Introduction to Machine Learning: Part |

Prof. Sean Dobbs! & Daniel Lersch?

April 16, 2020

! (sdobbs@fsu.edu)
2 (dlersch@jlab.org)
April 16, 2020 1/ 27

(sdobbs@fsu.edu)
(dlersch@jlab.org)

About this Lecture

@ Part I:

> Introduction to DataFrames
> Basic concepts of machine learning
(with focus on feedforward neural networks)
@ Part ll:
» Machine learning in (physics) data analysis
» Performance evaluation

Part IlI:

> Algorithm tuning
» Hyper parameter optimization

Part 1V:

» Custom neural networks with Tensorflow
> Transition to Deep Learning

The individual contents might be subject to change

Daniel Lersch (FSU) April 16, 2020 2/27

This Lecture will...

NOT turn you into a machine learning specialist

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3/27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

NOT turn you into a machine learning specialist

NOT cover all aspects of machine learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 /27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

. NOT turn you into a machine learning specialist
. NOT cover all aspects of machine learning

. give a (very) brief overview only (i.e. further reading is definitely required)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 /27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

. NOT turn you into a machine learning specialist
. NOT cover all aspects of machine learning
. give a (very) brief overview only (i.e. further reading is definitely required)

. introduce a few machine learning algorithms

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 /27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

. NOT turn you into a machine learning specialist

. NOT cover all aspects of machine learning

. give a (very) brief overview only (i.e. further reading is definitely required)
. introduce a few machine learning algorithms

. utilize the scikit-learn library

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 /27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

NOT turn you into a machine learning specialist

NOT cover all aspects of machine learning
. give a (very) brief overview only (i.e. further reading is definitely required)
. introduce a few machine learning algorithms
. utilize the scikit-learn library

. most likely contain several errors (— Please send a mail to dlersch@jlab.org)

Daniel Lersch (FSU) April 16, 2020 3 /27

https://scikit-learn.org/stable/
dlersch@jlab.org

Homework and Literature

@ Machine learning can be learned best by simply doing it!

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 4 /27

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 4 /27

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

@ Helpful literature:

» The scikit-learn documentation

» Talks from the deep learning for science school 20193

» "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by
Aurélien Géron

» The internet is full of good (but also very bad!) literature® — browse with
caution

» The slides of the lecture are available at:
http://hadron.physics.fsu.edu/ dlersch/ml_slides/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning
without any theory / math is considered as bad

Daniel Lersch (FSU) April 16, 2020 4 /27

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Al, ML and DL

Al D ML D DL

Computer Science

Artificial Intelligence

Machine Learning

Deep Learning

Artificial
Intelligence

Engineering of
king Intelligent

Machines and Programs

1950's 1960's 1970's

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU

Computational Physics Lab

April 16, 2020

5 /27

https://sites.google.com/lbl.gov/dl4sci2019/agenda

Al, ML and DL

Al D ML D DL

Main focus of this lecture

Computer Science

Artificial Intelligence

Machine Learning

Engineering of
g Intelligent

Ma and Programs

Deep Learning 1950's 1960's 1970

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU Computational Physics Lab April 16, 2020 5 /27

https://sites.google.com/lbl.gov/dl4sci2019/agenda

Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (2 10k detection channels)
= Large, correlated data sets

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 /27

Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (2 10k detection channels)
= Large, correlated data sets

@ Use machine learning to:

> Analyze / sort data
» Calibrate data
» Simulate data

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 /27

Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (= 10k detection channels)
= Large, correlated data sets
@ Use machine learning to:

> Analyze / sort data
» Calibrate data
» Simulate data

<

Fraction of GlueX-| 2018 Data

Bl oo
B oo

Entries [a.u.]

