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About this Lecture

Part I: (Covered by Prof. Dobbs)
I Basic concepts of machine learning

(with focus on feedforward neural networks)
I Data manipulation and visualization with pandas dataframes
I Training a neural network with scikit

Part II:
I Overfitting and validation data
I Gaussian processes

Part III:
I Particle Identification
I Classification Metrics

Part IV: (Today)
I Hyper Parameter Optimization (HPO)
I Physics Data Analysis

The individual contents might be subject to change
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This Lecture...

... focusses on the basic concepts and ideas behind machine learning

... introduces a few machine learning algorithms

... aims to familiarize with machine learning jargon / vocabulary

... does NOT cover all aspects of machine learning (further reading required)

... will NOT turn you into a machine learning specialist

... was held last year in a different format → revised material for this edition

... mainly utilizes the scikit-learn library

... uses repl.it for the hands-on sessions

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)
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Homework and Literature

Machine learning can be learned best by simply doing it!

Homework aims to perform a simple analysis and getting familiar with machine
learning

Helpful literature:
I The scikit-learn documentation
I Talks from

F The deep learning for science school 2020
F The deep learning for science school 2019

I Distill.pub (many articles about state-of-the-art machine / deep learning)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I Slides and scripts available at:

http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 4 / 27

https://scikit-learn.org/stable/
https://dl4sci-school.lbl.gov/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://distill.pub/
http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/


Homework and Literature

Machine learning can be learned best by simply doing it!

Homework aims to perform a simple analysis and getting familiar with machine
learning

Helpful literature:
I The scikit-learn documentation
I Talks from

F The deep learning for science school 2020
F The deep learning for science school 2019

I Distill.pub (many articles about state-of-the-art machine / deep learning)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I Slides and scripts available at:

http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 4 / 27

https://scikit-learn.org/stable/
https://dl4sci-school.lbl.gov/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://distill.pub/
http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/
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Machine learning can be learned best by simply doing it!

Homework aims to perform a simple analysis and getting familiar with machine
learning

Helpful literature:
I The scikit-learn documentation
I Talks from

F The deep learning for science school 2020
F The deep learning for science school 20193

I Distill.pub (many articles about state-of-the-art machine / deep learning)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature4 → browse with

caution
I Slides and scripts available at:

http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning

without any theory / math is considered as bad
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AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning
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Hyper Parameters

Fit Parameters: Model internal parameters → Set by optimization procedure
→ driven by data

Hyper Parameters: Determine model architecture / performance → Set by user

Model Fit Parameters Hyper Parameters

pol(N) = pNx
N + pN−1x

N−1 + ...+ p0 pN , .., p0 N, minimizer,...

Multilayer Perceptron weights, biases #Hidden Layers,
#Neurons, #Epochs,...

Random Forest Thresholds, splitting level #Trees,
max. depth of trees,...
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Hyper Parameter Optimization (HPO)

Goal: Find set of hyper parameters which maximizes the prediction performance
↔ Minimize prediction error

To consider:
I Use computational time efficiently
I Generalizability ↔ avoid overfitting → Use validation data!
I Actually find optimum

How to: HPO?
I Test different settings manually → can be painful
I Use algorithm

F Grid search: simple, but ineffective if parameter ranges are unknown
F Random parameter search
F Bayesian optimization
F and many more...
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Parameter Grid Search for the random Forest Classifier

Random forest classifier trained last lecture shows insufficient performance

Use parameter grid search to optimize this classifier
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Parameter Grid Search in scikit
#1.) Define the parameters you want to tune:
#n_estimator = number or trees within the ensemble
#max_depth: Depth you allow each tree to grow during training
parameters_to_tune = [{’n_estimators’: [10,30,60],’max_depth’: [6,12,18]}]
#2.) Define a scorer function
tuning_score = ’roc_auc’ #---> Area under the ROC-curve
#<=> Should be 1 for the ideal ROC-curve
#3.) #Set up the grid search function:
rf_scan = GridSearchCV(

RandomForestClassifier(), #--> The algorithm you want tune
parameters_to_tune, #---> Specify the hyper parameters
scoring=tuning_score, #---> Which metric to judge the performance
return_train_score=True #---> Calculate score for the training data

)
#4.) Run the grid search:
rf_scan.fit(X, Y)

Checks EVERY parameter combination (here: 9)

Internally splits data into training / test samples
(e.g. via k-fold cross-validation)

Uses highest score on the test set to determine the best parameter configuration

Details can be found under this link
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Results from the Grid Search

Performed grid search on small sub-sample5 of e−/π− data
Best model: 60 Trees with depth 18 ↔ edge of parameter values that we specified

5Due to time constraints
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Optimized Random Forest: ROC-Curve

Bottom Left: Random Forest after grid search

Bottom Right: Random Forest trained with best guess parameters6

6NOTE: The statistics used for training here were larger than those used for the grid search
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Optimized Random Forest: Classification Performance

Algorithm Min. d(t) TPR FPR threshold t Accuracy MCC7

RF (last lecture) 0.021 0.9 0.11 0.48 0.89 0.79
Best RF 8 · 10−5 0.9935 0.0065 0.48 0.99 0.99

7Matthews Correlation Coefficient, not discussed today
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Intermediate Summary: Grid Search

Used grid search to tune a random forest classifier

Performance improved drastically
→ Might change if algorithm is applied on full statistics data set!

