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About this Lecture

Part I: (Covered by Prof. Dobbs)
I Basic concepts of machine learning

(with focus on feedforward neural networks)
I Data manipulation and visualization with pandas dataframes
I Training a neural network with scikit

Part II:
I Overfitting and validation data
I Gaussian processes

Part III: (Today)
I Particle Identification
I Classification Metrics

The individual contents might be subject to change
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This Lecture...

... focusses on the basic concepts and ideas behind machine learning

... introduces a few machine learning algorithms

... aims to familiarize with machine learning jargon / vocabulary

... does NOT cover all aspects of machine learning (further reading required)

... will NOT turn you into a machine learning specialist

... was held last year in a different format → revised material for this edition

... mainly utilizes the scikit-learn library

... uses repl.it for the hands-on sessions

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)
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Homework and Literature

Machine learning can be learned best by simply doing it!

Homework aims to perform a simple analysis and getting familiar with machine
learning

Helpful literature:
I The scikit-learn documentation
I Talks from

F The deep learning for science school 2020
F The deep learning for science school 2019

I Distill.pub (many articles about state-of-the-art machine / deep learning)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I Slides and scripts available at:

http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/
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learning

Helpful literature:
I The scikit-learn documentation
I Talks from

F The deep learning for science school 2020
F The deep learning for science school 20193

I Distill.pub (many articles about state-of-the-art machine / deep learning)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature4 → browse with

caution
I Slides and scripts available at:

http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning

without any theory / math is considered as bad
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AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning
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Particle Identification at GlueX

Many particles produced during GlueX experiments
Goal: Want to classify different particle types ↔ Particle Identification (PID)
Need: Understand correlations between different sub-detector systems
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Studying simulated single Particle Tracks
Simulated 200 k single e± / π± tracks

Data is balanced: N(electrons) = N(pions)
Events are labeled: e± : 1 and π± : 0
Azimuthal angle:

θ <

{
< 10◦ particle detected in GlueX forward part (FDC, FCAL),
≥ 10◦ particle detected in GlueX central part (CDC, BCAL)

E/p : Energy deposit in calorimeter / Particle momentum
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Crude Electron Selection

Solid / dashed red lines indicate event selection

Event is labeled

{
1 : Event passes selection criteria,
0 : Event does NOT pass selection criteria
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Crude Pion Selection

Solid / dashed red lines indicate event selection

Event is labeled

{
0 : Event passes selection criteria,
1 : Event does NOT pass selection criteria
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Performance Evaluation

How do we know if our event selection was good / bad?

Luckily, our data is labeled

Compare true labels with those from our event selection

Ideally: True and predicted labels are identical

Define:

i) True Positive Rate = #Events CORRECTLY labeled as 1 (0)
#Events truly labeled as 1 (0)

ii) False Positive Rate = #Events FALSELY labeled as 1 (0)
#Events truly labeled as 0 (1)

These are the building blocks for nearly all classification performance metrics
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Identification Rates

Particle True Positive Rate (TPR) False Positive Rate (FPR)
Electrons 0.85 0.11

Negative Pions 0.89 0.15

Ideally: TPR = 1.0 and FPR = 0.0

TPR(Electron / Pion) + FPR(Pion / Electron) = 1.0
⇒ Number of particles is conserved!
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The Confusion Matrix

The confusion matrix is another way to display identification rates
True positive rates are shown along the diagonal
Note: No rule for which axis holds true / predicted labels
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The Accuracy
Many performance metrics can be (directly) derived from the confusion matrix

Example: Accuracy =
#species∑

i

FPR(i) · R(i)

R(i) denotes abundance of each particle species in the data
Balanced data (each species equally represented): R(i) = 1 / number species
Here: R(i) = 0.5 and Accuracy = 0.89 · 0.5+ 0.85 · 0.5 = 0.87
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Optimizing the Identification Performance

Obtained somewhat good PID performance → Want to do better

Used six different particle features:
1.) Is particle detected in forward / central part of GlueX ≡ θ
2.) Particle Momentum
3.) Information from forward drift chamber (FDC)
4.) Information from forward calorimeter (FCAL)
5.) Information from central drift chamber (CDC)
6.) Information from central calorimeter (BCAL)