RRANRAARNRAARNRARLA RARRIRARANRRRRSEY

[I I I B |
0 02 04 06 08 1 12 14 16 18 2 22 24

E(FCAL)/p

= Particle identification at GlueX

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 /27

Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (2 10k detection channels)
= Large, correlated data sets
@ Use machine learning to:
> Analyze / sort data
> Calibrate data
» Simulate data

Left: Original Data / Right: Generated Data

0.0 25 5.0 . . 2.5
Momentum Momentum

= Simulate particles (leptons) at GlueX
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 /27

Basic Components of Machine Learning

INPUT

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT

April 16, 2020 7/ 27

Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT

April 16, 2020 7/ 27

Basic Components of Machine Learning

INPUT

Input Data:

ML ALGORITHM

- humbers
- pictures
- text

- Before passing any data to any algorithm,

you might want to take a look at it first

- The data (sometimes) requires pre-processing

—> Need an efficient way to handle (large) data sets —> DataFrames

Daniel Lersch (FSU)

OUTPUT

April 16, 2020 7/ 27

DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 /27

DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 S Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)
1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 /27

DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 e Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)
1 value(coll,row2) | value(col2,row2) | --- | value(colN,row2)

@ They may contain multiple data types

— Numbers

value a walue b

0 03 -1l
1 -1.2 0.8
2 5.0 12.0

Daniel Lersch (FSU) April 16, 2020 8 /27

DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 e Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)

1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

@ They may contain multiple data types
— Text

Language Hella My name is I am hunagry
0 French Bonjour Je zuiz Je zuiz affame
1 German Hallo Ich heizse Ich habe hunger

Daniel Lersch (FSU) April 16, 2020 8 /27

DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 S Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)
1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

@ They may contain multiple data types

— Text and Numbers

Student. Points Comment.
] A 1.3 Dedicated
1 B 10,0 Brilliant
2 C -100,0 HMakes me cry

Daniel Lersch (FSU) April 16, 2020 8 /27

DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 e Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)

1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

@ They may contain multiple data types

— Vectors

State Yector Score

0 [0, 1] 0.5
1 [1, 0] 0.5
2 [1, 1] 1.0
3 (G, 0] 0.3

Daniel Lersch (FSU) April 16, 2020 8 /27

Creating,Loading and Saving DataFrames

@ Create a DataFrame from scratch
import pandas as pd
#Define the data:
data = {
’Coll’: [1,2,3],
’Col2’: [’a? s ’b? , ’C’] s
’Col3’: [True,False,True]
¥
#Create the dataframe:
df = pd.DataFrame(data)
#4nd print it:
print (df)

Coll Col? Col3
0 1 a True
1 2 b Falsze
2 3 o True

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 9 /27

Creating,Loading and Saving DataFrames

@ Create a DataFrame from scratch

@ Or load it from a .json, .csv, file
import pandas as pd
df_1 = pd.read_csv(...)
df_2 = pd.read_json(...)
df_3 = pd.read_pickle(...)
df_4 = pd.read_excel(...)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 9 /27

Creating,Loading and Saving DataFrames

@ Create a DataFrame from scratch
@ Or load it from a .json, .csv, file

@ After working with your DataFrame, you might want to save it
import pandas as pd
df_1.to_csv(...)
df_2.to_json(...)
df_3.to_pickle(...)
df_4.to_excel(...)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 9 /27

Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays
import numpy as np
import pandas as pd
#Create 20 data points, having 2 values between -10 and 10 each:
data = np.random.uniform(low=-10,high=10,size=(20,2))
#Turn this 20z2 array into a DataFrame:
df = pd.DataFrame(data)
#And name the two columns:
df.columns = [’Values_1’,’Value_2’]

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays
import numpy as np
import pandas as pd
#Create 20 data points, having 2 values between -10 and 10 each:
data = np.random.uniform(low=-10,high=10,size=(20,2))
#Turn this 20x2 array into a DataFrame:
df = pd.DataFrame(data)
#4nd name the two columns:
df.columns = [’Values_1’,’Value_2’]

Value_l Walue_2
0 -4,433863 §,134270
1 -2,473114 B,353864
2 -3,052877 1,804706
3 B,370931 -1,781364
4 3,368881 -2,075033
5 -1,700772 0,982987
£ -3,453366 -5,401645
7 -0,831402 3,541155
8 B.937076 -9,000622
9 -8,738868 -9,841193
10 4,450625 -5,901079
11 -3,531955 -3,088243
12 B.313612 4288357
12 1.438309 5,890397
14 -0,451029 4,343020
15 4,186787 B,03BE17
16 -3,157958 2,28BE26
17 2.243423 -3, 431162
18 -1,778005 B,998256
19 B.502947 -9,102705

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays

@ Create a third column which is equal to the second column multiplied by 2
df[’Value_3’] = df[’Value_2’]1*2

