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About this Lecture

@ Part I: (Covered by Prof. Dobbs)

> Basic concepts of machine learning

(with focus on feedforward neural networks)
» Data manipulation and visualization with pandas dataframes
> Training a neural network with scikit

@ Part ll:

> Overfitting and validation data
» Gaussian processes

@ Part lll:

> Particle Identification
» Classification Metrics

@ Part IV: (Today)

» Hyper Parameter Optimization (HPO)
> Physics Data Analysis

The individual contents might be subject to change
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... focusses on the basic concepts and ideas behind machine learning
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This Lecture...

. focusses on the basic concepts and ideas behind machine learning
introduces a few machine learning algorithms

. aims to familiarize with machine learning jargon / vocabulary

. does NOT cover all aspects of machine learning (further reading required)

. will NOT turn you into a machine learning specialist

. was held last year in a different format — revised material for this edition
mainly utilizes the scikit-learn library
uses repl.it for the hands-on sessions

most likely contain several errors (— Please send a mail to dlersch@jlab.org)
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Homework and Literature

@ Machine learning can be learned best by simply doing it!
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework aims to perform a simple analysis and getting familiar with machine
learning
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework aims to perform a simple analysis and getting familiar with machine
learning

@ Helpful literature:

| 2
>

The scikit-learn documentation
Talks from

* The deep learning for science school 2020

* The deep learning for science school 20193
Distill.pub (many articles about state-of-the-art machine / deep learning)
"Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by
Aurélien Géron
The internet is full of good (but also very bad!) literature®* — browse with
caution
Slides and scripts available at:
http://hadron.physics.fsu.edu/ dlersch/Intro_To_ML_2021/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning
without any theory / math is considered as bad
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Al, ML and DL

Al D ML D DL

Computer Science

Artificial Intelligence

Machine Learning

Deep Learning

Artificial
Intelligence

Engineering of
king Intelligent

Machines and Programs

1950's 1960's 1970's

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Al, ML and DL

Al D ML D DL

Main focus of this lecture

Computer Science

Artificial Intelligence

Machine Learning

Engineering of
g Intelligent

Ma and Programs

Deep Learning 1950's 1960's 1970

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Introduced in part I: DataFrames —> handle and manipulate data
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text
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ML ALGORITHM

Discussed in part I:

- minimize error

- different learning startegies

- training of a multilayer perceptron

OUTPUT
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Basic Components of Machine Learning

Input Data: Output Data:

- numbers - labels [0,1,2,..]
- pictures Internal Parameters: - function values
- text - weights - pictures

_ - thresholds - text

- slope gradients
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Basic Components of Machine Learning

INPUT ML ALGORITHM OUTPUT

Input Data:
- humbers
- pictures
- text

Discussed in Part Il and IlI:
- Validation data

- early stopping

- Regression

- Classification

- Performance evaluation
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text
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ML ALGORITHM

Today:

OUTPUT

- Set architecture for ML algorithm
- Use algorithm for physics data analysis
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Hyper Parameters

@ Fit Parameters: Model internal parameters — Set by optimization procedure
— driven by data

@ Hyper Parameters: Determine model architecture / performance — Set by user

Model H Fit Parameters [ Hyper Parameters
pol(N) = pyxN + py_1xVN=1 4+ ... + po PN -+ PO N, minimizer,...
Multilayer Perceptron weights, biases #Hidden Layers,
#Neurons, #Epochs,...
Random Forest Thresholds, splitting level | #Trees,
max. depth of trees,...
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Hyper Parameter Optimization (HPO)

@ Goal: Find set of hyper parameters which maximizes the prediction performance
<> Minimize prediction error

@ To consider:

> Use computational time efficiently
> Generalizability <+ avoid overfitting — Use validation data!
> Actually find optimum

@ How to: HPO?

> Test different settings manually — can be painful
> Use algorithm
* Grid search: simple, but ineffective if parameter ranges are unknown
* Random parameter search
* Bayesian optimization
* and many more...

