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About this Lecture

@ Part I:

> Introduction to DataFrames
> Basic concepts of machine learning
(with focus on feedforward neural networks)
@ Part ll:
» Machine learning in (physics) data analysis
» Performance evaluation

Part IlI:

> Algorithm tuning
» Hyper parameter optimization

Part 1V:

» Custom neural networks with Tensorflow
> Transition to Deep Learning

The individual contents might be subject to change
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This Lecture will...

NOT turn you into a machine learning specialist
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NOT turn you into a machine learning specialist

NOT cover all aspects of machine learning
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This Lecture will...

. NOT turn you into a machine learning specialist
. NOT cover all aspects of machine learning

. give a (very) brief overview only (i.e. further reading is definitely required)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 /27


https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

. NOT turn you into a machine learning specialist
. NOT cover all aspects of machine learning
. give a (very) brief overview only (i.e. further reading is definitely required)

. introduce a few machine learning algorithms
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This Lecture will...

. NOT turn you into a machine learning specialist

. NOT cover all aspects of machine learning

. give a (very) brief overview only (i.e. further reading is definitely required)
. introduce a few machine learning algorithms

. utilize the scikit-learn library
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This Lecture will...

NOT turn you into a machine learning specialist

NOT cover all aspects of machine learning
. give a (very) brief overview only (i.e. further reading is definitely required)
. introduce a few machine learning algorithms
. utilize the scikit-learn library

. most likely contain several errors (— Please send a mail to dlersch@jlab.org)
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Homework and Literature

@ Machine learning can be learned best by simply doing it!
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

@ Helpful literature:

» The scikit-learn documentation

» Talks from the deep learning for science school 20193

» "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by
Aurélien Géron

» The internet is full of good (but also very bad!) literature® — browse with
caution

» The slides of the lecture are available at:
http://hadron.physics.fsu.edu/ dlersch/ml_slides/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning
without any theory / math is considered as bad
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Al, ML and DL

Al D ML D DL

Computer Science

Artificial Intelligence

Machine Learning

Deep Learning

Artificial
Intelligence

Engineering of
king Intelligent

Machines and Programs

1950's 1960's 1970's

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Al, ML and DL

Al D ML D DL

Main focus of this lecture

Computer Science

Artificial Intelligence

Machine Learning

Engineering of
g Intelligent

Ma and Programs

Deep Learning 1950's 1960's 1970

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (2 10k detection channels)
= Large, correlated data sets

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 /27



Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (2 10k detection channels)
= Large, correlated data sets

@ Use machine learning to:

> Analyze / sort data
» Calibrate data
» Simulate data
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Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (= 10k detection channels)
= Large, correlated data sets
@ Use machine learning to:

> Analyze / sort data
» Calibrate data
» Simulate data

<
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= Particle identification at GlueX
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Machine Learning in (Hadron) Physics

@ Modern experiments become more complex (2 10k detection channels)
= Large, correlated data sets
@ Use machine learning to:
> Analyze / sort data
> Calibrate data
» Simulate data

Left: Original Data / Right: Generated Data

0.0 25 5.0 . . 2.5
Momentum Momentum

= Simulate particles (leptons) at GlueX
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Basic Components of Machine Learning

INPUT
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text
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Basic Components of Machine Learning

INPUT

Input Data:

ML ALGORITHM

- humbers
- pictures
- text

- Before passing any data to any algorithm,

you might want to take a look at it first

- The data (sometimes) requires pre-processing

—> Need an efficient way to handle (large) data sets —> DataFrames
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DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets
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DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 S Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)
1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 /27



DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 e Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)
1 value(coll,row2) | value(col2,row2) | --- | value(colN,row2)

@ They may contain multiple data types

— Numbers

value a walue b

0 03 -1l
1 -1.2 0.8
2 5.0 12.0

Daniel Lersch (FSU) April 16, 2020 8 /27



DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 e Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)

1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

@ They may contain multiple data types
— Text

Language Hella My name is I am hunagry
0 French Bonjour Je zuiz  Je zuiz affame
1 German Hallo Ich heizse Ich habe hunger
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DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 S Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)
1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