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays

@ Create a third column which is equal to the second column multiplied by 2

df [’Value_3’] = df[’Value_2’]*2

Daniel Lersch (FSU)

il e e el e s et K= R NIV R Y
000~ 00 O e R D

Value_1
-4,433863
-2,473114
—-3.052877

E.370931
3,368881
-1,700772
-3.,453366
-0,8591402
6,937076
-8.,735368
4,450625
-3.,531955
6.313612
1.428309
-0,451023
4,185787
-3,157358
2,2432423
-1,778005
6.502347

Value_2 Value_3
5,134270 10, 268539
£.303864 12,707728
1.804706 3,603412

-1,781364 -3,562728
-2,075033 -4,15006E
0,982387 1,965973
-5,401645 -10, 803290
3,041180 7,082311
-9,000622 -18,001244
-9,841198 -19,682396
-5,901079 -11,802157
-3,088243 -6,176486
4,286357 8.572715
5,890397 11,790794
4,343020 8,698039
6036617 12,073234
2,286626 4,573253
-3,431162 -B,862324
£,958256 13,916511
-9,102705 -18, 205410

April 16, 2020

10 / 27

Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays
@ Create a third column which is equal to the second column multiplied by 2

@ Create a fourth column, based on the first column + a user-defined function
#Define your function:
def lin_func(x,m,b):
return m*x+b

#Use the lambda function to create a fourth column,

#based on the values from the first column:

df [’Value_4’] = df[’Value_1’].apply(lambda x: lin_func(x,-0.5,3.3))
#Value_4 = -0.5%Value_1 + 3.3

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays

@ Create a third column which is equal to the second column multiplied by 2
@ Create a fourth column, based on the first column + a user-defined function

#Define your function:
def lin_func(x,m,b):
return m*x+b

#Use the lambda function to create a fourth column,

#based on the values from the first column:

df [’Value_4’] = df[’Value_1’].apply(lambda x: lin_func(x,-0.5,3.3))

#Value_4 = -0.5%Value_1 + 3.3

Daniel Lersch (FSU

Value_l Walue 2
-4,433853 5,134270
-2,473114 B,363864
-3,082877 1,804708

6,370931 -1,781364
3,368801 -2,075033
-1.700772 0,982957
-3,453366 -5.401645
-0.831402 3.541155
6,937076 -3.,000622
-B,738868 -9.841198
10 4,450625 -5,501079
11 -3,531350 -3,088243
12 B,313612 4,28E357
13 1,438309 5,B90257
14 -0,451029 4,349020
15 4,185787 B,03E617
16 -3,157958 2,28EE26
17 2,242423 -3,431162
18 -1,7780058 6,958256
19 6.502847 -9.102705

00~ @ R D

Value_3 Value_d4
10,268533 5,516927
12,707728 4,036557

3,609412 4,826438
-3,562728 0,114535
-4,150066 1,615560

1.965973 4,150386

-10,803230 5,026683
7082311 2,745701
-18,001244 -0,168538
-19,682396 7,669434
-11,802157 1,074687
-6,176486 5,065378

8,572715 0,143194
11780734 2,580845

8,698039 3,526015
12,073234 1,207106

4,673203 4,870979
-6,862324 2,173208
13,916511 4,183003

-18.205410 0,048527

April 16, 2020

10 / 27

Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27

Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

@ Example: Get mean and std. dev. from the second column

mean_col2 = df[’Value_2’] .mean()
sigma_col2 = df[’Value_2’].std()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27

Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

@ Example: Get mean and std. dev. from the second column

mean_col2 = df[’Value_2’] .mean()
sigma_col2 = df[’Value_2’].std()

@ Since the second column follows a uniform distribution between -10 and 10,
expect:

H Expected Values Col2 ‘ Observed Values Col2

mean 0.0 —0.1
sigma 20//12 = 5.77 5.61

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27

Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

@ Example: Get mean and std. dev. from the second column

mean_col2 = df[’Value_2’] .mean()
sigma_col2 = df[’Value_2°].std()

@ Since the second column follows a uniform distribution between -10 and 10,
expect:

H Expected Values Col2 [Observed Values Col2

mean 0.0 —0.1
sigma 20/v/12 = 5.77 5.61

@ You can also access the mean / std. dev. for all DataFrame columns

mean_all = df.mean()
sigma_all = df.std()

