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About this Lecture

Part I: (Covered by Prof. Dobbs)
I Basic concepts of machine learning

(with focus on feedforward neural networks)
I Data manipulation and visualization with pandas dataframes
I Training a neural network with scikit

Part II: (Today)
I Overfitting and validation data
I Gaussian processes

The individual contents might be subject to change
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This Lecture...

... focusses on the basic concepts and ideas behind machine learning

... introduces a few machine learning algorithms

... aims to familiarize with machine learning jargon / vocabulary

... does NOT cover all aspects of machine learning (further reading required)

... will NOT turn you into a machine learning specialist

... was held last year in a different format → revised material for this edition

... mainly utilizes the scikit-learn library

... uses repl.it for the hands-on sessions

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)
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Homework and Literature

Machine learning can be learned best by simply doing it!

Homework aims to perform a simple analysis and getting familiar with machine
learning

Helpful literature:
I The scikit-learn documentation
I Talks from

F The deep learning for science school 2020
F The deep learning for science school 2019

I Distill.pub (many articles about state-of-the-art machine / deep learning)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I Slides and scripts available at:

http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/
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Homework and Literature

Machine learning can be learned best by simply doing it!

Homework aims to perform a simple analysis and getting familiar with machine
learning

Helpful literature:
I The scikit-learn documentation
I Talks from

F The deep learning for science school 2020
F The deep learning for science school 20193

I Distill.pub (many articles about state-of-the-art machine / deep learning)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature4 → browse with

caution
I Slides and scripts available at:

http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning

without any theory / math is considered as bad
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AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning
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Fitting a noisy quadratic Function with a Neural Network
Already discussed in part1

Now add noise to the data:

x 7→ x · Gauss(1, 5%)

f (x) 7→ f (x) · Gauss(1, 5%)

Use neural network from part1 to fit the data

Judge quality of fit with:
Mean Squared Error (MSE) =
1
N

∑
[yData − yNetwork ]2
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Feeding “new” Data into the Network

Look again data with f (x) ≈ x2

Noise is 2 times higher than in training data

Feed this data into trained network

Predictive performance worse
→ not surprising, network only “knows” what it
has been trained to!
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Validation Data

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters, but used to determine when training is complete

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
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Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019
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Implementing Early Stopping and Validation Data in the
scikit MLPRegressor

my_mlp = MLPRegressor(
hidden_layer_sizes=(10),
activation=’relu’,
solver=’sgd’,
warm_start=True,
max_iter = 1000,
shuffle=True,
tol=1e-6,
validation_fraction=0.5, #---> Define the percentage of
#training data that shall be kept aside
early_stopping=True, #---> Enable early stopping
random_state=0,
learning_rate_init = 0.05

)
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Understanding the Learning Curve from scikit
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Feed “new” Data into the re-trained Neural Network

Trained neural network
I Include validation data
I Use early stopping

Performance improvement ∼ 5%
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Judging Regression Performance with Residuals

Residual: ytrue − ynetwork

Should be centered at 0 → you are in trouble if not!

In general6: Small residual width → good regression performance
6There are cases where this not true: Too small width on training data ↔ overfitting
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DIY: Regression with Validation Data

1.) Go to: https://replit.com/@daniel49/FSUMLLecture2

2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py
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Data Interpolation and Sampling with Gaussian Processes
Given: Few data points which stem from an unknown function

Goal: Try to find underlying (true) distribution
I Interpolate existing data
I Sample data from fitted distribution
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Correlated Data Points
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Sampling correlated Data from a multidimensional Gaussian
Distribution

Sample two points yi , yj with known correlation ρij and variances σi , σj

Use multidimensional Gaussian distribution (centered at zero):

f (yi , yj) =
1

2πσiσj

√
1−ρ2

ij

· exp
[(

yi
σi

)2
+
(

yj
σj

)2
−
(

2ρij yi yj
σiσj

)]
Left panel: ρij = 0.01, σi = σj = 1
Right panel: ρij = 1.5, σi = σj = 2
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Application to our Problem

Sampling (right panel) done with: ρij = 0.01, σi = σj = 1

Sampled data (inside white square) ≈ fraction of observed data (magenta square)

Describe parts of our data by multidimensional Gaussian with known correlation
→ Gaussian Processes
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Application to our Problem

Sampling (right panel) done with: ρij = 1.5, σi = σj = 2

Sampled data (inside white square) ≈ fraction of observed data (magenta square)