Grid search is simple, but can be computationally expensive:

#Searches =
∏
i

#Settings[Parameter(i)]

No guarantee, that best parameter is found after an extensive grid search
→ Might simply “miss” best performing set → parameter grid too coarse / fine

(more effective) Alternatives
I Random parameter search (discussed here)
I Successive halving
I Bayesian optimization
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Random Parameter Search in scikit
#1.) Define the parameters you want to tune:
parameters_to_tune_rf = {

’n_estimators’: stats.randint(5,60),#---> Define parameter ranges instead of discrete values!
’max_depth’: stats.randint(3,18)

}
#2.) Define the number of searches
n_searches = 15#--> Control over computational time
tuning_score = ’roc_auc’#---> Area under the ROC-curve
#3.) Set up search function:
random_search = RandomizedSearchCV(

RandomForestClassifier(), #--> The algorithm you want tune
param_distributions=parameters_to_tune_rf, #---> Specify hyper parameters
n_iter=n_searches,
scoring=tuning_score, #---> Which metric to judge the performance

)
#4.) Run the search:
random_search.fit(X,Y)

Draws random parameter samples
Internally splits data into training / test samples
(e.g. via k-fold cross-validation)
Uses highest score on the test set to determine the best parameter configuration
Details can be found under this link
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Results from random Search

Algorithm Min. d(t) TPR FPR threshold t Accuracy MCC8

RF (last lecture) 0.021 0.9 0.11 0.48 0.89 0.79
RF (grid search) 8 · 10−5 0.9935 0.0061 0.48 0.99 0.99
RF (rnd search) 6 · 10−4 0.98 0.02 0.47 0.98 0.97

8Matthews Correlation Coefficient, not discussed today
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Intermediate Summary: Random Search

Performance competitive to grid search

Define parameter ranges (and not specific values)

Control over computational time ↔ Define number of searches

Still might miss optimum → Number of searches set too low
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DIY: HPO

1.) Go to: https://replit.com/@daniel49/FSUMLLecture4

2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (∼ 20 k events)
of the data presented here (∼ 400 k events) → However, both data sets (the one
used here and the sub-sample) are available at:
http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/data/

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 18 / 27

https://replit.com/@daniel49/FSUMLLecture4
http://hadron.physics.fsu.edu/~dlersch/Intro_To_ML_2021/data/


Application in Physics Data Analysis
Look at toy data: γp → pη

i) η → e+e−γ
ii) η → π+π−γ (6× more likely than i))

Goal: Want to reconstruct the reaction: η → e+e−γ
i.e. M(e+, e−, γ) = mη = 0.548GeV/c2

Problem: Pions are misidentified as electrons: η → π+π−γ treated as η → e+e−γ

Use classifier trained on e±/π± tracks: suppress η → π+π−γ background
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Random Forest and Neural Network Classifier

Trained on simulated e±/π± single tracks

Hyper parameters set via random search

One classifier type per charge and particle → 4 classifiers in total

Algorithm Min. d(t) TPR FPR threshold t Accuracy MCC

MLP (e+/π+) 0.009 0.92 0.05 0.45 0.93 0.87
MLP (e−/π−) 0.011 0.91 0.06 0.51 0.93 0.85

RF (e+/π+) 0.002 0.97 0.027 0.5 0.97 0.95
RF (e−/π−) 6 · 10−4 0.94 0.02 0.47 0.98 0.97

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 20 / 27



Reconstructing η → e+e−γ events

Both classifiers are capable to suppress
η → π+π−γ events

Random forest outperforms neural network
(see table on previous slide)

η → e+e−γ signal not significantly altered by
classifiers
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From Machine to Deep Learning (in a very naive picture)
“Classical” Machine learning

I Features obtained after pre-processing (calibration, analysis cuts, variable
selection,...) → feature-engineering

I Pre-processing encodes information into data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning

I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Deep learning is NOT trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow
I ROOT
I ...
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DIY: Physics Data Analysis

1.) Go to: https://replit.com/@daniel49/FSUMLLecture4

2.) Klick on the Fork button

3.) Sign in or log in with your credentials (repl is free)

4.) Follow instructions in main.py

NOTE: The data you are able to analyze on repl, is just a sub-set (∼ 20 k events)
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Machine / Deep Learning vs. Fitting a Function

ML / DL Fit Function (e.g Gauss, pol(N),...)