Daniel Lersch (FSU) April 15, 2021 8 /27



Parameter Grid Search for the random Forest Classifier

5 4 N
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@ Random forest classifier trained last lecture shows insufficient performance

@ Use parameter grid search to optimize this classifier
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Parameter Grid Search in scikit

#1.) Define the parameters you want to tune:
#n_estimator = number or trees within the ensemble
#maxz_depth: Depth you allow each tree to grow during training
parameters_to_tune = [{’n_estimators’: [10,30,60], ’max_depth’: [6,12,18]}]
#2.) Define a scorer function
tuning_score = ’roc_auc’ #---> Area under the ROC-curve
#<=> Should be 1 for the ideal ROC-curve
#3.) #Set up the grid search function:
rf_scan = GridSearchCV(
RandomForestClassifier(), #--> The algorithm you want tune
parameters_to_tune, #---> Specify the hyper parameters
scoring=tuning_score, #---> Which metric to judge the performance
return_train_score=True #---> Calculate score for the training data
)
#4.) Run the grid search:
rf_scan.fit(X, Y)

Checks EVERY parameter combination (here: 9)

Internally splits data into training / test samples
(e.g. via k-fold cross-validation)

Uses highest score on the test set to determine the best parameter configuration

@ Details can be found under this link
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Results from the Grid Search

o
S
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Average Grid Score
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@ Training Data 4 Vvalidation Data

@ Performed grid search on small sub-sample® of e /7~ data

@ Best model: 60 Trees with depth 18 <> edge of parameter values that we specified

5 q q
Due to time constraints
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Optimized Random Forest: ROC-Curve

@ Bottom Left: Random Forest after grid search

@ Bottom Right: Random Forest trained with best guess parameters®
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NOTE: The statistics used for training here were larger than those used for the grid search

Daniel Lersch (FSU) Computational Physics Lab

April 15, 2021 12 / 27



Optimized Random Forest: ROC-Curve

@ Bottom Left: Random Forest after grid search

@ Bottom Right: Random Forest trained with best guess parameters®
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NOTE: The statistics used for training here were larger than those used for the grid search
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Optimized Random Forest: Classification Performance

Confusion Matrix best RF

© 0.00 0.8
0
G 0.6
-
v 0.4
o
= 0.2
0 1
Predicted Label
Algorithm Min. d(t) | TPR | FPR | threshold t | Accuracy | MCC’
RF (last Iecture) 0.021 0.9 0.11 0.48 0.89 0.79
Best RF 8.10°° 0.9935 | 0.0065 0.48 0.99 0.99

7 q a.q g
Matthews Correlation Coefficient, not discussed today
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Intermediate Summary: Grid Search

@ Used grid search to tune a random forest classifier
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Intermediate Summary: Grid Search
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Performance improved drastically
— Might change if algorithm is applied on full statistics data set!
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#Searches = [ [ #Settings[Parameter(i)]

@ No guarantee, that best parameter is found after an extensive grid search
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Intermediate Summary: Grid Search

Used grid search to tune a random forest classifier

Performance improved drastically
— Might change if algorithm is applied on full statistics data set!

Grid search is simple, but can be computationally expensive:
#Searches = [ [ #Settings[Parameter(i)]

i

@ No guarantee, that best parameter is found after an extensive grid search
— Might simply “miss’ best performing set — parameter grid too coarse / fine

(more effective) Alternatives

» Random parameter search (discussed here)
> Successive halving
> Bayesian optimization
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Random Parameter Search in scikit
#1.) Define the parameters you want to tune:
parameters_to_tune_rf = {
’n_estimators’: stats.randint(5,60),#---> Define parameter ranges instead
’max_depth’: stats.randint(3,18)
}
#2.) Define the number of searches
n_searches = 15#--> Control over computational time
tuning_score = ’roc_auc’#---> Area under the ROC-curve
#3.) Set up search function:
random_search = RandomizedSearchCV(
RandomForestClassifier(), #--> The algorithm you want tune
param_distributions=parameters_to_tune_rf, #---> Specify hyper parameters
n_iter=n_searches,
scoring=tuning_score, #---> Which metric to judge the performance
)
#4.) Run the search:
random_search.fit (X,Y)

Draws random parameter samples

Internally splits data into training / test samples
(e.g. via k-fold cross-validation)

@ Uses highest score on the test set to determine the best parameter configuration

@ Details can be found under this link
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Results from random Search

