Kinematic Fitting in Hadron Physics

Prof. Sean Dobbs¹ & Daniel Lersch²

April 8, 2020

2 (dlersch@jlab.org)

^{1 (}sdobbs@fsu.edu)

Scope of this (2 Parts) Lecture

- Application of kinematic fitting techniques to (hadron) physics data analysis
 - Example analysis of $pp \rightarrow ppX$ reactions $(X = \pi^+\pi^-, X = \pi^+\pi^-\pi^0, X = \eta,...)$
 - **Goal:** Reconstruct the reaction: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
 - Get familiar with kinematic fitting

Scope of this (2 Parts) Lecture

- Application of kinematic fitting techniques to (hadron) physics data analysis
 - Example analysis of $pp \rightarrow ppX$ reactions $(X = \pi^+\pi^-, X = \pi^+\pi^-\pi^0, X = \eta,...)$
 - ▶ **Goal:** Reconstruct the reaction: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
 - Get familiar with kinematic fitting
- Homework (will be hand out by Wednesday)
 - Repeat analysis techniques discussed within this lecture on a given data set
 - Homework data with be similar (but not identical!) to the data presented in this lecture
 - This presentation and the homework will (soon) be available at: http://hadron.physics.fsu.edu/~dlersch/
 - Reference: Paul Avery: "Fitting Theory Writeups and References" https://www.phys.ufl.edu/~avery/fitting.html
 - \rightarrow Nice summary lectures about kinematic fitting

Scope of this (2 Parts) Lecture

- Application of kinematic fitting techniques to (hadron) physics data analysis
 - Example analysis of $pp \rightarrow ppX$ reactions $(X = \pi^+\pi^-, X = \pi^+\pi^-\pi^0, X = \eta,...)$
 - ▶ **Goal:** Reconstruct the reaction: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
 - Get familiar with kinematic fitting
- Homework (will be hand out by Wednesday)
 - Repeat analysis techniques discussed within this lecture on a given data set
 - Homework data with be similar (but not identical!) to the data presented in this lecture
 - This presentation and the homework will (soon) be available at: http://hadron.physics.fsu.edu/~dlersch/
 - Reference: Paul Avery: "Fitting Theory Writeups and References" https://www.phys.ufl.edu/~avery/fitting.html → Nice summary lectures about kinematic fitting
- Have fun!

- Data set and experimental setup
- Monitoring spectra
- Reference analysis
- Introduction to kinematic fitting

The $pp \rightarrow ppX$ Data Set

• The data set analyzed in this lecture is composed of three generated³ reactions:

i)
$$pp \rightarrow pp\pi^{+}\pi^{-}$$

ii) $pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}[\pi^{0} \rightarrow \gamma\gamma]$
iii) $pp \rightarrow pp\eta[\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}[\pi^{0} \rightarrow \gamma\gamma]]$

 $^{^{3}}$ Just phase-space, nothing too exciting 4

⁵

The $pp \rightarrow ppX$ Data Set

• The data set analyzed in this lecture is composed of three generated³ reactions:

i)
$$pp \rightarrow pp\pi^{+}\pi^{-}$$

ii) $pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}[\pi^{0} \rightarrow \gamma\gamma]$
iii) $pp \rightarrow pp\eta[\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}[\pi^{0} \rightarrow \gamma\gamma]]$

• The relative abundance increase:⁴ $N(pp \rightarrow pp\pi^{+}\pi^{-}) > N(pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}) > N(pp \rightarrow pp\eta[\eta \rightarrow ..])$

³Just phase-space, nothing too exciting ⁴Did not use realistic ratios,

The $pp \rightarrow ppX$ Data Set

• The data set analyzed in this lecture is composed of three generated³ reactions:

i)
$$pp \rightarrow pp\pi^{+}\pi^{-}$$

ii) $pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}[\pi^{0} \rightarrow \gamma\gamma]$
iii) $pp \rightarrow pp\eta[\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}[\pi^{0} \rightarrow \gamma\gamma]]$

- The relative abundance increase:⁴ $N(pp \rightarrow pp\pi^{+}\pi^{-}) > N(pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}) > N(pp \rightarrow pp\eta[\eta \rightarrow ..])$
- Each reaction is reconstructed ⁵ within a hypothetical detector, including:
 - Resolution effects
 - Reconstruction inefficiencies

⁴Did not use realistic ratios,

⁵No GEANT4, just computed different response functions to mimic a detector,

³Just phase-space, nothing too exciting

The SImple DEtector - SIDE Project

- Hypothetical experimental setup, inspired by WASA-at-COSY and GlueX
- Proton beam on proton target inside centre of SIDE
- Right-handed spherical coordinate system with origin at target location
- "Detector" mainly consists of two halves (Left and Right)

The SImple DEtector - SIDE Project

- Hypothetical experimental setup, inspired by WASA-at-COSY and GlueX
- Proton beam on proton target inside centre of SIDE
- Right-handed spherical coordinate system with origin at target location
- "Detector" mainly consists of two halves (Left and Right)

SIDE: Overview and Performance

Experiment / Detector Property	Setting
Target	point-like
beam energy	$1.5{ m GeV}$
Vertex information	No ightarrow point-like interaction region
Angular Coverage	$\sim 4\pi$
Particle Reconstruction	Charged and Neutral
Acceptance Loss	Beam line at $ heta \leq 10^\circ$
	Target line insertion at $\phi=\pm90^\circ$
p / π^+ misidentification	$\sim 15\%$

- Remember, this detector does not exist in reality
- Some settings are not realistic

- Momentum resolution σ_p depends on charge: σ_p(+q) < σ_p(−p)
- Beam line at $heta \leq 10^\circ$
- Detection inefficiency ϵ , depending on ϕ : $\epsilon(L) > \epsilon(R)$

- Momentum resolution σ_p depends on charge: $\sigma_p(+q) < \sigma_p(-p)$
- Beam line at $\theta \leq 10^{\circ}$
- Detection inefficiency ϵ , depending on ϕ : $\epsilon(L) > \epsilon(R)$

- Momentum resolution σ_p depends on charge: σ_p(+q) < σ_p(−p)
- Beam line at $heta \leq 10^\circ$
- Detection inefficiency ϵ , depending on ϕ : $\epsilon(L) > \epsilon(R)$

- Momentum resolution σ_p depends on charge: $\sigma_p(+q) < \sigma_p(-p)$
- Beam line at $\theta \leq 10^{\circ}$
- Detection inefficiency ϵ , depending on ϕ : $\epsilon(L) > \epsilon(R)$

- Momentum resolution σ_p depends on charge: $\sigma_p(+q) < \sigma_p(-p)$
- Beam line at $\theta \leq 10^{\circ}$
- Detection inefficiency ϵ , depending on ϕ : $\epsilon(L) > \epsilon(R)$

Photon Reconstruction and Fake Photons

One (charged) particle in the calorimeter

- Most hadron physics experiments use a calorimeter for photon reconstruction → So does SIDE
- Energy spread pattern of charged / neutral particles hitting the calorimeter might cause falsely reconstructed photons
- These photons are referred as (hadronic) split-offs → Not discussed in detail here
- For simplicity, we call these photons: "fake photons"

Intermediate Summary and next Steps

- Simulated measurements of $pp \rightarrow ppX$ reactions
- Reconstructed particles with SIDE:
 - Not a perfect detector
 - Reconstruction inefficiencies
 - Resolution effects
 - Particle misidentification
- Next: select events with: $\eta \to \pi^+ \pi^- \pi^0$ decays, but we need:
 - Selection criteria
 - \blacktriangleright Monitoring plots \rightarrow to have control over the selection
- The following slides will present a small analysis walk through

 No matter how you perform your analysis ⇒ monitor every single step (future-you will be thankful!)

- No matter how you perform your analysis ⇒ monitor every single step (future-you will be thankful!)
- There are many monitoring variables / plots, some more helpful than others

- No matter how you perform your analysis ⇒ monitor every single step (future-you will be thankful!)
- There are many monitoring variables / plots, some more helpful than others
- Always helpful: Energy and momentum conservation

- No matter how you perform your analysis ⇒ monitor every single step (future-you will be thankful!)
- There are many monitoring variables / plots, some more helpful than others
- Always helpful: Energy and momentum conservation
- Suppose reaction: particle1 + particle2 \rightarrow particle3 + particle4 + ...