Daniel Lersch (FSU) April 16, 2020

11 / 27

Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame

@ Histogram the fourth column
import matplotlib.pyplot as plt
plt.rcParams.update({’font.size’: 18}) #--> Set the font size
plt.hist(df [’Value_4’],bins=100) #--> Plot fourth column in 100 bins
plt.xlabel(’Value_4’)
plt.ylabel (’Entries?)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 / 27

Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame

@ Histogram the fourth column
import matplotlib.pyplot as plt

rcParams.update({’font.size’: 18}) #--> Set the font size

plt.
.hist(df [’Value_4’],bins=100) #--> Plot fourth column in 100 bins

plt

plt.
plt.
plt.

xlabel (’Value_4°)
ylabel (’Entries’)
show ()

2.00
175
1.50

w125
[

5100
w
0.75
0.50
0.25
0.00
0 2 4

Value_4

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 / 27

Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame
@ Histogram the fourth column

@ Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each azis

plt.hist2d(df [’Value_1’],df [’Value_4’],bins=100)
plt.xlabel(’Value_1°)

plt.ylabel(’Value_4’)

plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 /27

Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame

@ Histogram the fourth column

@ Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each azis
plt.hist2d(df [’Value_1’],df [’Value_4’],bins=100)
plt.xlabel(’Value_17)
plt.ylabel(’Value_4°)
plt.show()

Value_4

-8 -6 -4 -2 0 2 4 6
Value_1

Daniel Lersch (FSU)

April 16, 2020

12 / 27

DataFrames: Summary and Outlook

@ Introduced DataFrames for convenient data analysis / visualization
@ Did NOT show all functionalities

> Concatenating / stacking DataFrames

> Shuffling DataFrames
> .

@ Python provides a detailed documentation about DataFrames and related functions

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 13 / 27

Basic Components of Machine Learning

INPUT

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT

April 16, 2020 14 / 27

Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT

April 16, 2020 14 / 27

Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT

April 16, 2020 14 / 27

Basic Components of Machine Learning

INPUT ML ALGORITHM OUTPUT

Input Data:
- humbers
- pictures
- text

How do we set these parameters?

Daniel Lersch (FSU) April 16, 2020 14 / 27

Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 15 / 27

Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT

April 16, 2020 15 / 27

Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT

ML ALGORITHM

Daniel Lersch (FSU)

update internal parameters

OUTPUT

| Error = f(output) I <

unsupervised learning
(e.g. clustering algorithms)

April 16, 2020 15 / 27

Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its

internal parameters appropriately

@ Those parameters are set during training

INPUT ML ALGORITHM OUTPUT

60000
50000

40000
gsoooo update internal parameters

20000 Identifed as ngaive Pion |

Al partcies
10000 ontitod s Eocron | |Error = f(output, targets)l <—
040 050 supervised learning

0 010 020 030

dE(cal)/p
(e.g. classification, regression)

April 16, 2020

Daniel Lersch (FSU)

15 / 27

Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT

'/;nwronment
%Vler
Interpreter

[o0)
State ol

Agent

Action

ML ALGORITHM OUTPUT

Error = f(output,interaction 4—

with environment)

Daniel Lersch (FSU)

reinforcement learning
(e.g. self driving cars, game playing algorithms)

April 16, 2020 15 / 27

Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT

@ Goal: Minimize error

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT

April 16, 2020 15 / 27

Training of Machine Learning Algorithms |l

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 16 / 27

Training of Machine Learning Algorithms |l

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 16 / 27

Training of Machine Learning Algorithms |

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve

@ The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms

— You do not need to take care of updating the algorithms parameters °

5There are exceptions of course which will be discussed in a later part of this lecture

Daniel Lersch (FSU) April 16, 2020 16 / 27

Training of Machine Learning Algorithms |

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve

@ The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms

— You do not need to take care of updating the algorithms parameters °

@ Tricky: How to set up and evaluate the training properly (will be discussed soon)

5There are exceptions of course which will be discussed in a later part of this lecture

Daniel Lersch (FSU) April 16, 2020 16 / 27

Training of Machine Learning Algorithms |

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve

@ The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms

— You do not need to take care of updating the algorithms parameters °

@ Tricky: How to set up and evaluate the training properly (will be discussed soon)

