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Experiment IX: Simple Harmonic Motion 
 

Goals 
 

• Verify Hooke’s law for spring force 
 
• Determine the period of a simple harmonic motion 

 
Introduction and Background 
 
 A periodic motion is one that repeats itself in successive equal intervals of time.  The time 
required for one complete repetition of the motion is called the period.  The simplest periodic 
motion is a particle moving back and forth between two fixed points along a straight line.  To 
undergo such a motion, the particle must be subject to a “restoring” force that is opposite to the 
displacement at least part of the time. 
 
 If the net force on the particle in the above periodic motion is such that the magnitude of the 
force is proportional to the displacement of the particle but the direction of the force is always 
opposite to that of the displacement (the force is always directed toward the midpoint).  Namely, 

kxF −=       (9-1) 
where k is a constant and x = 0 is the midpoint.  Any object that obeys this relationship is said to 
obey Hooke’s law, and the motion that results from this specific type of net force acting on a 
particle is called a Simple Harmonic Motion.  The most common object that obeys Hooke’s law on 
large length scale is a spring.  Therefore, the motion of a particle on a spring is a classical example 
of simple harmonic motion.  The diagram below illustrates an instant in such a simple harmonic 
motion.  The points Ax ±=  are the endpoints of the motion, where A is called the amplitude. 
 

 In your textbook it is shown that the resulted equation of motion (the equation giving the 
position x of the particle at time t) is, 

)2sin(
T

tAx π
=       (9-2) 

when the particle starts at x = 0 at time t = 0.  Analysis shows that the period T of the motion 
depends on the spring constant k and the mass m in the following fashion: 
 

 
k
mT π2=      (9-3) 

 

 
 

Figure 9.1 – Instantaneous displacement. 
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In this lab we will verify that the force from a spring obeys Hooke’s law and the period of the 
motion of a mass on a spring is indeed given by Equation 9-3. 
 
 
Experimental Setup 
 
Equipment: Spring, meter stick, 
stopwatch, table clamp, rod and support, 
weights, balance 
 
Setup:  A schematic diagram of the 
experimental setup is shown in Figure 9-2. 
Here the motion of the mass on the spring 
is up and down on a straight line. 
 
Experimental Procedure and Data 
Analysis 

 
A. Hooke’s Law 
 

1. Hang the spring with the larger end 
down as shown in Figure 9-2. 
Clamp down a meter stick 
vertically to monitor the position of 
the mass.  Place a total of 100 gram 
mass at the end of the spring. 
Record the equilibrium position of 
the mass.  This point will be your reference point (x = 0) from which you will measure how 
much the spring stretch.  The reason you need to start with this much mass is to ensure that 
all of the spring coils are separated and not squeezing each other. 
 

2. Add a series of additional masses to the hanger in 50 gram increment up to 500 grams. 
Record these additional forces (not counting the original 100 g) and the corresponding rest 
position of the hanger. 

 
3. Use the Excel template named “SHM” to plot the added additional force versus the 

displacement of the hanger from the reference point.  Perform a Linear Regression Fit of 
Weight versus Displacement.  Make a plot with your measured values and a best-fit line. 

 
• Obtain the spring constant k and the uncertainty in k from the linear regression fit. 
• Does your spring appear to obey Hooke’s law? 
 

B. Simple Harmonic Motion:  
 

1. Determine the period of oscillation for at least five different masses added to the spring. 
Since it is the entire mass that is oscillating, it is now necessary to include the entire mass 

 

               
 

 
Figure 9.2 – Simple harmonic oscillation. 
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added to the spring.  Start with 150 grams (total) on the spring and work up to the largest 
mass practicable.  
Do not give the oscillations such a large amplitude that the coils of the spring bunched up 
together at the top of the motion.  
Time at least 20 oscillations for each mass.  Do this twice and take the average.  (Remember 
the count is 0, not 1, when the timer is started). 
 

2. Enter the data into the second part of the template “SHM”.  Calculate the period T and then 
the period squared T2.  Plot T2 as a function of the added (total) mass, ma.  Perform a Linear 
Regression Fit of T2 versus ma. 

 
• What is the slope from the linear regression fit? 
• From Equation 9-3, what should this slope yield? 
• Calculate the spring constant from this slope.  By what percentage doe it differ from the 

value you obtained in Part A? 
 
3. From Equation 9-3, what should be the intercept for a plot of T2 versus m?  What is the 

actual value you obtained from the Linear Regression Fit? 
 

The reason for the discrepancy between the theoretical value and the measured value is that 
the theoretical relationship is based a massless spring, while a real spring has mass and it 
contributes to the total oscillating mass.  On the other hand, you cannot simple add the entire 
mass of the spring to the oscillating mass because each part of the spring undergoes less and 
less motion as the top end of the spring is approached.  Instead, the spring will contribute an 
effective mass, me, that is somewhat less than the total spring mass to the oscillating mass: 

m = ma +me      (9-4) 
and 
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Now calculate the effective mass of the spring me from the intercept in the Linear 
Regression Fit and the value k you have obtained. 
 
Measure the entire mass of the spring with a balance.  About what fraction is me of the total 
spring mass? 
 

4. For simple harmonic motion the period should not depend on the oscillation period.  
Perform a brief experimental verification of this fact.  Do this by timing 20 oscillations for 
one fixed mass at three different amplitudes. 

 
Conclusions 
 
Briefly discuss whether you have accomplished the goals listed at the beginning. 

 
 