@ They may contain multiple data types

— Text and Numbers

Student. Points Comment.
] A 1.3 Dedicated
1 B 10,0 Brilliant
2 C -100,0 HMakes me cry
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DataFrames: A (very) brief Introduction

@ DataFrames are an elegant way to structure and manipulate (large) data sets

@ General layout of a DataFrame:

Index Coll Col2 e Col N
0 value(coll,rowl) | value(col2,rowl) | --- | value(colN,rowl)

1 value(coll,row2) | value(col2,row2) | --- | value(colN,row?2)

@ They may contain multiple data types

— Vectors

State Yector Score

0 [0, 1] 0.5
1 [1, 0] 0.5
2 [1, 1] 1.0
3 (G, 0] 0.3
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Creating,Loading and Saving DataFrames

@ Create a DataFrame from scratch
import pandas as pd
#Define the data:
data = {
’Coll’: [1,2,3],
’Col2’: [ ’a? s ’b? , ’C’] s
’Col3’: [True,False,True]
¥
#Create the dataframe:
df = pd.DataFrame(data)
#4nd print it:
print (df)

Coll Col? Col3
0 1 a True
1 2 b Falsze
2 3 o True
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Creating,Loading and Saving DataFrames

@ Create a DataFrame from scratch

@ Or load it from a .json, .csv, .... file
import pandas as pd
df_1 = pd.read_csv(...)
df_2 = pd.read_json(...)
df_3 = pd.read_pickle(...)
df_4 = pd.read_excel(...)
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Creating,Loading and Saving DataFrames

@ Create a DataFrame from scratch
@ Or load it from a .json, .csv, .... file

@ After working with your DataFrame, you might want to save it
import pandas as pd
df_1.to_csv(...)
df_2.to_json(...)
df_3.to_pickle(...)
df_4.to_excel(...)
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Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays
import numpy as np
import pandas as pd
#Create 20 data points, having 2 values between -10 and 10 each:
data = np.random.uniform(low=-10,high=10,size=(20,2))
#Turn this 20z2 array into a DataFrame:
df = pd.DataFrame(data)
#And name the two columns:
df.columns = [’Values_1’,’Value_2’]
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Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays
import numpy as np
import pandas as pd
#Create 20 data points, having 2 values between -10 and 10 each:
data = np.random.uniform(low=-10,high=10,size=(20,2))
#Turn this 20x2 array into a DataFrame:
df = pd.DataFrame(data)
#4nd name the two columns:
df.columns = [’Values_1’,’Value_2’]

Value_l Walue_2
0 -4,433863 §,134270
1 -2,473114 B,353864
2 -3,052877  1,804706
3 B,370931 -1,781364
4 3,368881 -2,075033
5 -1,700772  0,982987
£ -3,453366 -5,401645
7 -0,831402 3,541155
8 B.937076 -9,000622
9 -8,738868 -9,841193
10 4,450625 -5,901079
11 -3,531955 -3,088243
12 B.313612 4288357
12 1.438309 5,890397
14 -0,451029  4,343020
15 4,186787 B,03BE17
16 -3,157958 2,28BE26
17 2.243423 -3, 431162
18 -1,778005  B,998256
19 B.502947 -9,102705
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Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays

@ Create a third column which is equal to the second column multiplied by 2
df[’Value_3’] = df[’Value_2’]1*2
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Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays

@ Create a third column which is equal to the second column multiplied by 2

df [’Value_3’] = df[’Value_2’]*2

Daniel Lersch (FSU)

il e e el e s et K= R NIV R Y
000~ 00 O e R D

Value_1
-4,433863
-2,473114
—-3.052877

E.370931
3,368881
-1,700772
-3.,453366
-0,8591402
6,937076
-8.,735368
4,450625
-3.,531955
6.313612
1.428309
-0,451023
4,185787
-3,157358
2,2432423
-1,778005
6.502347