@ Next: Discuss training of a feedforward neural network

5There are exceptions of course which will be discussed in a later part of this lecture

Daniel Lersch (FSU) April 16, 2020 16 / 27

The Multilayer Perceptron

Variable 1

Hidden layer

@ Most popular example for machine learning algorithms
@ Belongs to the class of feedforward neural networks
@ Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 17 / 27

The Multilayer Perceptron

Variable 1

Variable 2

Variable 3

Hidden layer

@ Most popular example for machine learning algorithms
@ Belongs to the class of feedforward neural networks

@ Architecture: Hidden layers with a set of neurons
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020

17 / 27

A single Neuron

Output
neuron 1 w
—]

Output

neuron 2 Neuron j

Output

neuron k S, =W, x output neuron 1 +

W,, x output neuron 2 +

K

A(S;+b)

1

_ 1

|
Output

neuronN-1 !

—l

Output
neuron N

W, x output neuron N

1w
1

Nj

Previous neurons

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 18 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

A single Neuron

Output
neuron 1

Output
neuron 2

Output
neuron k

Neuron j

S, =W, x output neuron 1 +

Output
neuron N-1

—l

Output
neuron N

Previous neurons

W,, x output neuron 2 +

W, x output neuron N

Sigmoid Leaky ReLU ’
- () = b max(0.1z,)
e

1% -

ffanh

laxout

1 tanh(z) I max(wfz + by, wlz + b)

ReLU

max(0,)

Most commonly used in modern networks as
hidden layer activations

@ Basic ingredients: Information from previous neurons, weights, bias and activation

function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for

science school 2019

Daniel Lersch (FSU) Computational Physics Lab

April 16, 2020 18 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

A single Neuron

Output
neuron 1 w
—]

Output

neuron 2 Neuron j

Output
neuron k S, =W, x output neuron 1 +
W,, x output neuron 2 +

Output
neuron N-1
—l

Output
neuron N

W, x output neuron N

|W

Nj
1

Leaky ReLU :
max(0.1z,)

Maxout
max(w @ + by, wl w + by)

ELU ’
2 220
ale-1) z<0

Often used for output layers

Previous neurons

RelLU
max(0,)

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 18 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

The Universal Approximation Theorem for Neural Networks

“a single hidden layer neural network with

. | . nlx) = Relul 5z
a linear output unit can approximate any : : ; nalx) = Retul
continuous function arbitrarily well, given e
enough hidden units” -- Hornik, 1991, 7T 7 R
hitp:iizmjones comistatic/statistical-learning/hornik-nn-1991.pdf { \ / !

{ \u—L/ Z(z) = —m{x) — na(z) — na(z)
This, of course, does not imply that we f ' il Fmin)rale)

have an optimization algorithm that can
find such a function. The layer could also
be too large to be practical.

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

= Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
"[..] there are no nemesis functions that cannot be modeled by neural networks"

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 19 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=80265

The Universal Approximation Theorem for Neural Networks

“a single hidden layer neural network with
a linear output unit can approximate any :
continuous function arbitrarily well, given

enough hidden units” -- Hornik, 1991, / E 1
http:/izmiones.comistatic/statistical-learning/hornik-nn-1991.pdf \ "

This, of course, does not imply that we \/

ny(x) = Retu(—5x — 7.
na(x) = Retuf—1.
na(z) = Retu(1.2z +1)
ny(x) = Retu(1.22 — 3)
nslz) = Relu{2z - 1.1)

nglir) = RelulSs —5)

Z(x) n{x) — nalx)

+ma(x) + nglr) +

na(x)

ng(x)

have an optimization algorithm that can iy cec musrsdsmesience comiearnemineworke sl isam s mion 5 1088171c

find such a function. The layer could also
be too large to be practical.

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

= Similarly formulated in 1990 by the Stone-Weierstrass-Theorem

"[...] there are no nemesis functions that cannot be modeled by neural networks"

= Neural networks are powerful tools! But,...