- No matter how you perform your analysis ⇒ monitor every single step (future-you will be thankful!)
- There are many monitoring variables / plots, some more helpful than others
- Always helpful: Energy and momentum conservation
- Suppose reaction: particle1 + particle2 \rightarrow particle3 + particle4 + ...
- Each particle *i* is defined by 4-momentum vector (Lorentz-Vector) **P**_{*i*}:

$$\mathbf{P}_{i} = \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ E \end{pmatrix}$$
(1)

- No matter how you perform your analysis ⇒ monitor every single step (future-you will be thankful!)
- There are many monitoring variables / plots, some more helpful than others
- Always helpful: Energy and momentum conservation
- Suppose reaction: particle1 + particle2 \rightarrow particle3 + particle4 + ...
- Each particle *i* is defined by 4-momentum vector (Lorentz-Vector) **P**_{*i*}:

$$\mathbf{P}_{i} = \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ E \end{pmatrix}$$
(1)

• Energy and momentum conservation: Incoming and outgoing 4-momenta should balance out

$$\mathbf{P}_{in} = \mathbf{P}_{out} \Leftrightarrow \mathbf{P}_1 + \mathbf{P}_2 - \mathbf{P}_3 - \mathbf{P}_4 - \dots \stackrel{!}{=} \mathbf{0}$$
(2)

(Overall) Missing Mass

• Using the definition from the previous slide:

$$M_{x}(P_{3}, P_{4}, ..) = \|\mathbf{P}_{in} - \mathbf{P}_{out}\| \Leftrightarrow \|\mathbf{P}_{1} + \mathbf{P}_{2} - \mathbf{P}_{3} - \mathbf{P}_{4} - ...\| \stackrel{!}{=} 0$$
(3)

• Shown below: M_{x}^{2} for the reaction hypothesis: $pp \rightarrow pp\pi^{+}\pi^{-}\gamma_{1}\gamma_{2}$

• Possible reasons for $M_{\star}^2 \neq 0$: Resolution effects from experimental setup, background reactions which do not match the reaction topology, misidentified particles

- Missing momentum = $|\vec{P}_1 + \vec{P}_2 \vec{P}_3 \vec{P}_4 ...| \in [0, \mathbb{R})$
- Missing energy = $E_1 + E_2 E_3 E_4 ... \in (-\mathbb{R}, \mathbb{R})$

- Missing momentum = $|\vec{P}_1 + \vec{P}_2 \vec{P}_3 \vec{P}_4 ...| \in [0, \mathbb{R})$
- Missing energy = $E_1 + E_2 E_3 E_4 \ldots \in (-\mathbb{R}, \mathbb{R})$
- <u>Ideal case</u>: missing momentum = missing energy = 0

- Missing momentum = $|\vec{P}_1 + \vec{P}_2 \vec{P}_3 \vec{P}_4 ...| \in [0, \mathbb{R})$
- Missing energy = $E_1 + E_2 E_3 E_4 \dots \in (-\mathbb{R}, \mathbb{R})$
- <u>Ideal case</u>: missing momentum = missing energy = 0
- Semi-ideal case: missing momentum $\simeq \pm$ missing energy

- Missing momentum = $|\vec{P}_1 + \vec{P}_2 \vec{P}_3 \vec{P}_4 ...| \in [0, \mathbb{R})$
- Missing energy = $E_1 + E_2 E_3 E_4 \ldots \in (-\mathbb{R}, \mathbb{R})$
- <u>Ideal case</u>: missing momentum = missing energy = 0
- <u>Semi-ideal case:</u> missing momentum $\simeq \pm$ missing energy
- Shifts / offsets with respect to x-axis:
 - Particle misidentification, i.e. incorrect mass assignment
 - Background events which do not match the reaction hypothesis of interest

- Missing momentum = $|\vec{P}_1 + \vec{P}_2 \vec{P}_3 \vec{P}_4 ...| \in [0, \mathbb{R})$
- Missing energy = $E_1 + E_2 E_3 E_4 ... \in (-\mathbb{R}, \mathbb{R})$
- <u>Ideal case</u>: missing momentum = missing energy = 0
- Semi-ideal case: missing momentum $\simeq \pm$ missing energy
- Shifts / offsets with respect to x-axis:
 - Particle misidentification, i.e. incorrect mass assignment
 - Background events which do not match the reaction hypothesis of interest
- $\bullet~$ BUT: Observing: missing momentum $\simeq\pm$ missing energy does NOT guarantee that your data sample is background free

Intermediate States: Missing Mass vs. Invariant Mass

Intermediate States: Missing Mass vs. Invariant Mass

Intermediate States: Missing Mass vs. Invariant Mass

- Look at reaction: $pp \rightarrow pp\pi^+\pi^- + 2$ fake photons
- Missing mass: $\overline{M_x(p_1, p_2)} = \|\mathbf{P}_{beam} + \mathbf{P}_{target} - (\mathbf{P}_{p_1} + \mathbf{P}_{p_2})\|$
- Invariant mass: $M(\pi^+, \pi^-, \gamma_1, \gamma_2) = \|\mathbf{P}_{\pi^+} + \mathbf{P}_{\pi^-} + \mathbf{P}_{\gamma_1} + \mathbf{P}_{\gamma_1}\|$ • Ideally: $M_x(p_1, p_2) = M(\pi^+, \pi^-, \gamma_1, \gamma_2)$

Analysis

- NOTE: All cuts shown in the following are "first-guess" cuts and chosen for demonstration purposes only
- Use the missing momentum vs. missing energy plot to monitor effects of cuts

Special Topics in Hadron Physics

Analysis

- NOTE: All cuts shown in the following are "first-guess" cuts and chosen for demonstration purposes only
- Use the missing momentum vs. missing energy plot to monitor effects of cuts
- 1. Request: $M(\gamma_1, \gamma_2) \approx m_{\pi^0}$ \rightarrow suppress all $pp \rightarrow pp\pi^+\pi^-$ events, by rejection low energetic photons

Special Topics in Hadron Physics

Analysis

- NOTE: All cuts shown in the following are "first-guess" cuts and chosen for demonstration purposes only
- Use the missing momentum vs. missing energy plot to monitor effects of cuts
- 1. Request: $M(\gamma_1, \gamma_2) \approx m_{\pi^0}$ \rightarrow suppress all $pp \rightarrow pp\pi^+\pi^-$ events, by rejection low energetic photons
- 2. Select: $M_x^2(p_1, p_2, \pi^+, \pi^-\gamma_1, \gamma_2) \approx 0$ \rightarrow ensure energy and momentum conservation

- Successfully selected events with: π^+ , π^- and two photons in the final state
- But, which events stem from $\eta \to \pi^+ \pi^- \pi^0$?
- Might / should have performed analysis differently

- Successfully selected events with: π^+ , π^- and two photons in the final state
- But, which events stem from $\eta \to \pi^+ \pi^- \pi^0$?
- Might / should have performed analysis differently

- The selection criteria shown on the previous slides are NOT the ultimate truth
- Someone else might have performed this analysis differently
- Exploring different analysis chains / techniques helps you to better understand your data
- Physics Data Analysis is always an iterative process

- Successfully selected events with: π^+ , π^- and two photons in the final state
- But, which events stem from $\eta \to \pi^+ \pi^- \pi^0$?
- Might / should have performed analysis differently

- The selection criteria shown on the previous slides are NOT the ultimate truth
- Someone else might have performed this analysis differently
- Exploring different analysis chains / techniques helps you to better understand your data
- Physics Data Analysis is always an iterative process
- No matter which cut(s) you end up choosing, two basic requirements need to be fulfilled:
 - i) Take detector resolution into account
 - \to A 0.00003 ${\rm GeV}$ energy cut window is pointless if the detector resolution is in the order of $\sim 0.1\,{\rm GeV}$
 - ii) Consider reaction kinematics
 - \rightarrow All previously shown cuts did this to some extend

- Successfully selected events with: π^+ , π^- and two photons in the final state
- But, which events stem from $\eta \to \pi^+ \pi^- \pi^0$?
- Might / should have performed analysis differently