100 e o oo P + 1.0 .r.. .o -
098ttty e ety os| |
Voo 9 e
50.96 &
ﬁ e Training Data N _g 0.6 //'
20941 4 validation Data 2 e
o : S 0.4 7
Z0.92 S
To2 - RF
0.90 ’,«” ---- Random Guess
g8l || : HEEEEE 0.0 - = Optimum
1234567 8 9101112131415 0.0 0.2 0.4 0.6 0.8 1.0
Search ID False Positive Rate
Algorithm ‘ Min. d(t TPR ‘ FPR ‘ threshold t ‘ Accuracy ‘ mMcce
RF (last lecture) 0. 021 0.9 0.11 0.48 0.89 0.79
RF (grid search) 8.10°° 0.9935 | 0.0061 0.48 0.99 0.99
RF (rnd search) 6-10"* 0.98 0.02 0.47 0.98 0.97

8 q a.q g
Matthews Correlation Coefficient, not discussed today
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Intermediate Summary: Random Search

Performance competitive to grid search
Define parameter ranges (and not specific values)

Control over computational time <> Define number of searches

Still might miss optimum — Number of searches set too low
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DIY: HPO

1.) Go to: https://replit.com/@daniel49/FSUMLLectured
2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (~ 20k events)
of the data presented here (~ 400k events) — However, both data sets (the one
used here and the sub-sample) are available at:
http://hadron.physics.fsu.edu/"dlersch/Intro_To_ML_2021/data/
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Application in Physics Data Analysis

@ Look at toy data: yp — pn
i) n—etey
i) n— w7 v (6x more likely than i))
@ Goal: Want to reconstruct the reaction: 77 — eTe™ vy
i.e. M(e",e™,v) = m, = 0.548 GeV/c?
5000/

4000+

w
o
o
o

N
o
o
o

Entries [a.u.]

1000-

0

0.0 0.2 0.4 0.6 0.8 1.0
M(e*, e™, y)[GeVic?]
@ Problem: Pions are misidentified as electrons: 77 — 777~ treated as  — ete™ vy
@ Use classifier trained on e /7 tracks: suppress 7 — w7~ background
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Application in Physics Data Analysis

@ Look at toy data: yp — pn
i) n—etey
i) n— w7 v (6x more likely than i))
@ Goal: Want to reconstruct the reaction: 77 — eTe™ vy
i.e. M(e",e™,v) = m, = 0.548 GeV/c?

50007 Background: eta—> pivpi-g
~ 6x more dominant

pions misidentified as leptons

4000+ the reaction we are
interested in
—_ eta—> e+e-g
=]
< 3000
0
o
'€ 2000
w
0.548 GeV
1000-
0 0.0 0.2 0.4 0.6 0.8 1.0

M(e*, e, y)[GeV/c?]

@ Problem: Pions are misidentified as electrons: 77 — 777~ treated as  — ete™ vy

@ Use classifier trained on e /7 tracks: suppress 7 — w7~ background
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Random Forest and Neural Network Classifier

@ Trained on simulated e /7 single tracks

@ Hyper parameters set via random search

@ One classifier type per charge and particle — 4 classifiers in total

Algorithm || Min. d(t) | TPR | FPR | threshold t | Accuracy | MCC

MLP (e*/7") 0.009 | 0.92 | 0.05 0.45 093 | 0.87

MLP (e= /7 7) 0.011 0.91 | 0.06 0.51 0.93 0.85

RF (e /") 0.002 | 0.97 | 0.027 0.5 097 | 0.95

RF (e~ /77) || 6-107* | 0.94 | 0.02 0.47 098 | 0.97
ey



Reconstructing n — e*e‘y events

PID with RF PID with MLP
5000
1 No PID 5000 =1 No PID
[ RF:is pion [ MLP: is pion
4000 1 RF:is lepton 4000 1 MLP: is lepton
23000 33000
3 3
£ 2000 £ 2000
w w
1000 1000
%03 02 04 06 08 1o %03 02 04 06 08 1o
M(e*, e”, y)GeV/c?] M(e*, e, y)GeV/c?]
1750 [ True Distribution
1500 [ PID via RF .
oo T3 PID via MLP @ Both classifiers are capable to suppress
o) P
E — T events
1000 77 7
£ 750 @ Random forest outperforms neural network
£
® 500 (see table on previous slide)
250

@ 1 — eTe ~ signal not significantly altered by

0.0 02 0.4 06 0.8 1.0 classifiers
M(e*,e”, y)[GeVic?]
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From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning

> Features obtained after pre-processing (calibration, analysis cuts, variable
selection,...) — feature-engineering

> Pre-processing encodes information into data

> Moderate model size (e.g 1-2 hidden layers in a neural network)