Daniel Lersch (FSU) Computational Physics Lab

April 16, 2020

19 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=80265

...Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

..Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs
@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1} - (1)

i=1

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

..Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs
@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1} - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—; the number of
neurons in the previous layer

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

..Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1} - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—; the number of
neurons in the previous layer

Q@ no = Nin and nNp+1 = Nout

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1] - (1)

i=1
@ Where: n; is the number of neurons in the current layer and n;—; the number of
neurons in the previous layer
Q@ no = Nin and nNp+1 = Nout

@ The example network on slide 11 has: N;, = 3 inputs, N, = 1 hidden layer with 5
neurons and N, = 1 output

Daniel Lersch (FSU) April 16, 2020 20 / 27

Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [ni71 S 1] - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—1 the number of
neurons in the previous layer

@ no = Nip and ny,+1 = Noue

@ The example network on slide 11 has: Ni, = 3 inputs, N, = 1 hidden layer with 5
neurons and N,,: = 1 output

@ Therefore: Npys =(3+1)-5+(5+1)-1=26°

®Now imagine a deep network with » 10 hidden layers and 10 neurons each

Daniel Lersch (FSU) April 16, 2020 20 / 27

Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [ni71 S 1] - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—1 the number of
neurons in the previous layer

@ no = Nip and ny,+1 = Noue

@ The example network on slide 11 has: Ni, = 3 inputs, N, = 1 hidden layer with 5
neurons and N,,: = 1 output

@ Therefore: Npys =(3+1)-5+(5+1)-1=26°

@ How do we set 26 parameters???

®Now imagine a deep network with » 10 hidden layers and 10 neurons each

Daniel Lersch (FSU) April 16, 2020 20 / 27

Backpropagation

Hidden layer(s)

Output layer

L]
OO‘

-

VYa,,
)
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!

Daniel Lersch (FSU) Computational Physics Lab

April 16, 2020

21 /27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Hidden layer(s)

=y

Output layer

VYa,,
)
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights

Wit1 = W —1n- VL(Xdat57 Wk) (2)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 /27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Hidden layer(s)

r @

Output layer

VYa,,
LR
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights

Wit1 = W —1n- VL(Xdat57 Wk) (2)

@ 7 is the learning rate, i the learning epoch and Xdata a (sub-set) of the training data

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 /27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Hidden layer(s)

r @

Output layer

VYa,,
oy
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights

Wit1 = W — 1 - VL(Xdata, Wk) (2)
@ 7 is the learning rate, i the learning epoch and Xdata a (sub-set) of the training data
@ L is the error, or loss function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 /27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Hidden layer(s)

r @

Output layer

VYa,,
oy
Backprop output layer

How Backpropagation Works

Picture taken from here
@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights
Wit1 = W — 1 - VL(Xdata, Wk) (2)
@ 7 is the learning rate, i the learning epoch and Xdata a (sub-set) of the training data
@ L is the error, or loss function
@ Most prominent example: L = [Virue — Ynetwork (Xdata, wk)]2

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 /27

https://www.guru99.com/backpropogation-neural-network.html

Finding the (local) Minimum

@ Learning rate 7 determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 22 /27

Finding the (local) Minimum

@ Learning rate i determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Too low Just right Too high
o T [— |
((| \ [
\ | / \
/ /]
\ / \\) \\ /
\w \ e NG
0 | o | 0
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point which lead to divergent
minimum point behaviors
Picture taken form Jeremy Jordans Blog

Daniel Lersch (FSU) Computational Physics Lab

April 16, 2020 22 /27

https://www.jeremyjordan.me/nn-learning-rate/

Finding the (local) Minimum

@ Learning rate i determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Too low Just right Too high

k™ N\ 7
0 | o | 0
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
b§f9f€ reaching the minimum point which lead to divergent
minimum point behaviors

Picture taken form Jeremy Jordans Blog

@ Cost Function J = & >

entire training data

(Loss Function L) + Regularization”

"You can think of this as setting constraints to the weights

April 16, 2020 22 /27

https://www.jeremyjordan.me/nn-learning-rate/

Finding the (local) Minimum

@ Learning rate i determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Too low Just right Too high

aan et)

0 0 o
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
bE-ffO_l'e reaching the minimum point which lead to divergent
minimum point

behaviors

Picture taken form Jeremy Jordans Blog

@ Cost Function J = & > (Loss Function L) + Regularization”

entire training data

@ Different algorithms to find minimum of J: Steepest Gradient Descent (SGD),
ADAM, Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS),...

