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Objective(s)

  

Particle P with
true momentum p(true) 

Particle P with reconstructed 
momentum p(rec) 

DETECTOR

AI MODEL

Particle Type
(electron, pion,...)

Particle momentum
with improved resolution:
p(model) ≈ p(true)

Require from AI MODEL:
1. Identify particles

2. Improve resolution

3. Easy to diagnose by analyzer
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Autoencoder Neural Networks

Autoencoder = Encoder + Decoder
Symmetric architecture
Train model for one particle type: Data In ≈ Data Out
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Autoencoders: Compression and Decompression

Daniel Lersch (FSU) JLAB AI Town Hall Meeting August 28, 2020 4 / 10



Autoencoders: Compression and Decompression

Daniel Lersch (FSU) JLAB AI Town Hall Meeting August 28, 2020 4 / 10



Autoencoders: Compression and Decompression

Daniel Lersch (FSU) JLAB AI Town Hall Meeting August 28, 2020 4 / 10



Autoencoders: Anomaly Detection in Data
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LEpton Autoencoder - LEA @ GlueX
Debug-Mode
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Positron Hypothesis

Electron Hypothesis

GlueX Spring 2018 Lepton Data

Residual = Data In - Data Out

Residual = 0: Everything is fine

Residual 6= 0: Background and/or
model is bugged
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LEpton Autoencoder - LEA @ GlueX
PID-Mode
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No Cut

E/p-Cut

Neural Network

LEA

φ

ψJ/

77% of GlueX Spring 2018 Data
Approach MCCa S/

√
S + Bb

E/p-cut 0.83 5.6

Neural Network 0.85 5.6

LEA 0.87 8.0

aFor lepton/pion simulated single tracks
bFor measured J/ψ → e+e− events
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Taking PID to the next Level: Hypothesis Fitting

Can we use our model to improve the feature resolution?

Adapt formalism from kinematic fitting
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Preliminary Results
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Measured Particle 4-Momenta

Fitted Particle 4-Momenta

Particle 4-Momenta from Model

 500 + Cut on model loss L≤ p) -e+ e→ pγ(2
KFit

χ
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measured features

features from model

First tests show promising results

Predicted features show improved resolution

Good agreement between kinematic fitter and model for low invariant masses
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Bonus: Generating Lepton (like) Data
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Summary and Outlook

Use autoencoder neural networks:

2� Identify particles

2� Improve Resolution

2� Easy to diagnose by analyzer

Ongoing / future work:

Optimize fitter to describe high dilepton invariant masses

Extend fitter model to
I (dilepton) data generator
I fit / identify other particle types (pions, protons, kaons...)

Collaborators are always welcome
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