Variable 1

Variable 2 |

Input layer

Hidden layer
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From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning
> Features obtained after pre-processing (calibration, analysis cuts, variable
selection,...) — feature-engineering
> Pre-processing encodes information into data
> Moderate model size (e.g 1-2 hidden layers in a neural network)

@ Deep learning
» Still machine learning, but uses neural networks only
> Leave out (certain) pre-processing steps — Let the model do the work for you
> The neural network becomes deep — Pre-processing is basically done in extra
hidden layers

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Picture taken from here
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From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning

> Features obtained after pre-processing (calibration, analysis cuts, variable
selection,...) — feature-engineering

> Pre-processing encodes information into data

» Moderate model size (e.g 1-2 hidden layers in a neural network)

@ Deep learning

» Still machine learning, but uses neural networks only

> Leave out (certain) pre-processing steps — Let the model do the work for you

> The neural network becomes deep — Pre-processing is basically done in extra
hidden layers

@ Deep learning is NOT trivial, but fortunately there are many frameworks

v

Pytorch
Keras
Tensorflow

'S
>
» ROOT
>
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DIY: Physics Data Analysis

1.) Go to: https://replit.com/@daniel49/FSUMLLectured
2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (~ 20k events)
of the data presented here (~ 400k events) — However, both data sets (the one
used here and the sub-sample) are available at:
http://hadron.physics.fsu.edu/"dlersch/Intro_To_ML_2021/data/
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Machine / Deep Learning vs. Fitting a Function

I ML / DL Fit Function (e.g Gauss, pol(N),...)

Parameters

Hyper Parameters

Optimizer

Data Sets

Performance Evaluation

Basic question

weights, nodes,...

learning rate, architecture,

learning epochs, tolerance,...

Adam, SGD, L-BFGS,...

training, validation,..
bootstrapping

Mean squared error,...

Which model?

Daniel Lersch (FSU)

mean, width, p; - xi, ..

order of pol., include tails,
fit iterations, tolerance,...

x2, Log-Likelihood

same here

x?/ndf,...

Which fit function?
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Machine / Deep Learning vs. Fitting a Function

@ At its heart, using machine (deep) learning is not much different to fitting a function
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Machine / Deep Learning vs. Fitting a Function

@ At its heart, using machine (deep) learning is not much different to fitting a function

@ Machine / Deep learning algorithms are successful, because they consist of many (~ 100 -
~ 10°) parameters = (Many) hyper parameters to tune
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~ 10°) parameters = (Many) hyper parameters to tune

@ Provocative statement: Machine / Deep learning is:
Reduction of N adjustable parameters to M << N adjustable hyper parameters

@ Depending on the data set (complexity / size) = Training of ML / DL is far more
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Spark (not discussed in this lecture)
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> R & D on analyzing large and complex data sets, various options to customize own
model — Tensorflow (not discussed in this lecture)

> Of course, there is some overlap between the different frameworks

> Good documentation for each of them

@ Which model shall | use for my analysis?
> Again, it depends on what you want to do (classify small data set with few features
vs. customized model on individual problem)
> There is no need to use a deep model with 10° parameters, if a random forest
classifier shows (after a careful analysis) a close to perfect performance
> Do not try to fine tune a random forest classifier on a complex data set (e.g. ~ 100
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References and Further Reading

@ Most of the information / code pieces have been taken from / inspired by the following
web-sites: (the blue items are clickable links)

v

Apache Spark

Apache Spark ML

Pyspark documentation

Python scikit-learn

Tensorflow

Tensorflow Keras Models

Keras

stackoverflow

distill.pub: Current problems and issues in machine/deep learning
A Recipe for Training Neural Networks (Andrej Karpathy)
"Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien
Géron — Really good book!

Talks from the deep learning for science school 2019

Talks from the deep learning for science school 2020

VYVYVYVYVYVYVYYVYY

vy
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@ |If you are stuck with a problem / framework = Do not spend weeks to solve it = Look it
up (stackoverflow, google, yahoo,...), most likely someone has a similar problem

@ Try not to start from scratch (sometimes not avoidable)

Again, there is no easy / quick way to learn all the aspects of machine learning

@ My personal recommendation: Try it out yourself! (i.e. pick an example data set and
start playing around)
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give you an idea on how to implement various functions

@ scikit provides a much larger functionality than shown in this lecture
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ultimate truth — Someone else might have tackled the problems differently

| hope you had fun!
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