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About this Lecture

@ Part I: (Covered by Prof. Dobbs)

> Basic concepts of machine learning

(with focus on feedforward neural networks)
» Data manipulation and visualization with pandas dataframes
> Training a neural network with scikit

@ Part ll:

> Overfitting and validation data
> Gaussian processes

@ Part llI: (Today)

» Particle Identification
» Classification Metrics

The individual contents might be subject to change
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... focusses on the basic concepts and ideas behind machine learning
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... focusses on the basic concepts and ideas behind machine learning
introduces a few machine learning algorithms
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This Lecture...

. focusses on the basic concepts and ideas behind machine learning
introduces a few machine learning algorithms

. aims to familiarize with machine learning jargon / vocabulary

. does NOT cover all aspects of machine learning (further reading required)

. will NOT turn you into a machine learning specialist

. was held last year in a different format — revised material for this edition
mainly utilizes the scikit-learn library
uses repl.it for the hands-on sessions

most likely contain several errors (— Please send a mail to dlersch@jlab.org)
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Homework and Literature

@ Machine learning can be learned best by simply doing it!
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework aims to perform a simple analysis and getting familiar with machine
learning
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework aims to perform a simple analysis and getting familiar with machine
learning

@ Helpful literature:

| 2
>

The scikit-learn documentation
Talks from

* The deep learning for science school 2020

* The deep learning for science school 20193
Distill.pub (many articles about state-of-the-art machine / deep learning)
"Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by
Aurélien Géron
The internet is full of good (but also very bad!) literature®* — browse with
caution
Slides and scripts available at:
http://hadron.physics.fsu.edu/ dlersch/Intro_To_ML_2021/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning
without any theory / math is considered as bad
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Al, ML and DL

Al D ML D DL

Computer Science

Artificial Intelligence

Machine Learning

Deep Learning

Artificial
Intelligence

Engineering of
king Intelligent

Machines and Programs

1950's 1960's 1970's

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Al, ML and DL

Al D ML D DL

Main focus of this lecture

Computer Science

Artificial Intelligence

Machine Learning

Engineering of
g Intelligent

Ma and Programs

Deep Learning 1950's 1960's 1970

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Introduced in part I: DataFrames —> handle and manipulate data
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Daniel Lersch (FSU)

ML ALGORITHM

Discussed in part I:

- minimize error

- different learning startegies

- training of a multilayer perceptron

OUTPUT
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text
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ML ALGORITHM

OUTPUT

Part II:

- Data Regression

- Data Interpolation

- Validation data

- Mean Squared Error
- Residuals

Today:

- Classification

- Decision Trees

- ROC curves

- confusion matrix
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Particle Identification at GlueX

Forward Calorimeter

Time of Flight

Barrel Calorimeter

Start Counter

Target

Photon Beam

Forward Drift
Chamber

Tagging
Magnet

Central Drift
Chamber

Electron
Beam

@ Many particles produced during GlueX experiments

@ Goal: Want to classify different particle types > Particle Identification (PID)

@ Need: Understand correlations between different sub-detector systems
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Studying simulated single Particle Tracks

@ Simulated 200k single e* / =& tracks

Electrons
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Studying simulated single Particle Tracks
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Studying simulated single Particle Tracks

@ Simulated 200k single e* / =& tracks

@ Data is balanced: N(electrons) = N(pions)
@ Events are labeled: e* : 1 and 7% : 0

@ Azimuthal angle:

0 <

< 10° particle detected in GlueX forward part (FDC, FCAL),

> 10° particle detected in GlueX central part (CDC, BCAL)
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Studying simulated single Particle Tracks

Simulated 200k single e / =% tracks

@ Data is balanced: N(electrons) = N(pions)
@ Events are labeled: e* : 1 and 7% : 0

@ Azimuthal angle:

< 10° particle detected in GlueX forward part (FDC, FCAL),

0 <
> 10° particle detected in GlueX central part (CDC, BCAL)

@ E/p: Energy deposit in calorimeter / Particle momentum
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Studying simulated single Particle Tracks

Simulated 200k single e / =% tracks
Data is balanced: N(electrons) = N(pions)
Events are labeled: e* : 1 and 7% : 0
Azimuthal angle:

o< < 10° particle detected in GlueX forward part (FDC, FCAL),
> 10° particle detected in GlueX central part (CDC, BCAL)

