Particle Hypothesis Fitting with Autoencoder Neural Networks

Daniel Lersch¹ & Prof. Sean Dobbs²

August 28, 2020

1 (dlersch@jlab.org)

² (sdobbs@fsu.edu)

Daniel Lersch (FSU)

Objective(s)

Autoencoder Neural Networks

Dense layer with n neurons (n scales with height)

- Autoencoder = Encoder + Decoder
- Symmetric architecture
- \bullet Train model for one particle type: Data In \approx Data Out

Daniel Lersch (FSU)

Autoencoders: Compression and Decompression

Features:

- momentum
- theta
- ddEdx(CDC)
- dE(BCAL 0)
- dE(BCAL all)
- ddEdx(FDC)
- dE(FCAL)
- E9E25 (FCAL)
- E1E9 (FCAL)

Autoencoders: Compression and Decompression

Compression / dimensional reduction from $9 \rightarrow 4$ dimensions

Autoencoders: Compression and Decompression

Daniel Lersch (FSU)

JLAB AI Town Hall Meeting

August 28, 2020 4 / 10

Feature correlations similar to training data

Daniel Lersch (FSU)

Feature correlations similar to training data

Daniel Lersch (FSU)

Feature correlations similar to training data

Daniel Lersch (FSU)

Feature correlations similar to training data

Daniel Lersch (FSU)

LEpton Autoencoder - LEA @ GlueX

- Residual = Data In Data Out
- Residual = 0: Everything is fine ٠
- Residual \neq 0: Background and/or model is bugged

LEpton Autoencoder - LEA @ GlueX

• Can we use our model to improve the feature resolution?

- Can we use our model to improve the feature resolution?
- Adapt formalism from kinematic fitting

- Can we use our model to improve the feature resolution?
- Adapt formalism from kinematic fitting

improve resolution

improve resolution

Daniel Lersch (FSU)

JLAB AI Town Hall Meeting

August 28, 2020 7 / 10

- Can we use our model to improve the feature resolution?
- Adapt formalism from kinematic fitting

improve resolution with respect to constraints on reaction hypothesis improve resolution with respect to constraints on detector response for a given particle type

Daniel Lersch (FSU)

JLAB AI Town Hall Meeting

August 28, 2020 7 / 10

Preliminary Results

- First tests show promising results
- Predicted features show improved resolution
- Good agreement between kinematic fitter and model for low invariant masses

Preliminary Results

- First tests show promising results
- Predicted features show improved resolution
- Good agreement between kinematic fitter and model for low invariant masses

Preliminary Results

- First tests show promising results
- Predicted features show improved resolution
- Good agreement between kinematic fitter and model for low invariant masses

Left: Original Data / Right: Generated Data

Daniel Lersch (FSU)

Summary and Outlook

Use autoencoder neural networks:

- Identify particles
- Improve Resolution
- $\ensuremath{\ensuremath{\boxtimes}}$ Easy to diagnose by analyzer

Ongoing / future work:

- Optimize fitter to describe high dilepton invariant masses
- Extend fitter model to
 - (dilepton) data generator
 - fit / identify other particle types (pions, protons, kaons...)
- Collaborators are always welcome