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Rotational Dynamics 

Purpose: Investigate rotational dynamics – moment of inertia, torque and conservation of 

angular momentum and energy 

Apparatus: Rotary sensor with Airlink, rod with two equal masses, pulley, mass with hooks (10 

g, 20 g and 50 g), Capstone software, triple-beam balance, Vernier caliper and ruler. 

Note: DO NOT drop the rotary sensor or the Airlink. 

Introduction 

To set an object into motion, a net force must be applied to the object. This is Newton’s Second 

Law of Motion.  

 𝐹⃗𝑛𝑒𝑡 = 𝑚𝑎⃗ [1] 

To set an object into rotation, a net torque must be applied to the object. The analogous 

Newton’s Second Law for rotation is 

 𝜏𝑛𝑒𝑡 = 𝐼𝛼⃗ [2] 

Torque is defined as the lever arm times the force. For example, the torque about the center of 

the disk in the Figure 2 is 𝜏 = 𝑅⊥𝐹 where 𝑅⊥ is the lever arm and, F is the applied force. The 

symbol I is the moment of inertia. It is a measure of “resistance” to the change in rotational 

speed. The moment of inertia for a point mass m that is at a distance R from the axis of rotation is 

 𝐼 = 𝑚𝑅2 [3] 

For several point masses, the total moment of inertia is the sum of the individual moment of 

inertia. In the linear case, an object of mass m moving with velocity 𝑣⃗ has a linear momentum, 

𝑝⃗ = 𝑚𝑣⃗. Similarly, an object that is rotating has an angular momentum given by 𝐿⃗⃗ = 𝐼𝜔⃗⃗⃗ where 

 is the angular velocity. Just as linear momentum is conserved in a collision in the absence of 

an external force, so too is angular momentum when there is no net external torque. For example, 

if a second object is dropped onto an object that is spinning, conservation of angular momentum 

says that 

 𝐿⃗⃗𝑖 = 𝐿⃗⃗𝑓      𝑜𝑟     𝐼𝑖 𝜔⃗⃗⃗𝑖 = 𝐼𝑓 𝜔⃗⃗⃗𝑓 [4] 

An object that is moving has kinetic energy. The kinetic energy associated with rotation is given 

by  
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𝐾𝐸𝑟𝑜𝑡 =

1

2
𝐼𝜔2 

[5] 

Equation [2] says that when a net torque is applied to an object, its angular velocity changes, i.e., 

it has an angular acceleration. For this experiment, you will be applying a net torque to various 

objects and measure the angular velocity. The slope of the angular velocity vs time plot gives the 

angular acceleration. Then the moment of inertia can be calculated using equation [2]. You will 

also verify that angular momentum is conserved in a collision. 

Procedure 

Activity 1 – Moment of inertia of a rod and two equal masses  

To measure the moment of inertia of an object, a torque must be applied. Here the torque is 

applied to the rotary sensor. By measuring the angular velocity of rotation as a function of time, 

the angular acceleration, , can be calculated. Then equation [2] is used to determine the 

moment of inertia, I. For this part, you will measure the moment of inertia of a rod with the axis 

of rotation in the middle of the rod. Then you will attach two equal masses to the rod at 

equidistant from the axis of rotation. The aim is to verify that the moment of inertia for a point 

mass is given by 𝐼 = 𝑚𝑅2. The rotary sensor you are using has very low friction, so in all the 

following activities, the frictional torque is neglected. Also, the two pulleys have moments of 

inertia much smaller than the objects you will be measuring so their contributions are negligible. 

1. Use the triple beam balance and measure the mass of the rod (mrod) and the two small 

masses. Use a ruler and measure the length, L, of the rod.  

2. Attach the Airlink to the rotary sensor and turn it on. Next, start the Capstone software 

and link the sensor by the Airlink ID. Create an angular velocity vs time plot on 

Capstone. Set the units to be rad/s for angular velocity and the sampling rate to 40 Hz. 

3. Mount the rotary sensor as shown in Figure 1. For this part mount the rod without the two 

masses. Hang a 20 g mass on the 

free end of the thread that is 

attached to the three-step pulley. 

Wrap the thread a few times around 

the middle wheel of the three-step 

pulley and then drape the thread 

over the super pulley. Make sure 

the pulley is aligned so that the 

thread lines up with the groove of 

the super pulley. Also, make sure 

that the thread connecting the two 

pulleys is horizontal. Hold the mass 

Figure 1 – Top view of rotary sensor with rod and 

two small masses. 
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steady. Have your partner click on the “Record” button. Release the mass. Once the 

thread has completely unwound from the pulley, click the “Stop” button.  

