Motion on Inclines

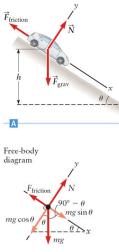
Physics A - PHY 2048C

Mass & Weight, Normal Force, and Friction

09/25/2019

My Office Hours: Thursday 2:00 - 3:00 PM 212 Keen Building

Motion on Inclines

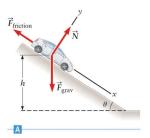

1 Motion on Inclines


2 Friction

Normal Force and Friction

Choose a coordinate system.

Best choice: axes perpendicular and parallel to the incline.


Motion on Inclines

Choose a coordinate system.

Best choice: axes perpendicular and parallel to the incline.

$$\Sigma F_{\parallel} = F_{\text{grav}} \sin \theta - F_{\text{friction}} = 0$$

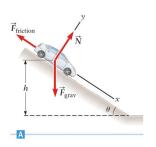
$$mg \sin \theta - F_{\text{friction}} = 0$$

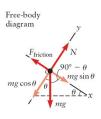
@ Brooks/Cole, Cengage Learning

Motion on Inclines

Choose a coordinate system.

Best choice: axes perpendicular and parallel to the incline.


$$\Sigma F_{\parallel} = F_{\text{grav}} \sin \theta - F_{\text{friction}} = 0$$


$$mg \sin \theta - F_{\text{friction}} = 0$$

$$\Sigma F_{\perp} = N - F_{\text{grav}} \cos \theta = 0$$
$$N - mg \cos \theta = 0$$

Minimum frictional force to keep the object from slipping is:

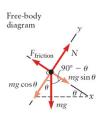
$$mg\sin\theta = N\mu_s = mg\cos\theta\mu_s$$

Motion on Inclines

Choose a coordinate system.

Best choice: axes perpendicular and parallel to the incline.


$$\Sigma F_{\parallel} = F_{\text{grav}} \sin \theta - F_{\text{friction}} = 0$$


$$mg \sin \theta - F_{\text{friction}} = 0$$

$$\Sigma F_{\perp} = N - F_{\text{grav}} \cos \theta = 0$$
$$N - mg \cos \theta = 0$$

Minimum angle to keep object from slipping is:

$$\tan \theta = \mu_s$$

Motion on Inclines

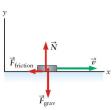
Friction

1 Motion on Inclines

2 Friction

Aristotle's idea was that rest was the natural state of terrestrial objects.

Newton's view was that an object comes to rest because a force acts on it. This force is often due to a phenomenon called friction.


Aristotle's idea was that rest was the natural state of terrestrial objects.

Newton's view was that an object comes to rest because a force acts on it. This force is often due to a phenomenon called friction.

The force of friction opposes the motion. The magnitude of the frictional force is related to the magnitude of the normal force:

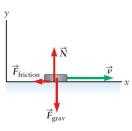
$$F_{\text{friction}} = \mu_k N$$

 μ_k is called coefficient of kinetic friction. It has no units.

Kinetic Friction

Without an external force:

$$\Sigma F = F_{\text{friction}} = -\mu_k N = m a$$


From the y-direction:

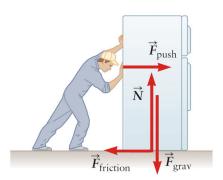
$$F_{\rm grav} = N = mg$$

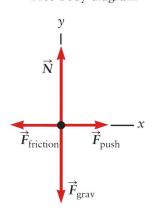
Therefore:

$$-\mu_k mg = ma$$

 $-\mu_k g = a$

Once you have found the acceleration, other quantities involved with motion can also be found.

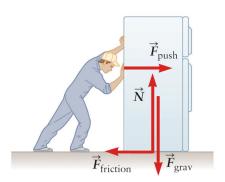


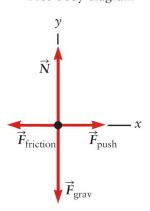

Static Friction

In many situations, the relevant surfaces are not slipping (moving) with respect to each other.

→ Involves static friction.

Free-body diagram





Static indicates that the two surfaces are not moving relative to each other:

 $|F_{\text{friction}}| \leq \mu_{s} N$

Free-body diagram

For a given combination of surfaces, generally $\mu_s > \mu_k$. With:

- $F_{\text{friction}} = \mu_k N$ (kinetic friction)
- $|F_{\text{friction}}| \leq \mu_s N$ (static friction)

usually static friction > kinetic friction.

It is more difficult to start something moving than it is to keep it moving once started.

For a given combination of surfaces, generally $\mu_s > \mu_k$. With:

- $F_{\text{friction}} = \mu_k N$ (kinetic friction)
- $|F_{\text{friction}}| \leq \mu_s N$ (static friction)

usually static friction > kinetic friction.

It is more difficult to start something moving than it is to keep it moving once started.

Examples:

- Friction and Walking
- Friction and Rolling