"You can think of this as setting constraints to the weights
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 22 /27

https://www.jeremyjordan.me/nn-learning-rate/

Example: Learning the Quadratic Function
Setting up the Data Set

@ Create the data which shall be learned
#Generate 500 (random) z-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 23 /27

Example: Learning the Quadratic Function
Setting up the Data Set

@ Create the data which shall be learned
#Generate 500 (random) z-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.

@ Plot the data
#Visualize the results with the pyplot library:

plt.rcParams.update({’font.size’: 18}) #--> Set the fond size
plt.plot(x_values,y_values,’ko’) #--> Plot the data as points
plt.x1im((-3,3)) #--> Set limits on z-azis

plt.xlabel(’x’)

plt.ylabel (°£(x)?)

plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 23 /27

Example: Learning the Quadratic Function
Setting up the Data Set

@ Create the data which shall be learned

@ Plot the data

f(x)
o

N

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 23 /27

Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 /27

Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function

@ Setup the network with scikit

#Import the proper library from scikit:

from sklearn.neural_network import MLPRegressor

#Setup the network:

my_mlp = MLPRegressor(
hidden_layer_sizes=(10), #one hidden layer with 10 neurons
activation=’relu’, #rectified linear unit function
solver=’sgd’, #stochastic gradient descent optimizer
#--> to minimize the error
warm_start=True,
max_iter = 500, #mazimum number of learning epochs
shuffle=True, #shuffle the data
random_state=0,
learning_rate_init = 0.05 #step size for the gradient

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020

24 / 27

Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit

@ Train the network
#Start training of network, i.e. fit model to the data:
my_mlp.fit(x_values,y_values)
#4nd get the training curve:
training_curve = my_mlp.loss_curve_

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 /27

Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit

@ Train the network
#Start training of network, i.e. fit model to the data:

my_mlp.fit(x_values,y_values)
#And get the training curve:
training_curve = my_mlp.loss_curve_

@ Plot the training curve
#Plot the training curve:
plt.plot(training_curve,’-’,linewidth=2.0)
plt.xlabel (’Epoch’)
plt.ylabel(’Error’)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 /27

Example: Learning the Quadratic Function
Setting up the Model
@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit
@ Train the network
@ Plot the training curve

0 20 40 60 80 100 120
Epoch

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 /27

Example: Learning the Quadratic Function
Setting up the Model
@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit
@ Train the network

@ Plot the training curve

5_

4

3] stopped earlier, because error
5 did not change within tolerance
I 21 1e-4 —> can be adjusted in scikit

14 \
40 60 80 100 120

0 20
Epoch

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 /27

Example: Learning the Quadratic Function
Inspecting the Results

e original '
8 e prediction

@ Model predictions look reasonable so far
@ Can do better — tune model
@ How well does model generalize, i.e. make reasonable predictions on data that has
not been used during training
Unknown Value || Model Prediction
% 14
6 24

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 25 /27

Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals

@ Residual = True Output - Predicted Output
#Define residual function:
residual_func = lambda x,y: x-y
#4pply function on true / predicted values:
residuals = residual_func(y_values,predicted_values)
#4And finally plot everything
plt.hist(residuals,bins=50)
plt.xlabel(r’$y_{true} - y_{network}$’) #---> Inlcude latex ezpressions
plt.ylabel(’Entries [a.u.]’)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

w
o

N
o

Entries [a.u.]

=
o

0
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Yitrue = Ynetwork

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

w
o

N
o

Entries [a.u.]

=
o

0
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Yitrue = Ynetwork

@ Ideally, residual should be centered at zero

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function
Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

30

20

Entries [a.u.]

10

0
—-0.10-0.05 0.00 0.05 0.10 0.15 0.20
Yitrue = Ynetwork

@ Ideally, residual should be centered at zero
@ Our model requires some tuning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

w
o

N
o

Entries [a.u.]

=
o

0
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Yitrue = Ynetwork

@ Ideally, residual should be centered at zero
@ Our model requires some tuning
@ Note: Did NOT follow best-practice during this example — Will be discussed in part Il

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Summary Part |

@ Introduced DataFrames into analysis

» Structure data
» Manipulate data
» Visualization

@ Basic concepts of training a machine learning algorithm

> Set internal parameters by minimizing error
> (un-) supervised and reinforcement learning

@ Discussed training of a multilayer perceptron in more detail

» Update weights by minimizing loss
» Example: Learning a quadratic function

Daniel Lersch (FSU) April 16, 2020 27 /27