- The selection criteria shown on the previous slides are NOT the ultimate truth
- Someone else might have performed this analysis differently
- Exploring different analysis chains / techniques helps you to better understand your data
- Physics Data Analysis is always an iterative process
- No matter which cut(s) you end up choosing, two basic requirements need to be fulfilled:
 - i) Take detector resolution into account
 - \to A 0.00003 ${\rm GeV}$ energy cut window is pointless if the detector resolution is in the order of $\sim 0.1\,{\rm GeV}$
 - ii) Consider reaction kinematics
 - \rightarrow All previously shown cuts did this to some extend
- \Rightarrow Kinematic Fitting

Daniel Lersch (FSU)

April 8, 2020 15 / 45

Suppose (again) the reaction: P₁ + P₂ → P₃ + P₄ + ..., where P_i is the Lorentz-Vector of particle *i* and all particle momenta are known

- Suppose (again) the reaction: P₁ + P₂ → P₃ + P₄ + ..., where P_i is the Lorentz-Vector of particle *i* and all particle momenta are known
- Each vector is determined by <u>measured</u> quantities (angles, momenta,..), i.e. your detector

- Suppose (again) the reaction: P₁ + P₂ → P₃ + P₄ + ..., where P_i is the Lorentz-Vector of particle *i* and all particle momenta are known
- Each vector is determined by <u>measured</u> quantities (angles, momenta,..), i.e. your detector
- The detector is (unfortunately) not perfect ightarrow Each quantity bears an uncertainty σ

- Suppose (again) the reaction: P₁ + P₂ → P₃ + P₄ + ..., where P_i is the Lorentz-Vector of particle *i* and all particle momenta are known
- Each vector is determined by <u>measured</u> quantities (angles, momenta,..), i.e. your detector
- The detector is (unfortunately) not perfect ightarrow Each quantity bears an uncertainty σ
- Given spherical coordinates, one might assign for each particle i:
 - $\sigma_{p,i} \leftrightarrow$ Momentum uncertainty
 - $\sigma_{\theta,i} \leftrightarrow \text{Angular uncertainty for } \theta$
 - $\sigma_{\phi,i} \leftrightarrow \text{Angular uncertainty for } \phi$

- Suppose (again) the reaction: P₁ + P₂ → P₃ + P₄ + ..., where P_i is the Lorentz-Vector of particle i and all particle momenta are known
- Each vector is determined by <u>measured</u> quantities (angles, momenta,..), i.e. your detector
- The detector is (unfortunately) not perfect ightarrow Each quantity bears an uncertainty σ
- Given spherical coordinates, one might assign for each particle i:
 - $\sigma_{p,i} \leftrightarrow$ Momentum uncertainty
 - $\sigma_{\theta,i} \leftrightarrow \text{Angular uncertainty for } \theta$
 - $\sigma_{\phi,i} \leftrightarrow \text{Angular uncertainty for } \phi$
- This means, that each particle stems from a true⁶-Vector with: $p_{i,true}$, $\theta_{i,true}$ and $\phi_{i,true}$

⁶The vector which describes the particle in reality

- Suppose (again) the reaction: P₁ + P₂ → P₃ + P₄ + ..., where P_i is the Lorentz-Vector of particle *i* and all particle momenta are known
- Each vector is determined by <u>measured</u> quantities (angles, momenta,..), i.e. your detector
- The detector is (unfortunately) not perfect ightarrow Each quantity bears an uncertainty σ
- Given spherical coordinates, one might assign for each particle i:
 - $\sigma_{p,i} \leftrightarrow$ Momentum uncertainty
 - $\sigma_{\theta,i} \leftrightarrow \text{Angular uncertainty for } \theta$
 - $\sigma_{\phi,i} \leftrightarrow \text{Angular uncertainty for } \phi$
- This means, that each particle stems from a true⁶-Vector with: $p_{i,true}$, $\theta_{i,true}$ and $\phi_{i,true}$
- Assuming that each measured quantity follows a gaussian distribution, one might write:
 - $p_{i,measured} = p_{i,true} \pm \sigma_{p,i}$
 - $\theta_{i,measured} = \theta_{i,true} \pm \sigma_{\theta,i}$
 - $\phi_{i,measured} = \phi_{i,true} \pm \sigma_{\phi,i}$

⁶The vector which describes the particle in reality

- Suppose (again) the reaction: P₁ + P₂ → P₃ + P₄ + ..., where P_i is the Lorentz-Vector of particle *i* and all particle momenta are known
- Each vector is determined by <u>measured</u> quantities (angles, momenta,..), i.e. your detector
- The detector is (unfortunately) not perfect ightarrow Each quantity bears an uncertainty σ
- Given spherical coordinates, one might assign for each particle i:
 - $\sigma_{p,i} \leftrightarrow$ Momentum uncertainty
 - $\sigma_{\theta,i} \leftrightarrow \text{Angular uncertainty for } \theta$
 - $\sigma_{\phi,i} \leftrightarrow \text{Angular uncertainty for } \phi$
- This means, that each particle stems from a true⁶-Vector with: $p_{i,true}$, $\theta_{i,true}$ and $\phi_{i,true}$
- Assuming that each measured quantity follows a gaussian distribution, one might write:
 - $p_{i,measured} = p_{i,true} \pm \sigma_{p,i}$
 - $\theta_{i,measured} = \theta_{i,true} \pm \sigma_{\theta,i}$
 - $\phi_{i,measured} = \phi_{i,true} \pm \sigma_{\phi,i}$
- Since the measured quantities and the uncertainties are known, one might find the true information by fitting

⁶The vector which describes the particle in reality

Daniel Lersch (FSU)

Special Topics in Hadron Physics

• Presuming that all variables (and the corresponding uncertainties) are measured independently⁷ and gaussian distributed, one might formulate:

$$\chi^{2} \equiv \sum_{i} \left[\left(\frac{p_{meas,i} - p_{fit,i}}{\sigma_{p,i}} \right)^{2} + \left(\frac{\theta_{meas,i} - \theta_{fit,i}}{\sigma_{\theta,i}} \right)^{2} + \left(\frac{\phi_{meas,i} - \phi_{fit,i}}{\sigma_{\phi,i}} \right)^{2} \right] \stackrel{!}{=} 0 \quad (4)$$

⁷This is already a dangerous assumption!

• Presuming that all variables (and the corresponding uncertainties) are measured independently⁷ and gaussian distributed, one might formulate:

$$\chi^{2} \equiv \sum_{i} \left[\left(\frac{p_{meas,i} - p_{fit,i}}{\sigma_{p,i}} \right)^{2} + \left(\frac{\theta_{meas,i} - \theta_{fit,i}}{\sigma_{\theta,i}} \right)^{2} + \left(\frac{\phi_{meas,i} - \phi_{fit,i}}{\sigma_{\phi,i}} \right)^{2} \right] \stackrel{!}{=} 0 \quad (4)$$

• This does not help much, because one could simply set $p_{meas,i} = p_{fit,i}$, $\theta_{meas,i} = \theta_{fit,i}$,... and obtain $\chi^2 = 0$

⁷This is already a dangerous assumption!

• Presuming that all variables (and the corresponding uncertainties) are measured independently⁷ and gaussian distributed, one might formulate:

$$\chi^{2} \equiv \sum_{i} \left[\left(\frac{p_{meas,i} - p_{fit,i}}{\sigma_{p,i}} \right)^{2} + \left(\frac{\theta_{meas,i} - \theta_{fit,i}}{\sigma_{\theta,i}} \right)^{2} + \left(\frac{\phi_{meas,i} - \phi_{fit,i}}{\sigma_{\phi,i}} \right)^{2} \right] \stackrel{!}{=} 0 \quad (4)$$

- This does not help much, because one could simply set $p_{meas,i} = p_{fit,i}$, $\theta_{meas,i} = \theta_{fit,i}$,... and obtain $\chi^2 = 0$
- BUT: The true particle 4-vectors are not random, as they are attached to the underlying reaction which produced the particles \to Energy and momentum conservation

⁷This is already a dangerous assumption!