Value_2 Value_3
5,134270 10, 268539
£.303864  12,707728
1.804706  3,603412

-1,781364 -3,562728
-2,075033  -4,15006E
0,982387  1,965973
-5,401645 -10, 803290
3,041180  7,082311
-9,000622 -18,001244
-9,841198 -19,682396
-5,901079 -11,802157
-3,088243 -6,176486
4,286357  8.572715
5,890397  11,790794
4,343020  8,698039
6036617 12,073234
2,286626  4,573253
-3,431162 -B,862324
£,958256 13,916511
-9,102705 -18, 205410
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Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays
@ Create a third column which is equal to the second column multiplied by 2

@ Create a fourth column, based on the first column + a user-defined function
#Define your function:
def lin_func(x,m,b):
return m*x+b

#Use the lambda function to create a fourth column,

#based on the values from the first column:

df [’Value_4’] = df[’Value_1’].apply(lambda x: lin_func(x,-0.5,3.3))
#Value_4 = -0.5%Value_1 + 3.3
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Creating and Manipulating DataFrames

@ Create a DataFrame from numpy arrays

@ Create a third column which is equal to the second column multiplied by 2
@ Create a fourth column, based on the first column + a user-defined function

#Define your function:
def lin_func(x,m,b):
return m*x+b

#Use the lambda function to create a fourth column,

#based on the values from the first column:

df [’Value_4’] = df[’Value_1’].apply(lambda x: lin_func(x,-0.5,3.3))

#Value_4 = -0.5%Value_1 + 3.3

Daniel Lersch (FSU

Value_l Walue 2
-4,433853  5,134270
-2,473114 B,363864
-3,082877  1,804708

6,370931 -1,781364
3,368801 -2,075033
-1.700772  0,982957
-3,453366 -5.401645
-0.831402  3.541155
6,937076 -3.,000622
-B,738868 -9.841198
10 4,450625 -5,501079
11 -3,531350 -3,088243
12 B,313612 4,28E357
13 1,438309 5,B90257
14 -0,451029  4,349020
15 4,185787 B,03E617
16 -3,157958 2,28EE26
17 2,242423 -3,431162
18 -1,7780058  6,958256
19 6.502847 -9.102705

00~ @ R D

Value_3  Value_d4
10,268533 5,516927
12,707728  4,036557

3,609412  4,826438
-3,562728  0,114535
-4,150066  1,615560

1.965973  4,150386

-10,803230  5,026683
7082311 2,745701
-18,001244 -0,168538
-19,682396  7,669434
-11,802157  1,074687
-6,176486 5,065378

8,572715  0,143194
11780734 2,580845

8,698039  3,526015
12,073234  1,207106

4,673203  4,870979
-6,862324 2,173208
13,916511  4,183003

-18.205410  0,048527
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Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27



Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

@ Example: Get mean and std. dev. from the second column

mean_col2 = df[’Value_2’] .mean()
sigma_col2 = df[’Value_2’].std()
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Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

@ Example: Get mean and std. dev. from the second column

mean_col2 = df[’Value_2’] .mean()
sigma_col2 = df[’Value_2’].std()

@ Since the second column follows a uniform distribution between -10 and 10,
expect:

H Expected Values Col2 ‘ Observed Values Col2

mean 0.0 —0.1
sigma 20//12 = 5.77 5.61
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Analyzing DataFrames

@ Python provides many tools to analyze a DataFrame or its columns

@ Example: Get mean and std. dev. from the second column

mean_col2 = df[’Value_2’] .mean()
sigma_col2 = df[’Value_2°].std()

@ Since the second column follows a uniform distribution between -10 and 10,
expect:

H Expected Values Col2 [ Observed Values Col2

mean 0.0 —0.1
sigma 20/v/12 = 5.77 5.61

@ You can also access the mean / std. dev. for all DataFrame columns

mean_all = df.mean()
sigma_all = df.std()
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Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame

@ Histogram the fourth column
import matplotlib.pyplot as plt
plt.rcParams.update({’font.size’: 18}) #--> Set the font size
plt.hist(df [’Value_4’],bins=100) #--> Plot fourth column in 100 bins
plt.xlabel(’Value_4’)
plt.ylabel (’Entries?)
plt.show()
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Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame

@ Histogram the fourth column
import matplotlib.pyplot as plt

rcParams.update({’font.size’: 18}) #--> Set the font size

plt.
.hist(df [’Value_4’],bins=100) #--> Plot fourth column in 100 bins

plt

plt.
plt.
plt.

xlabel (’Value_4°)
ylabel (’Entries’)
show ()

2.00
175
1.50

w125
[

5100
w
0.75
0.50
0.25
0.00
0 2 4

Value_4

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 / 27



Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame
@ Histogram the fourth column

@ Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each azis

plt.hist2d(df [’Value_1’],df [’Value_4’],bins=100)
plt.xlabel(’Value_1°)

plt.ylabel(’Value_4’)

plt.show()
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Visualizing DataFrames with pyplot

@ Want to plot different columns from the DataFrame

@ Histogram the fourth column

@ Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each azis
plt.hist2d(df [’Value_1’],df [’Value_4’],bins=100)
plt.xlabel(’Value_17)
plt.ylabel(’Value_4°)
plt.show()

Value_4

-8 -6 -4 -2 0 2 4 6
Value_1

Daniel Lersch (FSU)
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DataFrames: Summary and Outlook

@ Introduced DataFrames for convenient data analysis / visualization
@ Did NOT show all functionalities

> Concatenating / stacking DataFrames

> Shuffling DataFrames
> .

@ Python provides a detailed documentation about DataFrames and related functions
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Basic Components of Machine Learning

INPUT
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text
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Basic Components of Machine Learning

INPUT ML ALGORITHM OUTPUT

Input Data:
- humbers
- pictures
- text

How do we set these parameters?
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Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training
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Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT
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Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT

ML ALGORITHM

Daniel Lersch (FSU)

update internal parameters

OUTPUT

| Error = f(output) I <

unsupervised learning
(e.g. clustering algorithms)
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Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its

internal parameters appropriately

@ Those parameters are set during training

INPUT ML ALGORITHM OUTPUT

60000
50000

40000
gsoooo update internal parameters

20000 Identifed as ngaive Pion |

Al partcies
10000 ontitod s Eocron | |Error = f(output, targets)l <—
040 050 supervised learning

0 010 020 030

dE(cal)/p
(e.g. classification, regression)
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Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT

'/;nwronment
%Vler
Interpreter

[o0)
State ol

Agent

Action

ML ALGORITHM OUTPUT

Error = f(output,interaction 4—

with environment)

Daniel Lersch (FSU)

reinforcement learning
(e.g. self driving cars, game playing algorithms)
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Training of Machine Learning Algorithms |

@ Any algorithm "learns” patterns / actions from a given data set by setting its
internal parameters appropriately

@ Those parameters are set during training

INPUT

@ Goal: Minimize error

Daniel Lersch (FSU)

ML ALGORITHM

OUTPUT
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Training of Machine Learning Algorithms |l

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update
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Training of Machine Learning Algorithms |l

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve
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Training of Machine Learning Algorithms |

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve

@ The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms

— You do not need to take care of updating the algorithms parameters °

5There are exceptions of course which will be discussed in a later part of this lecture
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Training of Machine Learning Algorithms |

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve

@ The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms

— You do not need to take care of updating the algorithms parameters °

@ Tricky: How to set up and evaluate the training properly (will be discussed soon)

5There are exceptions of course which will be discussed in a later part of this lecture
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Training of Machine Learning Algorithms |

@ The algorithm training is (depending on the data and the problem itself) an
iterative process

> Algorithms internal parameters are updated several times
> Ideally: Error should get smaller with every update

@ Most important tool to check whether training was successful: Training Curve

@ The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms

— You do not need to take care of updating the algorithms parameters °

@ Tricky: How to set up and evaluate the training properly (will be discussed soon)

@ Next: Discuss training of a feedforward neural network

5There are exceptions of course which will be discussed in a later part of this lecture
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The Multilayer Perceptron

Variable 1

Hidden layer

@ Most popular example for machine learning algorithms
@ Belongs to the class of feedforward neural networks
@ Architecture: Hidden layers with a set of neurons
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The Multilayer Perceptron

Variable 1

Variable 2

Variable 3

Hidden layer

@ Most popular example for machine learning algorithms
@ Belongs to the class of feedforward neural networks

@ Architecture: Hidden layers with a set of neurons
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A single Neuron

Output
neuron 1 w
— ]

Output

neuron 2 Neuron j

Output

neuron k S, =W, x output neuron 1 +

W,, x output neuron 2 +

K

A(S;+b)

1

_ 1

|
Output

neuronN-1 !