Parameters weights, nodes,... mean, width, pi · x i , ...

Hyper Parameters learning rate, architecture, order of pol., include tails,
learning epochs, tolerance,... fit iterations, tolerance,...

Optimizer Adam, SGD, L-BFGS,... χ2, Log-Likelihood

Data Sets training, validation,.. same here
bootstrapping

Performance Evaluation Mean squared error,... χ2/ndf,...

Basic question Which model? Which fit function?

... ... ...
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Machine / Deep Learning vs. Fitting a Function

At its heart, using machine (deep) learning is not much different to fitting a function

Machine / Deep learning algorithms are successful, because they consist of many (∼ 100 -
∼ 109) parameters ⇒ (Many) hyper parameters to tune

Provocative statement: Machine / Deep learning is:
Reduction of N adjustable parameters to M << N adjustable hyper parameters

Depending on the data set (complexity / size) ⇒ Training of ML / DL is far more
challenging than a pol. fit

Do not be afraid to use ML / DL
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challenging than a pol. fit

Do not be afraid to use ML / DL

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 24 / 27



Machine / Deep Learning vs. Fitting a Function

At its heart, using machine (deep) learning is not much different to fitting a function

Machine / Deep learning algorithms are successful, because they consist of many (∼ 100 -
∼ 109) parameters ⇒ (Many) hyper parameters to tune

Provocative statement: Machine / Deep learning is:
Reduction of N adjustable parameters to M << N adjustable hyper parameters

Depending on the data set (complexity / size) ⇒ Training of ML / DL is far more
challenging than a pol. fit

Do not be afraid to use ML / DL

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 24 / 27



Machine / Deep Learning vs. Fitting a Function

At its heart, using machine (deep) learning is not much different to fitting a function

Machine / Deep learning algorithms are successful, because they consist of many (∼ 100 -
∼ 109) parameters ⇒ (Many) hyper parameters to tune

Provocative statement: Machine / Deep learning is:
Reduction of N adjustable parameters to M << N adjustable hyper parameters

Depending on the data set (complexity / size) ⇒ Training of ML / DL is far more
challenging than a pol. fit

Do not be afraid to use ML / DL

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 24 / 27



Open Questions
I want to use machine learning in my analysis. Do I have to switch to
DataFrames?

I No you do not have to, but you can.
I Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
I Once the algorithm(s) are trained you can deploy them to your (ROOT / Java /

python / ...) analysis

Which framework is the best for me? Or which is the best to start with?

I It depends on what you want to do
I Efficient and quick filtering of large data sets without tuning too much → Apache

Spark (not discussed in this lecture)
I R & D on many different algorithms with flexibility on parameter tuning → Scikit
I R & D on analyzing large and complex data sets, various options to customize own

model → Tensorflow (not discussed in this lecture)
I Of course, there is some overlap between the different frameworks
I Good documentation for each of them

Which model shall I use for my analysis?

I Again, it depends on what you want to do (classify small data set with few features
vs. customized model on individual problem)

I There is no need to use a deep model with 109 parameters, if a random forest
classifier shows (after a careful analysis) a close to perfect performance

I Do not try to fine tune a random forest classifier on a complex data set (e.g. ∼ 100
different correlated variables), if you can not achieve a reasonable performance
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References and Further Reading
Most of the information / code pieces have been taken from / inspired by the following
web-sites: (the blue items are clickable links)

I Apache Spark
I Apache Spark ML
I Pyspark documentation
I Python scikit-learn
I Tensorflow
I Tensorflow Keras Models
I Keras
I stackoverflow
I distill.pub: Current problems and issues in machine/deep learning
I A Recipe for Training Neural Networks (Andrej Karpathy)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by Aurélien

Géron → Really good book!
I Talks from the deep learning for science school 2019
I Talks from the deep learning for science school 2020

If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it
up (stackoverflow, google, yahoo,...), most likely someone has a similar problem
Try not to start from scratch (sometimes not avoidable)
Again, there is no easy / quick way to learn all the aspects of machine learning
My personal recommendation: Try it out yourself! (i.e. pick an example data set and
start playing around)

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 26 / 27

https://spark.apache.org/
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https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://keras.io
https://stackoverflow.com/
https://distill.pub/
http://karpathy.github.io/2019/04/25/recipe/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://dl4sci-school.lbl.gov/agenda


References and Further Reading
Most of the information / code pieces have been taken from / inspired by the following
web-sites: (the blue items are clickable links)