4. On the angular velocity vs time plot, identify the region which corresponds to the mass 

falling freely. Find the slope of the region using the Capstone line-fitting tool. The slope 

of an angular velocity vs time plot gives the angular acceleration, . Record your data in 

an excel spreadsheet table as shown below. Calculate the torque ( = 𝑚𝑅𝑝𝑢𝑙𝑙𝑒𝑦(𝑔 −

𝛼𝑅𝑝𝑢𝑙𝑙𝑒𝑦)) where m is the hanging mass and Rpulley = 1.45 cm is the 

radius of the middle-step pulley of the three-step pulley (see * 

below). Next use equation [2] to determine the measured Irod. Record 

your value in column 4 of the spreadsheet table. 

 

Hanging 

mass m (g) 

Angular acc. 

 (rad/s2)  

Torque,  = 𝑚𝑅𝑝𝑢𝑙𝑙𝑒𝑦(𝑔 −

𝛼𝑅𝑝𝑢𝑙𝑙𝑒𝑦) (Nm) 

Measured Irod 

(kgm2) 

Calculated Irod 

(kgm2)  

20     

Next, use the mass (mrod) and length (L) of the rod that you obtained in step 1 to calculate 

the theoretical moment of inertia of the rod (𝐼𝑟𝑜𝑑 =
1

12
𝑚𝑟𝑜𝑑𝐿2). Does your measured Irod 

agree with the calculated Irod? Explain any discrepancy, if any. 

5. Next, you want to verify that the moment of inertia for a point mass is determined by 

equation 3. Mount two masses at the ends of the rod as shown in figure 1. Using a ruler 

measure the distance from the axis of rotation to the center of mass of each mass. Record 

this value as distance R in the spreadsheet below. Make sure that the masses are at the 

same distance from the axis of rotation. Now repeat steps 3 and 4. However, in step 3, 

use a 50 g mass instead of the 20 g mass. 

6. Repeat step 5 four more times by changing the distance of the masses. Suggested 

distances are 14, 12, 8 and 4 cm from the axis of rotation. (Make sure the masses do not 

hit the super pulley in the 10 to 12 cm range.) For smaller distances (8 cm or less) use a 

20 g hanging mass instead of the 50 g. 

7. For each run, find the slope of the angular velocity vs time plot for the region that 

corresponds to the free falling of the hanging mass. Record your slope as angular 

acceleration  in an excel spreadsheet. Recall that the torque is 𝑚𝑅𝑝𝑢𝑙𝑙𝑒𝑦(𝑔 − 𝛼𝑅𝑝𝑢𝑙𝑙𝑒𝑦).  

Run Hanging 

mass m 

(g) 

Distance  

R (m) 

Angular 

acc.  

(rad/s2) 

Torque 

(Nm) 

Inertia 

Imeasured 

(kgm2)  

Imasses 

(kgm2) 

Calculated 

Imasses (kgm2)   

1 50       

Figure 2 - Torque on the three-step pulley. 
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2        

        

The moment inertia of the masses, Imasses, is the moment of inertia that you measured 

(column 6) minus the moment of inertia of the rod that you found in step 4. Use equation 

[3] for the calculated moment of inertia of the masses (column 8). 

8. Verify graphically that the measured moment of inertia of the masses depends on the 

square of the distance from the axis of rotation. Comment on whether your results agree 

with the calculated values. 

  

 

Activity 2 – Moment of inertia of a disk and ring and, conservation of angular momentum 
 

1. Use the triple-beam balance to measure the mass of the disk and the ring. Then use a 

Vernier caliper to measure the radius of the disk and, the inside and outside radii of the 

ring. Now, calculate the theoretical moment of inertia of the disk and the ring using 

𝐼𝑑𝑖𝑠𝑘 =
1

2
𝑚𝑅2 and, 𝐼𝑟𝑖𝑛𝑔 =

1

2
𝑚(𝑅𝑜𝑢𝑡𝑒𝑟

2 + 𝑅𝑖𝑛𝑛𝑒𝑟
2 ). 

2. Remove the rod from the three-step pulley and mount the disk in its place. Use the 

technique in the last activity to measure the moment of inertia of the disk. For this 

measurement use a 10 g for the hanging mass. Record your results in a table similar to 

step 4 of activity 1. 