• Presuming that all variables (and the corresponding uncertainties) are measured independently⁷ and gaussian distributed, one might formulate:

$$\chi^{2} \equiv \sum_{i} \left[\left(\frac{p_{meas,i} - p_{fit,i}}{\sigma_{p,i}} \right)^{2} + \left(\frac{\theta_{meas,i} - \theta_{fit,i}}{\sigma_{\theta,i}} \right)^{2} + \left(\frac{\phi_{meas,i} - \phi_{fit,i}}{\sigma_{\phi,i}} \right)^{2} \right] \stackrel{!}{=} 0 \quad (4)$$

- This does not help much, because one could simply set $p_{meas,i} = p_{fit,i}$, $\theta_{meas,i} = \theta_{fit,i}$,... and obtain $\chi^2 = 0$
- BUT: The true particle 4-vectors are not random, as they are attached to the underlying reaction which produced the particles \to Energy and momentum conservation
- Therefore, we request that the fitted momenta not only minimize χ^2 , but also obey:

$$\begin{array}{l} \text{i)} & 0 = \mathsf{P}_1(p_{\textit{fit},1}, \theta_{\textit{fit},1}, \phi_{\textit{fit},1}) + \mathsf{P}_2(p_{\textit{fit},2}, \theta_{\textit{fit},2}, \phi_{\textit{fit},2}) - \mathsf{P}_3(p_{\textit{fit},3}, \theta_{\textit{fit},3}, \phi_{\textit{fit},3}) - \\ & \mathsf{P}_4(p_{\textit{fit},4}, \theta_{\textit{fit},4}, \phi_{\textit{fit},4}) - \dots \\ \text{ii)} & 0 = E_1(p_{\textit{fit},1}, \theta_{\textit{fit},1}, \phi_{\textit{fit},1}) + E_2(p_{\textit{fit},2}, \theta_{\textit{fit},2}, \phi_{\textit{fit},2}) - E_3(p_{\textit{fit},3}, \theta_{\textit{fit},3}, \phi_{\textit{fit},3}) - \\ & E_4(p_{\textit{fit},4}, \theta_{\textit{fit},4}, \phi_{\textit{fit},4}) - \dots \end{array}$$

⁷This is already a dangerous assumption!

• The request for energy and momentum conservation might be summarized into a set of **constraint** functions:

$$F_x \equiv p_{x,1}(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + p_{x,2}(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}) - p_{x,3}(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \dots = 0$$

$$F_y \equiv p_{y,1}(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + p_{y,2}(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}) - p_{y,3}(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \dots = 0$$

$$F_z \equiv p_{z,1}(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + p_{z,2}(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}) - p_{z,3}(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \dots = 0$$

$$F_E \equiv E_1(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + E_2(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}) - E_3(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \dots = 0$$

• The request for energy and momentum conservation might be summarized into a set of **constraint** functions:

$$\begin{array}{l} F_x \equiv p_{x,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{x,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2},\phi_{fit,2}) - \\ p_{x,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_y \equiv p_{y,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{y,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ p_{y,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_z \equiv p_{z,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{z,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ p_{z,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_E \equiv E_1(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + E_2(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ E_3(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \end{array}$$

• Which finally leads to:

$$\chi^{2} = \sum_{i} \left[\sum_{j} \frac{v_{meas,ij} - v_{fit,ij}}{\sigma_{ij}} \right] + 2 \sum_{\mu} \lambda_{\mu} F_{\mu} \stackrel{!}{=} 0$$
(5)

• The request for energy and momentum conservation might be summarized into a set of **constraint** functions:

$$\begin{array}{l} F_x \equiv p_{x,1}(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + p_{x,2}(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}, \phi_{fit,2}) - \\ p_{x,3}(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \ldots = 0 \\ F_y \equiv p_{y,1}(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + p_{y,2}(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}) - \\ p_{y,3}(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \ldots = 0 \\ F_z \equiv p_{z,1}(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + p_{z,2}(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}) - \\ p_{z,3}(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \ldots = 0 \\ F_E \equiv E_1(p_{fit,1}, \theta_{fit,1}, \phi_{fit,1}) + E_2(p_{fit,2}, \theta_{fit,2}, \phi_{fit,2}) - \\ E_3(p_{fit,3}, \theta_{fit,3}, \phi_{fit,3}) - \ldots = 0 \end{array}$$

• Which finally leads to:

$$\chi^{2} = \sum_{i} \left[\sum_{j} \frac{v_{meas,ij} - v_{fit,ij}}{\sigma_{ij}} \right] + 2 \sum_{\mu} \lambda_{\mu} F_{\mu} \stackrel{!}{=} 0$$
(5)

• With: i=1,2,3,4,.., $v_{ij} = p_i, \theta_i, \phi_i, \sigma_{ij} = \sigma_{p,i}, \sigma_{\theta,i}, \sigma_{\phi,i}$ and: $\mu = p_x, p_y, p_z$

• The request for energy and momentum conservation might be summarized into a set of **constraint** functions:

$$\begin{array}{l} F_x \equiv p_{x,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{x,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2},\phi_{fit,2}) - \\ p_{x,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_y \equiv p_{y,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{y,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ p_{y,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_z \equiv p_{z,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{z,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ p_{z,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_E \equiv E_1(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + E_2(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ E_3(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \end{array}$$

• Which finally leads to:

$$\chi^{2} = \sum_{i} \left[\sum_{j} \frac{v_{meas,ij} - v_{fit,ij}}{\sigma_{ij}} \right] + 2 \sum_{\mu} \lambda_{\mu} F_{\mu} \stackrel{!}{=} 0$$
(5)

• With: i=1,2,3,4,.., $v_{ij} = p_i, \theta_i, \phi_i, \sigma_{ij} = \sigma_{p,i}, \sigma_{\theta,i}, \sigma_{\phi,i}$ and: $\mu = p_x, p_y, p_z$

• λ_{μ} are the Lagrange-multipliers

• The request for energy and momentum conservation might be summarized into a set of **constraint** functions:

$$\begin{array}{l} F_x \equiv p_{x,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{x,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2},\phi_{fit,2}) - \\ p_{x,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_y \equiv p_{y,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{y,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ p_{y,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_z \equiv p_{z,1}(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + p_{z,2}(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ p_{z,3}(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \\ F_E \equiv E_1(p_{fit,1},\theta_{fit,1},\phi_{fit,1}) + E_2(p_{fit,2},\theta_{fit,2},\phi_{fit,2}) - \\ E_3(p_{fit,3},\theta_{fit,3},\phi_{fit,3}) - \ldots = 0 \end{array}$$

• Which finally leads to:

$$\chi^{2} = \sum_{i} \left[\sum_{j} \frac{v_{meas,ij} - v_{fit,ij}}{\sigma_{ij}} \right] + 2 \sum_{\mu} \lambda_{\mu} F_{\mu} \stackrel{!}{=} 0$$
(5)

- With: i=1,2,3,4,.., $v_{ij} = p_i, \theta_i, \phi_i, \sigma_{ij} = \sigma_{p,i}, \sigma_{\theta,i}, \sigma_{\phi,i}$ and: $\mu = p_x, p_y, p_z$
- λ_{μ} are the Lagrange-multipliers
- Minimizing the equation above will (hopefully) lead to the true 4-vectors of each particle!