Describe parts of our data by multidimensional Gaussian with known correlation
→ Gaussian Processes
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Gaussian Processes: General Idea

1.) If correlation matrix ρ is known: Generate data y = {y1, y2, ..., yN} via:
f (y) = 1

2π|ρ| · exp[−0.5yρ
−1y ]

2.) ρ is not known → Parameterize ρ via Kernel Function

3.) Fit f (y) to observed data

Daniel Lersch (FSU) Computational Physics Lab April 8, 2021 19 / 24



Gaussian Processes: General Idea

1.) If correlation matrix ρ is known: Generate data y = {y1, y2, ..., yN} via:
f (y) = 1

2π|ρ| · exp[−0.5yρ
−1y ]

2.) ρ is not known → Parameterize ρ via Kernel Function

3.) Fit f (y) to observed data

Daniel Lersch (FSU) Computational Physics Lab April 8, 2021 19 / 24



Gaussian Processes: General Idea

1.) If correlation matrix ρ is known: Generate data y = {y1, y2, ..., yN} via:
f (y) = 1

2π|ρ| · exp[−0.5yρ
−1y ]

2.) ρ is not known → Parameterize ρ via Kernel Function

3.) Fit f (y) to observed data

Daniel Lersch (FSU) Computational Physics Lab April 8, 2021 19 / 24



Gaussian Processes: Kernel Functions

Most commonly used:
Exponential Squared: k(xi , xj) = σ2

f exp
[
− (xi−xj )

2

∆2

]
+ σ2

nδ(xi , xj)

Crucial parameters:
I Length scale ∆: Defines “far” / “close” points
I σf : global variance
I σn: Noise (pick up statistical fluctuations in data)

Properties:
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Properties:
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Gaussian Processes: Kernel Functions
Most commonly used:
Exponential Squared: k(xi , xj) = σ2

f exp
[
− (xi−xj )

2

∆2

]
+ σ2

nδ(xi , xj)

Crucial parameters:
I Length scale ∆: Defines “far” / “close” points
I σf : global variance
I σn: Noise (pick up statistical fluctuations in data)

Properties:
I lim
|xi−xj |→0

k(xi , xj )→ σ2
f + σ2

n

I lim
|xi−xj |→∞

k(xi , xj )→ 0 → Distant points do not “know” each other
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Setting up Gaussian Processes in scikit

k(xi, xj) =
h
exp

n
� 1

2

⇣ xi � xj

length scale

⌘2oi

| {z }
RBF

+↵(xi, xj)�(xi, xj) + noise level · �(xi, xj)| {z }
WhiteKernel

#1.) Define the kernel:
#RBF: Radial Basis Function = exponential squared
kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e2)) #sigma_f = 1.0
#White kernel: Corresponds to sigma_n --> constant noise

+ WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-10, 1e+1))
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#White kernel: Corresponds to sigma_n --> constant noise

+ WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-10, 1e+1))

#2.) Setting the processes:
my_gp = GaussianProcessRegressor(

kernel=kernel,
n_restarts_optimizer=10, #--> How many times to run the minimization
alpha=0.0 #--> similar to sigma_n if constant,
#can be set for each data point individually--> individual error

)
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#2.) Setting the processes:
my_gp = GaussianProcessRegressor(

kernel=kernel,
n_restarts_optimizer=10, #--> How many times to run the minimization
alpha=0.0 #--> similar to sigma_n if constant,
#can be set for each data point individually--> individual error

)

#3.) Set the parameters:
my_gp.fit(x_values,y_values)

#4.) Get the predictions:
predictions, covariances = my_gp.predict(x_values,return_cov=True)
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Applying Gaussian Processes to our Problem

Unknown and original data have been generated together
Could improve performance by including individual uncertainties
(α-parameter in scikit)
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Gaussian Processes: Short Summary

Gaussian processes are powerful tools

Purely driven by measured data

Highly depend on kernel function
→ Problem if you can not formulate a proper one

Computationally expensive for large data sets with Npoints :
Kernel matrix is of size Npoints × Npoints

Further reading:
I A Visual Exploration of Gaussian Processes

(from Distill.pub, very nice explanation)
I Gaussian Processes, not quite for dummies

(from The Gradient)
I scikit-Documentation
I Gaussian Processes for Machine Learning

(Carl Eduard Rasmussen and Christopher K.I. Williams, MIT Press 2006)
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DIY: Gaussian Processes

1.) Go to: https://replit.com/@daniel49/FSUMLLecture2

2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py
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