Negative Pions

E/p : Energy deposit in calorimeter / Particle momentum
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Studying simulated single Particle Tracks

Simulated 200k single e / =% tracks

@ Data is balanced: N(electrons) = N(pions)

@ Events are labeled: e* : 1 and 7% : 0

@ Azimuthal angle:

0 < {< 10° particle detected in GlueX forward part (FDC, FCAL),
> 10° particle detected in GlueX central part (CDC, BCAL)

@ E/p: Energy deposit in calorimeter / Particle momentum
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Crude Electron Selection

Electrons
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@ Solid / dashed red lines indicate event selection

. 1 : Event passes selection criteria
@ Event is labeled i o
0 : Event does NOT pass selection criteria
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Crude Pion Selection

Negative Pions
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@ Solid / dashed red lines indicate event selection

. 0 : Event passes selection criteria
@ Event is labeled P ’

1: Event does NOT pass selection criteria
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Performance Evaluation

@ How do we know if our event selection was good / bad?
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Performance Evaluation

@ How do we know if our event selection was good / bad?
@ Luckily, our data is labeled

@ Compare true labels with those from our event selection
@ Ideally: True and predicted labels are identical

@ Define:

#Events CORRECTLY labeled as 1 (0)
#Events truly labeled as 1 (0)

#Events FALSELY labeled as 1 (0)
#Events truly labeled as 0 (1)

i) True Positive Rate =

ii) False Positive Rate =
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Performance Evaluation

How do we know if our event selection was good / bad?
Luckily, our data is labeled
Compare true labels with those from our event selection

Ideally: True and predicted labels are identical

Define:

#Events CORRECTLY labeled as 1 (0)
#Events truly labeled as 1 (0)

#Events FALSELY labeled as 1 (0)
#Events truly labeled as 0 (1)

True Positive Rate =

=

False Positive Rate =

=

These are the building blocks for nearly all classification performance metrics

Daniel Lersch (FSU) Computational Physics Lab April 13, 2021 11/ 26



Identification Rates

Particle || True Positive Rate (TPR) | False Positive Rate (FPR)
‘ 0.85 0.11

Electrons

Negative Pions 0.89 0.15

@ Ideally: TPR = 1.0 and FPR = 0.0

@ TPR(Electron / Pion) + FPR(Pion / Electron) = 1.0
= Number of particles is conserved!

Daniel Lersch (FSU) Computational Physics Lab April 13, 2021 12 / 26



Identification Rates

Particle || True Positive Rate (TPR) | False Positive Rate (FPR)
‘ 0.85 0.11

Electrons

Negative Pions 0.89 0.15

@ Ideally: TPR = 1.0 and FPR = 0.0

@ TPR(Electron / Pion) + FPR(Pion / Electron) = 1.0
= Number of particles is conserved!

Daniel Lersch (FSU) Computational Physics Lab April 13, 2021 12 / 26



Identification Rates

Particle || True Positive Rate (TPR) | False Positive Rate (FPR)
‘ 0.85 0.11

Electrons

Negative Pions 0.89 0.15

@ Ideally: TPR = 1.0 and FPR = 0.0

@ TPR(Electron / Pion) + FPR(Pion / Electron) = 1.0
= Number of particles is conserved!

Daniel Lersch (FSU) Computational Physics Lab April 13, 2021 12 / 26



The Confusion Matrix
Confusion Matrix

0.11

1 0.15
1

0.8

0.6

0.4

0.2
0

Predicted Label

@ The confusion matrix is another way to display identification rates

True Label

@ True positive rates are shown along the diagonal
@ Note: No rule for which axis holds true / predicted labels
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The Confusion Matrix
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The Confusion Matrix
Confusion Matrix
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@ The confusion matrix is another way to display identification rates

@ True positive rates are shown along the diagonal
@ Note: No rule for which axis holds true / predicted labels
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The Accuracy

@ Many performance metrics can be (directly) derived from the confusion matrix
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The Accuracy

@ Many performance metrics can be (directly) derived from the confusion matrix

#£species

@ Example: Accuracy = > FPR(i)- R(i)
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The Accuracy

@ Many performance metrics can be (directly) derived from the confusion matrix

#£species
@ Example: Accuracy = > FPR(i)- R(i)

i

@ R(i) denotes abundance of each particle species in the data
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The Accuracy