—l

Output
neuron N

W, x output neuron N

1w
1

Nj

Previous neurons

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function
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A single Neuron

Output
neuron 1

Output
neuron 2

Output
neuron k

Neuron j

S, =W, x output neuron 1 +

Output
neuron N-1

—l

Output
neuron N

Previous neurons

W,, x output neuron 2 +

W, x output neuron N

Sigmoid Leaky ReLU ’
- () = b max(0.1z, )
e

1% -

ffanh

laxout

1 tanh(z) I max(wfz + by, wlz + b)

ReLU

max(0, )

Most commonly used in modern networks as
hidden layer activations

@ Basic ingredients: Information from previous neurons, weights, bias and activation

function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for

science school 2019
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A single Neuron

Output
neuron 1 w
— ]

Output

neuron 2 Neuron j

Output
neuron k S, =W, x output neuron 1 +
W,, x output neuron 2 +

Output
neuron N-1
—l

Output
neuron N

W, x output neuron N

|W

Nj
1

Leaky ReLU :
max(0.1z, )

Maxout
max(w @ + by, wl w + by)

ELU ’
2 220
ale-1) z<0

Often used for output layers

Previous neurons

RelLU
max(0, )

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019
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The Universal Approximation Theorem for Neural Networks

“a single hidden layer neural network with

. | . nlx) = Relul 5z
a linear output unit can approximate any : : ; nalx) = Retul
continuous function arbitrarily well, given e
enough hidden units” -- Hornik, 1991, 7T 7 R
hitp:iizmjones comistatic/statistical-learning/hornik-nn-1991.pdf { \ / !

{ \u—L/ Z(z) = —m{x) — na(z) — na(z)
This, of course, does not imply that we f ' il Fmin)rale)

have an optimization algorithm that can
find such a function. The layer could also
be too large to be practical.

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

= Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
"[..] there are no nemesis functions that cannot be modeled by neural networks"
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The Universal Approximation Theorem for Neural Networks

“a single hidden layer neural network with
a linear output unit can approximate any :
continuous function arbitrarily well, given

enough hidden units” -- Hornik, 1991, / E 1
http:/izmiones.comistatic/statistical-learning/hornik-nn-1991.pdf \ "

This, of course, does not imply that we \/

ny(x) = Retu(—5x — 7.
na(x) = Retuf—1.
na(z) = Retu(1.2z +1)
ny(x) = Retu(1.22 — 3)
nslz) = Relu{2z - 1.1)

nglir) = RelulSs —5)

Z(x) n{x) — nalx)

+ma(x) + nglr) +

na(x)

ng(x)

have an optimization algorithm that can iy cec musrsdsmesience comiearnemineworke sl isam s mion 5 1088171c

find such a function. The layer could also
be too large to be practical.

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

= Similarly formulated in 1990 by the Stone-Weierstrass-Theorem

"[...] there are no nemesis functions that cannot be modeled by neural networks"

= Neural networks are powerful tools! But,...
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...Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs
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..Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs
@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1} - (1)

i=1

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27



..Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs
@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1} - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—; the number of
neurons in the previous layer
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..Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1} - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—; the number of
neurons in the previous layer

Q@ no = Nin and nNp+1 = Nout
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Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [nifl + 1] - (1)

i=1
@ Where: n; is the number of neurons in the current layer and n;—; the number of
neurons in the previous layer
Q@ no = Nin and nNp+1 = Nout

@ The example network on slide 11 has: N;, = 3 inputs, N, = 1 hidden layer with 5
neurons and N, = 1 output
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Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [ni71 S 1] - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—1 the number of
neurons in the previous layer

@ no = Nip and ny,+1 = Noue

@ The example network on slide 11 has: Ni, = 3 inputs, N, = 1 hidden layer with 5
neurons and N,,: = 1 output

@ Therefore: Npys =(3+1)-5+(5+1)-1=26°

®Now imagine a deep network with » 10 hidden layers and 10 neurons each
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Where is the Catch?