Daniel Lersch (FSU)

Introduction to Kinematic Fitting: Matrix Notation

• Using: $\epsilon_{ij} = v_{meas,ij} - v_{fit,ij}$, one might rewrite the previous equation to:

$$\chi^2 = \boldsymbol{\epsilon}^T \hat{\boldsymbol{V}}^{-1} \boldsymbol{\epsilon} + 2\boldsymbol{\lambda}^T \boldsymbol{F} \stackrel{!}{=} 0 \tag{6}$$

- This is the same equation as shown before, but using vectors and matrices
- \hat{V}^{-1} is the inverse covariance matrix⁸ and summarizes all measurement uncertainties
- **Remember:** The equation above is only valid, if the measured quantities are (somewhat) uncorrelated and follow a gaussian distribution

⁸Sometimes referred to as: "the error-matrix"

$\chi^2 = \boldsymbol{\epsilon}^T \hat{\boldsymbol{V}}^{-1} \boldsymbol{\epsilon} + 2\boldsymbol{\lambda}^T \boldsymbol{F} \stackrel{!}{=} \boldsymbol{0}$

$\chi^2 = \boldsymbol{\epsilon}^T \hat{V}^{-1} \boldsymbol{\epsilon} + 2\boldsymbol{\lambda}^T \boldsymbol{F} \stackrel{!}{=} 0$

improve resolution with respect to reaction hypothesis

$\chi^2 = \boldsymbol{\epsilon}^T \hat{\boldsymbol{V}}^{-1} \boldsymbol{\epsilon} + 2\boldsymbol{\lambda}^T \boldsymbol{F} \stackrel{!}{=} 0$

Kinematic Fit provides:

1. Fitted particle 4-momenta

2. Possibility to reject events which do not match the reaction hypothesis

- The constraints are not limited to energy and momentum conservation only, one might also include (if reasonable):
 - Vertex (not discussed here \rightarrow SIDE does not provide vertex information)
 - Mass constraint between particles
 - Missing particles (not discussed here)

- The constraints are not limited to energy and momentum conservation only, one might also include (if reasonable):
 - Vertex (not discussed here \rightarrow SIDE does not provide vertex information)
 - Mass constraint between particles
 - Missing particles (not discussed here)
- Knowing the uncertainties σ_{ij} for each particle and each variable, the covariance matrix V̂ might be written:

$$\hat{V} = \begin{pmatrix} \sigma_1^2 & \rho_{1,2}\sigma_1\sigma_2 & \cdots & \rho_{1,3N}\sigma_1\sigma_{3N} \\ \rho_{2,1}\sigma_2\sigma_1 & \sigma_2^2 & \cdots & \rho_{2,3N}\sigma_2\sigma_{3N} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{3N,1}\sigma_{3N}\sigma_1 & \rho_{3N,2}\sigma_{3N}\sigma_2 & \cdots & \sigma_{3N}^2 \end{pmatrix}$$
(7)

- The constraints are not limited to energy and momentum conservation only, one might also include (if reasonable):
 - Vertex (not discussed here \rightarrow SIDE does not provide vertex information)
 - Mass constraint between particles
 - Missing particles (not discussed here)
- Knowing the uncertainties σ_{ij} for each particle and each variable, the covariance matrix V̂ might be written:

$$\hat{V} = \begin{pmatrix}
\sigma_{1}^{2} & \rho_{1,2}\sigma_{1}\sigma_{2} & \cdots & \rho_{1,3N}\sigma_{1}\sigma_{3N} \\
\rho_{2,1}\sigma_{2}\sigma_{1} & \sigma_{2}^{2} & \cdots & \rho_{2,3N}\sigma_{2}\sigma_{3N} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{3N,1}\sigma_{3N}\sigma_{1} & \rho_{3N,2}\sigma_{3N}\sigma_{2} & \cdots & \sigma_{3N}^{2}
\end{pmatrix}$$
(7)

• ρ_{ij} are the correlation factors between the variables and symmetric: $\rho_{ij} = \rho_{ji}$ $\rightarrow \hat{V}$ is a symmetric $3N \times 3N$ matrix (N particles with p, θ, ϕ each)

- The constraints are not limited to energy and momentum conservation only, one might also include (if reasonable):
 - Vertex (not discussed here \rightarrow SIDE does not provide vertex information)
 - Mass constraint between particles
 - Missing particles (not discussed here)
- Knowing the uncertainties σ_{ij} for each particle and each variable, the covariance matrix V̂ might be written:

$$\hat{V} = \begin{pmatrix} \sigma_{1}^{2} & \rho_{1,2}\sigma_{1}\sigma_{2} & \cdots & \rho_{1,3N}\sigma_{1}\sigma_{3N} \\ \rho_{2,1}\sigma_{2}\sigma_{1} & \sigma_{2}^{2} & \cdots & \rho_{2,3N}\sigma_{2}\sigma_{3N} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{3N,1}\sigma_{3N}\sigma_{1} & \rho_{3N,2}\sigma_{3N}\sigma_{2} & \cdots & \sigma_{3N}^{2} \end{pmatrix}$$
(7)

- ρ_{ij} are the correlation factors between the variables and symmetric: $\rho_{ij} = \rho_{ji}$ $\rightarrow \hat{V}$ is a symmetric $3N \times 3N$ matrix (N particles with p, θ, ϕ each)
- $\bullet\,$ In order for the kinematic fit to work, it is extremely important to know the elements of \hat{V}

Un-Correlated Measurements

- Left: Detector response is uniform with respect to $\theta \to$ Reconstructed momentum p_{rec} does not depend on θ
- **Right**: Detector response is not uniform with respect to $\theta \rightarrow$ Reconstructed momentum p_{rec} depends on θ
- Knowing your detector \Leftrightarrow Knowing \hat{V}

The $\chi^2\text{-}\mathsf{Distribution}$

• For uncorrelated variables with gaussian uncertainties^{**}, the (kinematic) fit χ^2 follows the distribution shown on the left

$$f_{NDF}(x) = \frac{x^{(NDF/2-1)}}{2^{(NDF/2)}\Gamma(NDF/2)} \cdot e^{-x/2} \quad (8)$$

- Where Γ() is the Gamma function and NDF the number of degrees of freedom
- This distribution is the first to check, after performing a kinematic fit
- Any deviation from this distribution might be related to:
 - Background reactions that do not fulfill the reaction hypothesis
 - Wrong setting of \hat{V}
 - Wrong reaction hypothesis
 - Violation of **

The Probability-Distribution

• The χ^2 discussed on the previous slide might be translated to a fit probability via:

$$Prob(\chi^2, NDF) = \frac{\int_{-\infty}^{\infty} t^{NDF/2-1} e^{-t/2} dt}{\sqrt{2^{NDF} \Gamma(NDF/2)}} \quad (9)$$

 Where Γ() is the Gamma function and NDF the number of degrees of freedom

- Any deviation from a non-flat probability distribution might be related to:
 - Background reactions that do not fulfill the reaction hypothesis

 - Wrong reaction hypothesis
 - Violation of ** (see previous slide)

Part I Summary

- Hypothetical measurement of pp → ppX reactions
- Introduced monitoring plots based on energy and momentum conservation
- Performed simple analysis to reconstruct $\pi^+\pi^-\pi^0$ final states
- Introduction of kinematic fitting

April 8, 2020 25 / 45

- Evaluation of kinematic fit performance
- Application of kinematic fit in physics data analysis
- Practical aspects

Addendum: Non-Diagonal Weight Matrix

- Stated earlier in this lecture, that the weight matrix \hat{V} has to be diagonal in order for the least squared method to work \rightarrow Gauss-Markov-Theorem
- However, the method still holds if the matrix \hat{V} is equal to the covariance matrix which was introduced earlier, i.e. $\hat{V}_{ij} = \hat{V}_{ji} = \rho_{ij}\sigma_i\sigma_j$
 - \rightarrow Extension of the Gauss-Markov-Theorem by Aitken
- I am sorry for the confusion and being that imprecise!

• As pointed out many times, \hat{V} is crucial for the performance of the kinematic fitter

- $\bullet\,$ As pointed out many times, \hat{V} is crucial for the performance of the kinematic fitter
- There are different approaches for determining \hat{V} :
 - Know your experiment and calculate the elements individually (e.g. include tracking parameters)
 - Look at residuals \rightarrow Need MC for this
 - ► ...