@ Many performance metrics can be (directly) derived from the confusion matrix

#£species
@ Example: Accuracy = > FPR(i)- R(i)

i

@ R(i) denotes abundance of each particle species in the data

@ Balanced data (each species equally represented): R(i) = 1 / number species

Confusion Matrix

True Label

Predicted Label
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The Accuracy

@ Many performance metrics can be (directly) derived from the confusion matrix

#£species
@ Example: Accuracy = > FPR(i)- R(i)

i

(]

R(i) denotes abundance of each particle species in the data

Balanced data (each species equally represented): R(i) = 1 / number species
Here: R(i) = 0.5 and Accuracy = 0.89- 0.5+ 0.85-0.5 = 0.87

Confusion Matrix

0.8
0.11
0.6
0.4
0.85
0.2
1

Predicted Label
April 13, 2021 14/ 26

0 089

True Label




Optimizing the Identification Performance

@ Obtained somewhat good PID performance — Want to do better
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Optimizing the Identification Performance

@ Obtained somewhat good PID performance — Want to do better

@ Used six different particle features:

1.) Is particle detected in forward / central part of GlueX = 0
2.) Particle Momentum

) Information from forward drift chamber (FDC)

.) Information from forward calorimeter (FCAL)

) Information from central drift chamber (CDC)

) Information from central calorimeter (BCAL)

@) @l o= @y
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Optimizing the Identification Performance

@ Obtained somewhat good PID performance — Want to do better

@ Used six different particle features:

1.) Is particle detected in forward / central part of GlueX = 6
2.) Particle Momentum

3.) Information from forward drift chamber (FDC)

4.) Information from forward calorimeter (FCAL)

5.) Information from central drift chamber (CDC)

6.) Information from central calorimeter (BCAL)
@ Could tune each feature by hand...

. sometimes necessary
. time consuming
. can be too complex
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Optimizing the Identification Performance

@ Obtained somewhat good PID performance — Want to do better

@ Used six different particle features:

1.) Is particle detected in forward / central part of GlueX = 6
2.) Particle Momentum

3.) Information from forward drift chamber (FDC)

4.) Information from forward calorimeter (FCAL)

5.) Information from central drift chamber (CDC)

6.) Information from central calorimeter (BCAL)
@ Could tune each feature by hand...

. sometimes necessary
. time consuming
. can be too complex

@ Use a machine learning algorithm

> Designed to handle a multidimensional feature space
> Able to “see” correlations that we might miss
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A Decision Tree

@ Already know the multilayer perceptron neural network

@ Decision tree is an other machine learning algorithm

‘Root’
\node,

N

Xi > cl xi <cl

/N /N
Xj>c2 xj<c2 xj>c3 xj<c3

N sUUN

B s 4 s
: -

xk >c4 xk <c4

@ Basic Idea:

i) Create sub-nodes to include different features
i) Tune node thresholds until maximum separation / purity is achieved
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Many Trees make a Forest

@ An ensemble of decision trees defines a random forest

@ Each decision tree...
. has its own set of features
. is trained on an individual data set (e.g. bootstrapping)

@ Combine predictions of all trees to one output for the random forest

Provided data with N-dim
feature space

Sub data set 1

with m <= N-dim
feature space

1_

Daniel Lersch (FSU)

Sub data set 2
with k <= N-dim
feature space

Sub data set j
with | <= N-dim
feature space

¥
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DIY: Single Track Analysis and Algorithm Training

1.) Go to: https://replit.com/@daniel49/FSUMLLecture3
2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (~ 20k events)
of the data presented here (~ 400k events) — However, both data sets (the one
used here and the sub-sample) are available at:
http://hadron.physics.fsu.edu/"dlersch/Intro_To_ML_2021/data/
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Analyze single Track Data with a Neural Network and a
random Forest Classifier

@ Both algorithms available via scikit package
@ Train each algorithm to separate electrons from pions in single track data

@ Use 6 features for each classifier:

1. Momentum p
Azimuthal angle 6
ddEdx(FDC)
E(FCAL)
ddEdx(CDC)
E(BCAL)

oG h WD

@ About the neural network:

> Two hidden layers with 8 / 5 neurons each
> Trained for 200 epochs
> Validation data used (~ 50%)

@ About the random forest:

> 10 decision trees
» Maximum depth of 6

@ Which algorithm is better?
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The Classifier Response

T
5
10 w electrons [ electrons
[ neg_pions [ neg_pions
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@ Very first thing to check!

@ Does the response function “make sense” ?

