Physics A - PHY 2048C

Equations of Motion

09/04/2019

My Office Hours:
Thursday 2:00-3:00 PM
212 Keen Building

Example: Velocity = 0

The velocity is zero.
\rightarrow On the graph, the line is at $v=0$.

The position is constant:

- Not moving, no change in position.
- On the graph, just a horizontal line.

Example: Velocity $\neq 0$

The velocity is not zero.
\rightarrow On the $v-t$ graph, the line is at $v=$ constant value: $v=v_{0}$.
The position is changing steadily:

- Same Δx each second: $\Delta x=v \cdot \Delta t$ or $x=x_{0}+v \cdot t$.
- On the graph, an upward sloping straight line.
- Slope of the x - t curve is equal to the value of velocity.

Example: Constant Acceleration

The acceleration is a constant:

- On the a-t graph, a straight horizontal line: $v=v_{0}+a \cdot t$.
- Value depends on the total force exerted on (and mass of) the object.

The velocity is changing:

- On the v - t graph, this is an upward sloping straight line.

The position is changing:

- On the x - t graph, a curved line is observed:

$$
x=x_{0}+v_{0} \cdot t+\frac{1}{2} a \cdot t^{2}
$$

Equations of Motions

Equations to Describe Motion with Constant Acceleration:

$$
\begin{align*}
v & =v_{0}+a t \tag{1}\\
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2}\\
v^{2} & =v_{0}^{2}+2 a\left(x_{f}-x_{0}\right) \tag{3}
\end{align*}
$$

where v_{0} is the velocity at some initial time $t=0, x_{0}$ is the position at some initial time $t=0$. Equation (3) eliminates time t from the equation.

Which equation should be used depends on what information you are given in a particular problem and what you are asked to find.