@ Suppose a multilayer perceptron with N, hidden layers, N;, inputs and N,,: outputs

@ The total number of trainable parameters is:

Np+1

Npars = Z [ni71 S 1] - (1)

i=1

@ Where: n; is the number of neurons in the current layer and n;—1 the number of
neurons in the previous layer

@ no = Nip and ny,+1 = Noue

@ The example network on slide 11 has: Ni, = 3 inputs, N, = 1 hidden layer with 5
neurons and N,,: = 1 output

@ Therefore: Npys =(3+1)-5+(5+1)-1=26°

@ How do we set 26 parameters???

®Now imagine a deep network with » 10 hidden layers and 10 neurons each
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Backpropagation

Hidden layer(s)

Output layer

L]
OO‘

-

VYa,,
)
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!
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Backpropagation

Hidden layer(s)

=y

Output layer

VYa,,
)
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights

Wit1 = W —1n- VL(Xdat57 Wk) (2)
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Backpropagation

Hidden layer(s)

r @

Output layer

VYa,,
LR
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights

Wit1 = W —1n- VL(Xdat57 Wk) (2)

@ 7 is the learning rate, i the learning epoch and Xdata a (sub-set) of the training data
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Backpropagation

Hidden layer(s)

r @

Output layer

VYa,,
oy
Backprop output layer

How Backpropagation Works

Picture taken from here

@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights

Wit1 = W — 1 - VL(Xdata, Wk) (2)
@ 7 is the learning rate, i the learning epoch and Xdata a (sub-set) of the training data
@ L is the error, or loss function
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Backpropagation

Hidden layer(s)

r @

Output layer

VYa,,
oy
Backprop output layer

How Backpropagation Works

Picture taken from here
@ Error = Desired Output - Current Network Output <> Want to minimize this!
@ Data is passed forward — Error is propagated backwards — update weights
Wit1 = W — 1 - VL(Xdata, Wk) (2)
@ 7 is the learning rate, i the learning epoch and Xdata a (sub-set) of the training data
@ L is the error, or loss function
@ Most prominent example: L = [Virue — Ynetwork (Xdata, wk)]2
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Finding the (local) Minimum

@ Learning rate 7 determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum
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Finding the (local) Minimum

@ Learning rate i determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Too low Just right Too high
o T [ — |
( ( | \ [
\ | / \
/ / ]
\ / \\ ) \\ /
\w \ e NG
0 | o | 0
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point which lead to divergent
minimum point behaviors
Picture taken form Jeremy Jordans Blog
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Finding the (local) Minimum

@ Learning rate i determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Too low Just right Too high

k™ N\ 7
0 | o | 0
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
b§f9f€ reaching the minimum point which lead to divergent
minimum point behaviors

Picture taken form Jeremy Jordans Blog

@ Cost Function J = & >

entire training data

( Loss Function L ) + Regularization”

"You can think of this as setting constraints to the weights
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Finding the (local) Minimum

@ Learning rate i determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Too low Just right Too high

aan et )

0 0 o
A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
bE-ffO_l'e reaching the minimum point which lead to divergent
minimum point

behaviors

Picture taken form Jeremy Jordans Blog

@ Cost Function J = & > ( Loss Function L ) + Regularization”

entire training data

@ Different algorithms to find minimum of J: Steepest Gradient Descent (SGD),
ADAM, Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS),...

"You can think of this as setting constraints to the weights
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Example: Learning the Quadratic Function
Setting up the Data Set

@ Create the data which shall be learned
#Generate 500 (random) z-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.
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Example: Learning the Quadratic Function
Setting up the Data Set

@ Create the data which shall be learned
#Generate 500 (random) z-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.