Setting up \hat{V}

- As pointed out many times, \hat{V} is crucial for the performance of the kinematic fitter
- There are different approaches for determining \hat{V} :
 - Know your experiment and calculate the elements individually (e.g. include tracking parameters)
 - Look at residuals \rightarrow Need MC for this
 - ...
- Shown below: Determination of photon related parts in \hat{V} in WASA-at-COSY

 $\bullet\,$ Suppose N particles (which are subject to the fit)^9, each defined by a momentum vector $\to\,$ 3N variables

- Suppose N particles (which are subject to the fit)⁹, each defined by a momentum vector \rightarrow 3N variables
- In your experiment, you measured / reconstructed $N_m \leq 3N$ particle properties (e.g. the momentum of one particle could not be determined)

- Suppose N particles (which are subject to the fit)⁹, each defined by a momentum vector \rightarrow 3N variables
- In your experiment, you measured / reconstructed $N_m \leq 3N$ particle properties (e.g. the momentum of one particle could not be determined)
- The kinematic fit is performed with 4 + N_c constraints (4: energy and momentum conservation, N_c: any additional constraint)

- Suppose N particles (which are subject to the fit)⁹, each defined by a momentum vector \rightarrow 3N variables
- In your experiment, you measured / reconstructed $N_m \leq 3N$ particle properties (e.g. the momentum of one particle could not be determined)
- The kinematic fit is performed with $4 + N_c$ constraints (4: energy and momentum conservation, N_c : any additional constraint)
- This leads to: $NDF = 3N N_m + 4 + N_c$

- Suppose N particles (which are subject to the fit)⁹, each defined by a momentum vector \rightarrow 3N variables
- In your experiment, you measured / reconstructed $N_m \leq 3N$ particle properties (e.g. the momentum of one particle could not be determined)
- The kinematic fit is performed with 4 + N_c constraints (4: energy and momentum conservation, N_c: any additional constraint)
- This leads to: $NDF = 3N N_m + 4 + N_c$
- Introducing the number of unknowns: $N_u = 3N N_m$

- Suppose N particles (which are subject to the fit)⁹, each defined by a momentum vector \rightarrow 3N variables
- In your experiment, you measured / reconstructed $N_m \leq 3N$ particle properties (e.g. the momentum of one particle could not be determined)
- The kinematic fit is performed with 4 + N_c constraints (4: energy and momentum conservation, N_c: any additional constraint)
- This leads to: $NDF = 3N N_m + 4 + N_c$
- Introducing the number of unknowns: $N_u = 3N N_m$
- One obtains: $NDF = 4 N_u + N_c$

- Suppose N particles (which are subject to the fit)⁹, each defined by a momentum vector \rightarrow 3N variables
- In your experiment, you measured / reconstructed N_m ≤ 3N particle properties (e.g. the momentum of one particle could not be determined)
- The kinematic fit is performed with $4 + N_c$ constraints (4: energy and momentum conservation, N_c : any additional constraint)
- This leads to: $NDF = 3N N_m + 4 + N_c$
- Introducing the number of unknowns: $N_u = 3N N_m$
- One obtains: $NDF = 4 N_u + N_c$
- All particle momenta are known in our case \rightarrow NDF = 4 + N_c

Pull-Distributions

- Another powerful tool to evaluate the kinematic fitter performance are pulls
- For are particle i with variables v_{ij} and uncertainties σ_{ij} , the corresponding pull is defined:

$$\mathsf{Pull}(\mathbf{v}_{ij}) = \frac{\mathbf{v}_{meas,ij} - \mathbf{v}_{fit,ij}}{\sqrt{\sigma_{meas,ij}^2 - \sigma_{fit,ij}^2}}$$
(10)

- Where meas / fit denote the measured / fitted quantities
- Since we assume the measured variables to be gaussian, the fitted quantities are expected to be gaussian too

$mean[Pull(v_{ij})]$	$\sigma[Pull(v_{ij})]$	Scenario
0	1.0	everything is fine
0	< 1.0	$\sigma_{meas,ij}$ is overestimated
0	> 1.0	$\sigma_{meas,ij}$ is underestimated
\neq 0	\in [0, 1]	introduced bias
n.a.	n.a.	non-gaussian pulls $ ightarrow$ you are in trouble

- Applied kinematic fit on data set with $pp \to pp\pi^+\pi^-\pi^0[\pi^0 \to \gamma\gamma]$ events only
- No additional constraints, beside energy and momentum conservation
- Set the covariance matrix \hat{V} to be diagonal and loosely match the detector resolution (i.e. assumed constant uncertainties for each particle variable)
- Look at pull-distributions for probabilities $\geq 10\%$ (horizontal, dashed line)¹⁰

¹⁰More or less arbitrarily chosen

Daniel Lersch (FSU)

- Applied kinematic fit on data set with $pp \rightarrow pp\pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]$ events only
- No additional constraints, beside energy and momentum conservation
- Set the covariance matrix \hat{V} to be diagonal and loosely match the detector resolution (i.e. assumed constant uncertainties for each particle variable)
- Look at pull-distributions for probabilities \geq 10%(horizontal, dashed line)¹⁰

- Applied kinematic fit on data set with $pp \to pp\pi^+\pi^-\pi^0[\pi^0 \to \gamma\gamma]$ events only
- No additional constraints, beside energy and momentum conservation
- Set the covariance matrix \hat{V} to be diagonal and loosely match the detector resolution (i.e. assumed constant uncertainties for each particle variable)
- Look at pull-distributions for probabilities $\geq 10\%$ (horizontal, dashed line)¹⁰

- Applied kinematic fit on data set with $pp \to pp\pi^+\pi^-\pi^0[\pi^0 \to \gamma\gamma]$ events only
- No additional constraints, beside energy and momentum conservation
- Set the covariance matrix \hat{V} to be diagonal and loosely match the detector resolution (i.e. assumed constant uncertainties for each particle variable)
- Look at pull-distributions for probabilities $\geq 10\%$ (horizontal, dashed line)¹⁰

scaled covariance matrix down by factor ~5

- Applied kinematic fit on data set with $pp \to pp\pi^+\pi^-\pi^0[\pi^0 \to \gamma\gamma]$ events only
- No additional constraints, beside energy and momentum conservation
- Set the covariance matrix \hat{V} to be diagonal and loosely match the detector resolution (i.e. assumed constant uncertainties for each particle variable)
- Look at pull-distributions for probabilities $\geq 10\%$ (horizontal, dashed line)¹⁰

scaled covariance matrix down by factor ~5

- Applied kinematic fit on data set with $pp \to pp\pi^+\pi^-\pi^0[\pi^0 \to \gamma\gamma]$ events only
- No additional constraints, beside energy and momentum conservation
- Set the covariance matrix \hat{V} to be diagonal and loosely match the detector resolution (i.e. assumed constant uncertainties for each particle variable)
- Look at pull-distributions for probabilities $\geq 10\%$ (horizontal, dashed line)¹⁰

scaled covariance matrix up by factor ~5

¹⁰More or less arbitrarily chosen

Daniel Lersch (FSU)

- Applied kinematic fit on data set with $pp \to pp\pi^+\pi^-\pi^0[\pi^0 \to \gamma\gamma]$ events only
- No additional constraints, beside energy and momentum conservation
- Set the covariance matrix \hat{V} to be diagonal and loosely match the detector resolution (i.e. assumed constant uncertainties for each particle variable)
- Look at pull-distributions for probabilities $\geq 10\%$ (horizontal, dashed line)¹⁰

scaled covariance matrix up by factor ~5

¹⁰More or less arbitrarily chosen

Daniel Lersch (FSU)

Preparation for Analysis

- **Before** using your kinematic fitter in your analysis, you should perform the checks discussed before:
 - \blacktriangleright Investigate the probability distribution \leftrightarrow Any unexpected features
 - Look at pull-distributions: centered at zero and sigma close to one
 - Globally scaling the covariance matrix is sometimes helpful¹¹
- NEVER use a fitter blindly in your analysis
- Always have a reference analysis at hand
- In many cases the fitter needs to be re-tuned after the first analysis-pass

¹¹As long as the relative adjustments of the matrix elements are correct

Include Kinematic Fit in $\eta \rightarrow \pi^+ \pi^- \pi^0$ Analysis I

- Reaction hypothesis: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
- No constraints on η / π⁰ mass (will do this later)
- Spectra shown below are deduced from reconstructed particle momenta

Include Kinematic Fit in $\eta \to \pi^+ \pi^- \pi^0$ Analysis I

- Reaction hypothesis: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
- No constraints on η / π⁰ mass (will do this later)
- Spectra shown below are deduced from fitted particle momenta
- Reject events with probability < 10% (Again, a first-guess cut)

Include Kinematic Fit in $\eta \to \pi^+ \pi^- \pi^0$ Analysis I

- Reaction hypothesis: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
- No constraints on η / π⁰ mass (will do this later)
- Spectra shown below are deduced from fitted particle momenta
- Reject events with probability < 10% (Again, a first-guess cut)

Include Kinematic Fit in $\eta \rightarrow \pi^+ \pi^- \pi^0$ Analysis II

- Reaction hypothesis: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
- No constraints on η / π⁰ mass (will do this later)
- Spectra shown below are deduced from reconstructed particle momenta