3. Place the ring on top of the disk, making sure that the two tabs on the ring line up with 

the two holes on the surface of the disk. Measure the moment of inertia of both the disk 

and the ring. Use this result to determine the moment of inertia of the ring only. Again, 

record your results in a table similar to the last step. 

4. Compare the moment of inertia for the disk and ring with the theoretical values that you 

calculated in step 1. Are they equal to within experimental errors? If not, explain your 

discrepancy. By what percent is the experimental off from the theoretical values? 

m

T

T

To 3-step
pulley

mg

* From figure 2, the torque on the 3-step pulley is 𝜏 = 𝑅𝑝𝑢𝑙𝑙𝑒𝑦𝑇 

where T is the tension in the string and is due to the hanging mass, m 

(figure 3). When m is free to drop, the equation of motion is 

𝑚𝑔 − 𝑇 = 𝑚𝑎 

where 𝑎 = 𝛼𝑅𝑝𝑢𝑙𝑙𝑒𝑦 is the linear acceleration of m. So, the tension in 

the string is  

𝑇 = 𝑚𝑔 − 𝑚𝛼𝑅𝑝𝑢𝑙𝑙𝑒𝑦 

The torque on the 3-step  pulley is 

𝜏 = 𝑚𝑅𝑝𝑢𝑙𝑙𝑒𝑦(𝑔 − 𝛼𝑅𝑝𝑢𝑙𝑙𝑒𝑦) 

This derivation assumes that the moment of inertia of the super 

pulley and friction is negligible. 

Figure 3 -  Force 

diagram for 

hanging mass, m. 
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5. Now, remove the hanging mass and 

the ring. Wrap the thread a few times 

around the middle pulley of the three-step 

pulley. Pull the thread to set the disk 

spinning. While the disk is spinning, gently 

drop the ring onto the disk. Aim it so that 

the ring is centered about the disk and a 

few mm above the disk. Practice it a few 

times so you can drop the ring without it 

being thrown off the disk. Then “Record” a 

run starting with just the disk spinning and 

stopping just after dropping the ring onto 

the disk. 

6. You should observe a sudden change 

in angular velocity on the angular velocity 

plot from step 5 when the ring is dropped 

on the disk. Take the average angular 

velocities just before and just after the ring 

is dropped.  They represent 𝜔𝑖 and 𝜔𝑓 

respectively. 

7. Calculate the angular momentum of 

the disk, and the disk with the ring 

(equation 4). Is angular momentum 

conserved? If not, explain any discrepancy.  

 

Activity 3 – Potential energy to kinetic energy 

This part explores gravitational potential of a mass being transformed into the rotational kinetic 

energy of the disk and translational kinetic energy of the mass. The setup for this part is similar 

to the last activity.  

1. Remove the ring from the disk so that only the disk is attached to the rotational sensor. 

Hang a 50 g mass to the thread and let the thread unwind completely from the three-step 

pulley. Use a meter stick and measure the height of the mass from the table. Now wind 

the thread around the middle pulley of the three-step pulley. Again, measure the height of 

the mass. The potential energy of the mass is 𝑃𝐸 = 𝑚𝑔∆ℎ. 

2. Click on the “Record” button. Release the 50 g mass. When the mass has reached its 

lowest point and starts to move back up, click on the “Stop” button. 

3. Your angular velocity vs time plot should look like the figure 5 below. Identify the point 

disk

rotary motion
    sensor

super
pulley

support
rod

ring

Figure 4 - Angular momentum setup. 
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where the mass is at the lowest point; on the example plot the angular velocity is  = 

21.952 rad/s. At this point, you have two kinetic energies, one from the falling mass and, 

two the rotating disk. 

 
𝐾𝐸𝑡𝑟𝑎𝑛 + 𝐾𝐸𝑟𝑜𝑡 =

1

2
𝑚𝑣2 +

1

2
𝐼𝑑𝑖𝑠𝑘𝜔2 

[5] 

Now the velocity of the hanging mass can be calculated from 𝑣 = 𝜔𝑅 where R (=1.4 cm) 

is the radius of the middle pulley of the three-step pulley. Calculate the total kinetic 

energy and compare it to the potential energy that you calculate in step 1. Is mechanical 

energy conserved? If not, explain what may have caused the loss in energy. 

4. Turn the Airlink off and unplug it from the rotary sensor. (To turn it off, press and hold 

the ON button until the status LEDs stop blinking.) 

 

Figure 5 - Gravitational potential energy to kinetic energies. 

 