Could tune each feature by hand...
... sometimes necessary
... time consuming
... can be too complex

Use a machine learning algorithm
I Designed to handle a multidimensional feature space
I Able to “see” correlations that we might miss
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A Decision Tree
Already know the multilayer perceptron neural network

Decision tree is an other machine learning algorithm

Basic Idea:
i) Create sub-nodes to include different features
ii) Tune node thresholds until maximum separation / purity is achieved
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Many Trees make a Forest
An ensemble of decision trees defines a random forest

Each decision tree...
... has its own set of features
... is trained on an individual data set (e.g. bootstrapping)

Combine predictions of all trees to one output for the random forest
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DIY: Single Track Analysis and Algorithm Training

1.) Go to: https://replit.com/@daniel49/FSUMLLecture3

2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (∼ 20 k events)
of the data presented here (∼ 400 k events) → However, both data sets (the one
used here and the sub-sample) are available at:
http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/data/
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Analyze single Track Data with a Neural Network and a
random Forest Classifier

Both algorithms available via scikit package

Train each algorithm to separate electrons from pions in single track data

Use 6 features for each classifier:
1. Momentum p
2. Azimuthal angle θ
3. ddEdx(FDC)
4. E(FCAL)
5. ddEdx(CDC)
6. E(BCAL)

About the neural network:
I Two hidden layers with 8 / 5 neurons each
I Trained for 200 epochs
I Validation data used (∼ 50%)

About the random forest:
I 10 decision trees
I Maximum depth of 6

Which algorithm is better?
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The Classifier Response

Very first thing to check!

Does the response function “make sense” ?
I Neural network response looks “reasonable”
I Random forest response indicates a bad performance
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Scanning the MLP Response Distribution

Want to use neural network response to separate electrons from pions
Which response value shall be used?
Perform threshold scan on response distribution → calculate TPR / FRP and
compare
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Scanning the MLP Response Distribution

Want to use neural network response to separate electrons from pions
Which response value shall be used?
Perform threshold scan on response distribution → calculate TPR / FRP and
compare
ROC- (Receiver Operating Characteristic) curve
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Understanding the ROC-Curve
ROC-curve directly reflects properties of response function
Allows to compare multiple algorithms
Easy to interpret
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Optimum Threshold
ROC curves shown previously were produced by scikit:sklearn.metrics.roc_curve
Threshold scan performed internally

Algorithm Min. d(t) TPR FPR threshold t
MLP 0.009 0.92 0.06 0.47
RF 0.021 0.9 0.11 0.48

Crude analysis na 0.85 0.11 na
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Comparing Confusion Matrices and other Metrics

Algorithm Min. d(t) TPR FPR threshold t Accuracy MCC5

MLP 0.009 0.92 0.06 0.47 0.93 0.87
RF 0.021 0.9 0.11 0.48 0.89 0.79

Crude analysis na 0.85 0.11 na 0.87 0.74

Neural network outperforms other approaches
Might improve (RF) performance by re-training
Perfect classifier: TPR = Accuracy = MCC = 1 and FPR = 0
Poor classifier: TPR = Accuracy = 0 / MCC = -1 and FPR = 1

5Matthews Correlation Coefficient, not discussed today
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Summary

Used different metrics to compare a neural network and a random forest classifier

Always x-check different performance metrics ↔ Consistency!

Sometimes the ROC-optimum is NOT desirable
↔ Think about what you want to do!

Used a crude (NOT machine learning based) analysis
I Always have one!
I Helps to understand / debug machine learning model
I Helps to understand your data
I Easier to understand (in most cases)
I Use as reference / benchmark!

scikit handles threshold tuning for you
(i.e. returned labels correspond to optimum threshold)
Nevertheless, check algorithm response!

scikit offers many more evaluation metrics see link here

NOT discussed today
I Feature correlations ↔ Which features do I need to include in my analysis?
I Hyper Parameter Optimization ↔ Tune the machine learning algorithm
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DIY: Performance Evaluation

1.) Go to: https://replit.com/@daniel49/FSUMLLecture3

2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (∼ 20 k events)
of the data presented here (∼ 400 k events) → However, both data sets (the one
used here and the sub-sample) are available at:
http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/data/
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