Include Kinematic Fit in $\eta \rightarrow \pi^+ \pi^- \pi^0$ Analysis II

- Reaction hypothesis: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
- No constraints on η / π⁰ mass (will do this later)
- Spectra shown below are deduced from fitted particle momenta
- Reject events with probability < 10% (Again, a first-guess cut)

Include Kinematic Fit in $\eta \to \pi^+ \pi^- \pi^0$ Analysis III

- Reaction hypothesis: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
- Include constraint: $M(\gamma_1, \gamma_2) = m_{\pi^0}$
- Spectra shown below are deduced from fitted particle momenta
- Reject events with probability < 10% (Again, a first-guess cut)

Include Kinematic Fit in $\eta \rightarrow \pi^+ \pi^- \pi^0$ Analysis IV

- Reaction hypothesis: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow \gamma\gamma]]$
- Include constraint: $M(\pi^+, \pi^-, \gamma_1, \gamma_2) = m_\eta$
- Spectra shown below are deduced from fitted particle momenta
- Reject events with probability < 10% (Again, a first-guess cut)

Include Kinematic Fit in $\eta \rightarrow \pi^+ \pi^- \pi^0$ Analysis V

select events here

- Sometimes it is helpful to run 2fits with different hypothesis
 → Especially when reactions are somewhat similar
- Helps to monitor the fitter performance
- Spectra shown below are deduced from fitted particle momenta

Analysis Summary

- Re-analyzed the pp
 ightarrow pp data set, using a kinematic fitter
- Fitter seems to work so far, but needs to be re-adjusted → Constraint spectra should be delta-distributions
- Remaining problem: Individual contributions from $pp \to \pi^+\pi^-\pi^0$ and $\eta \to \pi^+\pi^-\pi^0$ are still hard to judge

Daniel Lersch (FSU)

Where to go from here and practical Aspects

• First thing to do after this analysis run would be a comparison with MC simulated events

Observable	Scenario	Required Action
Probability	Flat in Data & MC	Ok, proceed with analysis
	not flat, but identical	Sometimes next best scenario,
	significantly different	re-tune fitter and/or MC, or re-calibrate Data
Pulls	$\begin{array}{l} \mu=0,\ \sigma=1 \mbox{ in Data \& MC} \\ \mu=0,\ \sigma\approx1 \mbox{ in Data \& MC} \\ \mu\neq0,\ \sigma\neq1 \mbox{ but identical} \\ \mbox{ Totally different} \end{array}$	Wonderful! Proceed ok, proceed proceed, but try to re-tune re-tune fitter and/or MC, or re-calibrate Data

- If the comparisons above turn out well, you might want to compare different kinematic properties (i.e. missing mass, invariant mass,..) between data and MC
- Never trust your fitter blindly!

Comparing Pull-Features

• Shown above: One way of comparing pull distributions in data / MC

- Included two shape variables to monitor deviation from Gaussian Distrubution
- Plot taken from here: urn:nbn:de:hbz:468-20150204-112638-3

Daniel Lersch (FSU)

Special Topics in Hadron Physics

Comparing Pull-Features

• Shown above: One way of comparing pull distributions in data / MC

- Included two shape variables to monitor deviation from Gaussian Distrubution
- Plot taken from here: urn:nbn:de:hbz:468-20150204-112638-3

Daniel Lersch (FSU)

Special Topics in Hadron Physics

Comparing Pull-Features

• Shown above: One way of comparing pull distributions in data / MC

- Included two shape variables to monitor deviation from Gaussian Distrubution
- Plot taken from here: urn:nbn:de:hbz:468-20150204-112638-3

Daniel Lersch (FSU)

Special Topics in Hadron Physics

• It is not helpful to keep stuck on tuning the fitter forever

- It is not helpful to keep stuck on tuning the fitter forever
- $\bullet\,$ Best way to see inefficiencies or oddities \to Perform analysis until the end \to See impact of fitter on final result

- It is not helpful to keep stuck on tuning the fitter forever
- $\bullet\,$ Best way to see inefficiencies or oddities \to Perform analysis until the end \to See impact of fitter on final result
- This does NOT mean to tune the fitter until your results match the PDG value or your colleagues thesis!!!

- It is not helpful to keep stuck on tuning the fitter forever
- Best way to see inefficiencies or oddities \to Perform analysis until the end \to See impact of fitter on final result
- This does NOT mean to tune the fitter until your results match the PDG value or your colleagues thesis!!!
- Rather look at stability of whatever you calculate as a function of the fit probability

- Left: before MC tuning / Right: After MC tuning
- Did not care about the absolute value, but rather about the fluctuation
- Plot taken from here: urn:nbn:de:hbz:468-20150204-112638-3

Daniel Lersch (FSU)

Special Topics in Hadron Physics

April 8, 2020 41 / 45

Re-tuning the Kinematic Fit

• When working with kinematic fits, you will most likely come to the point where you need to re-tune the fitter \to Update \hat{V}
Re-tuning the Kinematic Fit

- When working with kinematic fits, you will most likely come to the point where you need to re-tune the fitter \to Update \hat{V}
- As usual, there are many ways to do this:
 - Recalculate $\hat{V}
 ightarrow$ Painful, but sometimes unavoidable
 - Rescale certain fractions of \hat{V}
 - \blacktriangleright Hyper Parameter Optimization HPO \rightarrow Does the tuning for you, but might take very long

Re-tuning the Kinematic Fit

- When working with kinematic fits, you will most likely come to the point where you need to re-tune the fitter o Update \hat{V}
- As usual, there are many ways to do this:
 - Recalculate $\hat{V}
 ightarrow$ Painful, but sometimes unavoidable
 - Rescale certain fractions of \hat{V}
 - \blacktriangleright Hyper Parameter Optimization HPO \rightarrow Does the tuning for you, but might take very long
- Shown below the tuning of the kinematic fit for a CLAS g12 analysis
 - \rightarrow Used two scaling factors (one for momenta and one for angles)

Mass constraints can be very helpful, but also very dangerous

April 8, 2020 43 / 45

- Mass constraints can be very helpful, but also very dangerous
- Helpful: You are not particularly interested in the particle you are fitting to, but want to reject background

- Mass constraints can be very helpful, but also very dangerous
- Helpful: You are not particularly interested in the particle you are fitting to, but want to reject background
- Dangerous: Your are interested in this particle \rightarrow Merge signal and background events under one distribution \rightarrow No control over background contribution

- Mass constraints can be very helpful, but also very dangerous
- Helpful: You are not particularly interested in the particle you are fitting to, but want to reject background
- Dangerous: Your are interested in this particle \rightarrow Merge signal and background events under one distribution \rightarrow No control over background contribution
- \bullet When to use mass constraints? \leftrightarrow It depends on what you want to do

• Why would you want to do that?

- Why would you want to do that?
- Basic assumption: Variations of constraint functions are slow:

$$F_{\mu}(v_{fit,1},...,v_{fit,2}) \simeq F_{\mu}(v_{meas,1},...,v_{meas,2}) + \sum_{j} \epsilon_{j} \frac{\partial F_{\mu}}{\partial v_{fit,j}} \Big|_{v_{fit,j}=v_{meas,j}} = 0$$
(11)

- Why would you want to do that?
- Basic assumption: Variations of constraint functions are slow:

$$F_{\mu}(\mathbf{v}_{fit,1},...,\mathbf{v}_{fit,2}) \simeq F_{\mu}(\mathbf{v}_{meas,1},...,\mathbf{v}_{meas,2}) + \sum_{j} \epsilon_{j} \frac{\partial F_{\mu}}{\partial \mathbf{v}_{fit,j}}\Big|_{\mathbf{v}_{fit,j}=\mathbf{v}_{meas,j}} = 0 \quad (11)$$

• With:
$$B_{\mu j} = \frac{\partial F_{\mu}}{\partial v_{\text{fit},j}} \Big|_{v_{\text{fit},j} = v_{\text{meas},j}}$$
 and $f_{\mu} = F_{\mu}(v_{\text{meas},1}, ..., v_{\text{meas},2})$, one can find:

$$\chi^{2} = \epsilon^{T} \hat{V}^{-1} \epsilon + 2\lambda^{T} (\hat{B} \epsilon + \mathbf{f})$$
(12)