@ Plot the data
#Visualize the results with the pyplot library:

plt.rcParams.update({’font.size’: 18}) #--> Set the fond size
plt.plot(x_values,y_values,’ko’) #--> Plot the data as points
plt.x1im((-3,3)) #--> Set limits on z-azis

plt.xlabel(’x’)

plt.ylabel (°£(x)?)

plt.show()
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Example: Learning the Quadratic Function
Setting up the Data Set

@ Create the data which shall be learned

@ Plot the data

f(x)
o

N
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Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function
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Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function

@ Setup the network with scikit

#Import the proper library from scikit:

from sklearn.neural_network import MLPRegressor

#Setup the network:

my_mlp = MLPRegressor(
hidden_layer_sizes=(10), #one hidden layer with 10 neurons
activation=’relu’, #rectified linear unit function
solver=’sgd’, #stochastic gradient descent optimizer
#--> to minimize the error
warm_start=True,
max_iter = 500, #mazimum number of learning epochs
shuffle=True, #shuffle the data
random_state=0,
learning_rate_init = 0.05 #step size for the gradient
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Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit

@ Train the network
#Start training of network, i.e. fit model to the data:
my_mlp.fit(x_values,y_values)
#4nd get the training curve:
training_curve = my_mlp.loss_curve_
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Example: Learning the Quadratic Function
Setting up the Model

@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit

@ Train the network
#Start training of network, i.e. fit model to the data:

my_mlp.fit(x_values,y_values)
#And get the training curve:
training_curve = my_mlp.loss_curve_

@ Plot the training curve
#Plot the training curve:
plt.plot(training_curve,’-’,linewidth=2.0)
plt.xlabel (’Epoch’)
plt.ylabel(’Error’)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 /27



Example: Learning the Quadratic Function
Setting up the Model
@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit
@ Train the network
@ Plot the training curve

0 20 40 60 80 100 120
Epoch
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Example: Learning the Quadratic Function
Setting up the Model
@ Want to use a neural network to learn the quadratic function
@ Setup the network with scikit
@ Train the network

@ Plot the training curve

5_

4

3] stopped earlier, because error
5 did not change within tolerance
I 21 1e-4 —> can be adjusted in scikit

14 \
40 60 80 100 120

0 20
Epoch
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Example: Learning the Quadratic Function
Inspecting the Results

e original '
8 e prediction

@ Model predictions look reasonable so far
@ Can do better — tune model
@ How well does model generalize, i.e. make reasonable predictions on data that has
not been used during training
Unknown Value || Model Prediction
% 14
6 24
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Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output
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Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals

@ Residual = True Output - Predicted Output
#Define residual function:
residual_func = lambda x,y: x-y
#4pply function on true / predicted values:
residuals = residual_func(y_values,predicted_values)
#4And finally plot everything
plt.hist(residuals,bins=50)
plt.xlabel(r’$y_{true} - y_{network}$’) #---> Inlcude latex ezpressions
plt.ylabel(’Entries [a.u.]’)
plt.show()
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Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

w
o

N
o

Entries [a.u.]

=
o

0
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Yitrue = Ynetwork
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Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

w
o

N
o

Entries [a.u.]

=
o

0
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Yitrue = Ynetwork

@ Ideally, residual should be centered at zero
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Example: Learning the Quadratic Function
Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

30

20

Entries [a.u.]

10

0
—-0.10-0.05 0.00 0.05 0.10 0.15 0.20
Yitrue = Ynetwork

@ Ideally, residual should be centered at zero
@ Our model requires some tuning
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Example: Learning the Quadratic Function

Residuals

@ A very helpful tool to monitor the performance of (any) fit are residuals
@ Residual = True Output - Predicted Output

40

w
o

N
o

Entries [a.u.]

=
o

0
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
Yitrue = Ynetwork

@ Ideally, residual should be centered at zero
@ Our model requires some tuning
@ Note: Did NOT follow best-practice during this example — Will be discussed in part Il
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Summary Part |

@ Introduced DataFrames into analysis

» Structure data
» Manipulate data
» Visualization

@ Basic concepts of training a machine learning algorithm

> Set internal parameters by minimizing error
> (un-) supervised and reinforcement learning

@ Discussed training of a multilayer perceptron in more detail

» Update weights by minimizing loss
» Example: Learning a quadratic function
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