I Apache Spark
I Apache Spark ML
I Pyspark documentation
I Python scikit-learn
I Tensorflow
I Tensorflow Keras Models
I Keras
I stackoverflow
I distill.pub: Current problems and issues in machine/deep learning
I A Recipe for Training Neural Networks (Andrej Karpathy)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by Aurélien

Géron → Really good book!
I Talks from the deep learning for science school 2019
I Talks from the deep learning for science school 2020

If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it
up (stackoverflow, google, yahoo,...), most likely someone has a similar problem

Try not to start from scratch (sometimes not avoidable)
Again, there is no easy / quick way to learn all the aspects of machine learning
My personal recommendation: Try it out yourself! (i.e. pick an example data set and
start playing around)

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 26 / 27

https://spark.apache.org/
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/2.3.1/api/python/pyspark.ml.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://keras.io
https://stackoverflow.com/
https://distill.pub/
http://karpathy.github.io/2019/04/25/recipe/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://dl4sci-school.lbl.gov/agenda


References and Further Reading
Most of the information / code pieces have been taken from / inspired by the following
web-sites: (the blue items are clickable links)

I Apache Spark
I Apache Spark ML
I Pyspark documentation
I Python scikit-learn
I Tensorflow
I Tensorflow Keras Models
I Keras
I stackoverflow
I distill.pub: Current problems and issues in machine/deep learning
I A Recipe for Training Neural Networks (Andrej Karpathy)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by Aurélien

Géron → Really good book!
I Talks from the deep learning for science school 2019
I Talks from the deep learning for science school 2020

If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it
up (stackoverflow, google, yahoo,...), most likely someone has a similar problem
Try not to start from scratch (sometimes not avoidable)

Again, there is no easy / quick way to learn all the aspects of machine learning
My personal recommendation: Try it out yourself! (i.e. pick an example data set and
start playing around)

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 26 / 27

https://spark.apache.org/
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/2.3.1/api/python/pyspark.ml.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://keras.io
https://stackoverflow.com/
https://distill.pub/
http://karpathy.github.io/2019/04/25/recipe/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://dl4sci-school.lbl.gov/agenda


References and Further Reading
Most of the information / code pieces have been taken from / inspired by the following
web-sites: (the blue items are clickable links)

I Apache Spark
I Apache Spark ML
I Pyspark documentation
I Python scikit-learn
I Tensorflow
I Tensorflow Keras Models
I Keras
I stackoverflow
I distill.pub: Current problems and issues in machine/deep learning
I A Recipe for Training Neural Networks (Andrej Karpathy)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by Aurélien

Géron → Really good book!
I Talks from the deep learning for science school 2019
I Talks from the deep learning for science school 2020

If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it
up (stackoverflow, google, yahoo,...), most likely someone has a similar problem
Try not to start from scratch (sometimes not avoidable)
Again, there is no easy / quick way to learn all the aspects of machine learning

My personal recommendation: Try it out yourself! (i.e. pick an example data set and
start playing around)

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 26 / 27

https://spark.apache.org/
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/2.3.1/api/python/pyspark.ml.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://keras.io
https://stackoverflow.com/
https://distill.pub/
http://karpathy.github.io/2019/04/25/recipe/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://dl4sci-school.lbl.gov/agenda


References and Further Reading
Most of the information / code pieces have been taken from / inspired by the following
web-sites: (the blue items are clickable links)

I Apache Spark
I Apache Spark ML
I Pyspark documentation
I Python scikit-learn
I Tensorflow
I Tensorflow Keras Models
I Keras
I stackoverflow
I distill.pub: Current problems and issues in machine/deep learning
I A Recipe for Training Neural Networks (Andrej Karpathy)
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by Aurélien

Géron → Really good book!
I Talks from the deep learning for science school 2019
I Talks from the deep learning for science school 2020

If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it
up (stackoverflow, google, yahoo,...), most likely someone has a similar problem
Try not to start from scratch (sometimes not avoidable)
Again, there is no easy / quick way to learn all the aspects of machine learning
My personal recommendation: Try it out yourself! (i.e. pick an example data set and
start playing around)

Daniel Lersch (FSU) Computational Physics Lab April 15, 2021 26 / 27

https://spark.apache.org/
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/2.3.1/api/python/pyspark.ml.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://keras.io
https://stackoverflow.com/
https://distill.pub/
http://karpathy.github.io/2019/04/25/recipe/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://dl4sci-school.lbl.gov/agenda


Final Remarks

Tried to give a rough impression on machine learning in physics data analysis

Did not cover all aspects in machine learning

Not all shown code snippets are best programming practice → They shall simply
give you an idea on how to implement various functions

scikit provides a much larger functionality than shown in this lecture

Many approaches shown here are based on my own experience, i.e. NOT the
ultimate truth → Someone else might have tackled the problems differently

I hope you had fun!
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