mathrm{ME}}^{2}} \\
& =2.0 \times 10^{20} \mathrm{~N}
\end{aligned}
$$

- The force required to make the Moon move in a circle:

$$
F=\frac{M_{\text {Moon }} v^{2}}{r_{\mathrm{EM}}} \approx 2.0 \times 10^{20} \mathrm{~N}
$$

Gravitation

Law of Gravity

Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them.