- Why would you want to do that?
- Basic assumption: Variations of constraint functions are slow:

$$F_{\mu}(v_{fit,1},...,v_{fit,2}) \simeq F_{\mu}(v_{meas,1},...,v_{meas,2}) + \sum_{j} \epsilon_{j} \frac{\partial F_{\mu}}{\partial v_{fit,j}} \Big|_{v_{fit,j}=v_{meas,j}} = 0$$
(11)

• With:
$$B_{\mu j} = \frac{\partial F_{\mu}}{\partial v_{fit,j}} \Big|_{v_{fit,j} = v_{meas,j}}$$
 and $f_{\mu} = F_{\mu}(v_{meas,1}, ..., v_{meas,2})$, one can find:

$$\chi^{2} = \boldsymbol{\epsilon}^{T} \hat{V}^{-1} \boldsymbol{\epsilon} + 2\boldsymbol{\lambda}^{T} (\hat{B} \boldsymbol{\epsilon} + \mathbf{f})$$
(12)

• Differentiating χ^2 with respect to ϵ (we want to minimize the χ^2) and using the equation on top, yields:

$$\boldsymbol{\epsilon} = -\hat{\boldsymbol{V}}\hat{\boldsymbol{B}}^{\mathsf{T}}\hat{\boldsymbol{S}}\boldsymbol{\mathsf{f}} \tag{13}$$

- Why would you want to do that?
- Basic assumption: Variations of constraint functions are slow:

$$F_{\mu}(v_{fit,1},...,v_{fit,2}) \simeq F_{\mu}(v_{meas,1},...,v_{meas,2}) + \sum_{j} \epsilon_{j} \frac{\partial F_{\mu}}{\partial v_{fit,j}}\Big|_{v_{fit,j}=v_{meas,j}} = 0$$
(11)

• With:
$$B_{\mu j} = \frac{\partial F_{\mu}}{\partial v_{fit,j}} \Big|_{v_{fit,j} = v_{meas,j}}$$
 and $f_{\mu} = F_{\mu}(v_{meas,1}, ..., v_{meas,2})$, one can find:

$$\chi^{2} = \epsilon^{T} \hat{V}^{-1} \epsilon + 2\lambda^{T} (\hat{B} \epsilon + \mathbf{f})$$
(12)

• Differentiating χ^2 with respect to ϵ (we want to minimize the χ^2) and using the equation on top, yields:

$$\boldsymbol{\epsilon} = -\hat{\boldsymbol{V}}\hat{\boldsymbol{B}}^{\mathsf{T}}\hat{\boldsymbol{S}}\mathbf{f} \tag{13}$$

• with: $\hat{S} = (\hat{B}\hat{V}\hat{B}^T)^{-1}$

- Why would you want to do that?
- Basic assumption: Variations of constraint functions are slow:

$$F_{\mu}(v_{fit,1},...,v_{fit,2}) \simeq F_{\mu}(v_{meas,1},...,v_{meas,2}) + \sum_{j} \epsilon_{j} \frac{\partial F_{\mu}}{\partial v_{fit,j}} \Big|_{v_{fit,j}=v_{meas,j}} = 0$$
(11)

• With:
$$B_{\mu j} = \frac{\partial F_{\mu}}{\partial v_{fit,j}}\Big|_{v_{fit,j}=v_{meas,j}}$$
 and $f_{\mu} = F_{\mu}(v_{meas,1},...,v_{meas,2})$, one can find:

$$\chi^{2} = \epsilon^{T} \hat{V}^{-1} \epsilon + 2\lambda^{T} (\hat{B} \epsilon + \mathbf{f})$$
(12)

• Differentiating χ^2 with respect to ϵ (we want to minimize the χ^2) and using the equation on top, yields:

$$\boldsymbol{\epsilon} = -\hat{\boldsymbol{V}}\hat{\boldsymbol{B}}^{\mathsf{T}}\hat{\boldsymbol{S}}\mathbf{f} \tag{13}$$

- with: $\hat{S} = (\hat{B}\hat{V}\hat{B}^{T})^{-1}$
- This means, one only needs to calculate \hat{B} and **f** in order to find the corrections ϵ

- Why would you want to do that?
- Basic assumption: Variations of constraint functions are slow:

$$F_{\mu}(\mathbf{v}_{fit,1},...,\mathbf{v}_{fit,2}) \simeq F_{\mu}(\mathbf{v}_{meas,1},...,\mathbf{v}_{meas,2}) + \sum_{j} \epsilon_{j} \frac{\partial F_{\mu}}{\partial \mathbf{v}_{fit,j}}\Big|_{\mathbf{v}_{fit,j} = \mathbf{v}_{meas,j}} = 0 \quad (11)$$

• With:
$$B_{\mu j} = \frac{\partial F_{\mu}}{\partial v_{fit,j}}\Big|_{v_{fit,j}=v_{meas,j}}$$
 and $f_{\mu} = F_{\mu}(v_{meas,1},...,v_{meas,2})$, one can find:

$$\chi^{2} = \boldsymbol{\epsilon}^{T} \hat{V}^{-1} \boldsymbol{\epsilon} + 2\boldsymbol{\lambda}^{T} (\hat{B} \boldsymbol{\epsilon} + \mathbf{f})$$
(12)

• Differentiating χ^2 with respect to ϵ (we want to minimize the χ^2) and using the equation on top, yields:

$$\boldsymbol{\epsilon} = -\hat{\boldsymbol{V}}\hat{\boldsymbol{B}}^{\mathsf{T}}\hat{\boldsymbol{S}}\mathbf{f} \tag{13}$$

- with: $\hat{S} = (\hat{B}\hat{V}\hat{B}^{T})^{-1}$
- This means, one only needs to calculate \hat{B} and **f** in order to find the corrections ϵ
- NOTE: In general, this is an iterative procedure, because convergence is not guaranteed after the first calculation

• Introduced kinematic fitting techniques to physics data analysis

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution
 - ii) Suppress background

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution
 - ii) Suppress background
- Did not cover many interesting aspects:
 - Vertex constraints
 - Fitting with unmeasured particles / missing particle information

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution
 - ii) Suppress background
- Did not cover many interesting aspects:
 - Vertex constraints
 - Fitting with unmeasured particles / missing particle information
- The kinematic fit is a powerful tool, but also very dangerous
 - \rightarrow 3N variables, including the detector response, are folded into one single number

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution
 - ii) Suppress background
- Did not cover many interesting aspects:
 - Vertex constraints
 - Fitting with unmeasured particles / missing particle information
- The kinematic fit is a powerful tool, but also very dangerous \rightarrow 3N variables, including the detector response, are folded into one single number
- Therefore, one has to pay close attention to the fitter performance / tuning

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution
 - ii) Suppress background
- Did not cover many interesting aspects:
 - Vertex constraints
 - Fitting with unmeasured particles / missing particle information
- The kinematic fit is a powerful tool, but also very dangerous
 → 3N variables, including the detector response, are folded into one single number
- Therefore, one has to pay close attention to the fitter performance / tuning
- Whether to use or not to use a fitter in the analysis is up to you, but I highly recommend to give it a try

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution
 - ii) Suppress background
- Did not cover many interesting aspects:
 - Vertex constraints
 - Fitting with unmeasured particles / missing particle information
- The kinematic fit is a powerful tool, but also very dangerous
 → 3N variables, including the detector response, are folded into one single number
- Therefore, one has to pay close attention to the fitter performance / tuning
- Whether to use or not to use a fitter in the analysis is up to you, but I highly recommend to give it a try
- $\bullet\,$ Most topics discussed in this lecture are based on my own experience $\to\,$ Very likely, that I missed something

- Introduced kinematic fitting techniques to physics data analysis
 - i) Improve resolution
 - ii) Suppress background
- Did not cover many interesting aspects:
 - Vertex constraints
 - Fitting with unmeasured particles / missing particle information
- The kinematic fit is a powerful tool, but also very dangerous
 → 3N variables, including the detector response, are folded into one single number
- Therefore, one has to pay close attention to the fitter performance / tuning
- Whether to use or not to use a fitter in the analysis is up to you, but I highly recommend to give it a try
- $\bullet\,$ Most topics discussed in this lecture are based on my own experience $\to\,$ Very likely, that I missed something
- My favorite quote from A. Kupscz: "Analysis is a matter of taste"