> Neural network response looks “reasonable”
> Random forest response indicates a bad performance
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The Classifier Response

T
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10 m electrons mm electrons
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> Neural network response looks “reasonable”
> Random forest response indicates a bad performance
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The Classifier Response
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@ Very first thing to check!

@ Does the response function “make sense” ?

> Neural network response looks “reasonable”
> Random forest response indicates a bad performance
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Scanning the MLP Response Distribution
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@ Want to use neural network response to separate electrons from pions
@ Which response value shall be used?

@ Perform threshold scan on response distribution — calculate TPR / FRP and
compare
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Scanning the MLP Response Distribution
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@ Want to use neural network response to separate electrons from pions
@ Which response value shall be used?

@ Perform threshold scan on response distribution — calculate TPR / FRP and
compare

@ ROC- (Receiver Operating Characteristic) curve
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Understanding the ROC-Curve

@ ROC-curve directly reflects properties of response function

@ Allows to compare multiple algorithms

@ Easy to interpret
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Optimum Threshold

@ ROC curves shown previously were produced by scikit:sklearn.metrics.roc_ curve
@ Threshold scan performed internally

10Ny . MLP -

\ ¢+ RF

0.0
0.0 0.2 0.4 0.6 0.8 1.0
Threshold t

Algorithm || Min. d(t) | TPR | FPR | threshold t

MLP 0.009 0.92 | 0.06 0.47
RF 0.021 0.9 0.11 0.48
Crude analysis na 0.85 | 0.11 na
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Comparing Confusion Matrices and other Metrics

Confusion Matrix MLP Confusion Matrix RF

Confusion Matrix

_ oczll— 08 _ 0.8
0] 0.06 9] 0.10 [0
® 06 o 06 = 0.6
— | —l
(] 04 Q 04 Q@ 0.4
2 0.08 0.92 2 0.11 0.89 2
= 02 F . 02 F 0.2
0 1 1
Predicted Label Predicted Label Predicted Label
Algorithm H Min. d(t) ‘ TPR ‘ FPR ‘ threshold t ‘ Accuracy ‘ MCC?®
MLP 0.009 0.92 | 0.06 0.47 0.93 0.87
RF 0.021 0.9 | 0.11 0.48 0.89 0.79
Crude analysis na 0.85 | 0.11 na 0.87 0.74

@ Neural network outperforms other approaches

@ Might improve (RF) performance by re-training

@ Perfect classifier: TPR = Accuracy = MCC =1 and FPR =0
@ Poor classifier: TPR = Accuracy =0 / MCC = -1 and FPR = 1

Matthews Correlation Coefficient, not discussed today
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Summary

@ Used different metrics to compare a neural network and a random forest classifier
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Summary

@ Used different metrics to compare a neural network and a random forest classifier

@ Always x-check different performance metrics <+ Consistency!
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<+ Think about what you want to do!
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Summary

@ Used different metrics to compare a neural network and a random forest classifier

@ Always x-check different performance metrics <+ Consistency!

@ Sometimes the ROC-optimum is NOT desirable
<> Think about what you want to do!

@ Used a crude (NOT machine learning based) analysis

>

>
>
>
>

Always have one!

Helps to understand / debug machine learning model
Helps to understand your data

Easier to understand (in most cases)

Use as reference / benchmark!
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Summary

@ Used different metrics to compare a neural network and a random forest classifier

@ Always x-check different performance metrics <+ Consistency!

@ Sometimes the ROC-optimum is NOT desirable
<> Think about what you want to do!

@ Used a crude (NOT machine learning based) analysis

>

>
>
>
>

Always have one!

Helps to understand / debug machine learning model
Helps to understand your data

Easier to understand (in most cases)

Use as reference / benchmark!

@ scikit handles threshold tuning for you
(i-e. returned labels correspond to optimum threshold)
Nevertheless, check algorithm responsel!

@ scikit offers many more evaluation metrics see link here

@ NOT discussed today

| 2
>

Feature correlations <> Which features do | need to include in my analysis?
Hyper Parameter Optimization <> Tune the machine learning algorithm
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DIY: Performance Evaluation

1.) Go to: https://replit.com/@daniel49/FSUMLLecture3
2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (~ 20k events)
of the data presented here (~ 400k events) — However, both data sets (the one
used here and the sub-sample) are available at:
http://hadron.physics.fsu.edu/"dlersch/Intro_To_ML_2021/data/
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