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Overview

1. Very short introduction to machine learning

2. Definition and properties of (deep) neural networks

3. Application of autoencoders for particle identification at GlueX
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Basic Components of Machine Learning
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Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training

NOTE: The algorithms behavior / performance highly depends on the provided training
data
Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)
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The Multilayer Perceptron

Most popular example for machine learning algorithms
Belongs to the class of feedforward neural networks
Architecture: Hidden layers with a set of neurons
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A single Neuron

Basic ingredients: Information from previous neurons, weights, bias and activation
function

Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019
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The Universal Approximation Theorem for Neural Networks

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

⇒ Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
”[...] there are no nemesis functions that cannot be modeled by neural networks“
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Training a (deep) Neural Network
Bottom left picture taken from here
Bottom right picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

Gradient Descent: wk+1 = wk − η∇L(wk) = wk −
η

m

m∑∑∑
i=1

∇L(x i ,wk) (1)

It is all about updating the weights wk

L: Loss function ∝ prediction - truth
η : Learning rate (Common choice: 1/N(Training epochs))
m: Batch size
Problem: ∇L = 0 (vanishing gradient)
Different variants of stochastic gradient descent (L-BFGS, Adam, SGD,...)
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Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters, but used to determine when training is complete

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda


Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters1, but used to determine when training is complete

1This data is ”unseen“ by the algorithm during the training stage
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24



Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters1, but used to determine when training is complete

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is ”unseen“ by the algorithm during the training stage
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda


Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters1, but used to determine when training is complete

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is ”unseen“ by the algorithm during the training stage
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda


From Machine to Deep Learning (in a very naive picture)

“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning

I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24



From Machine to Deep Learning (in a very naive picture)
“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning

I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24



From Machine to Deep Learning (in a very naive picture)
“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning
I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Picture taken from here

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24

http://neuralnetworksanddeeplearning.com/chap6.html


From Machine to Deep Learning (in a very naive picture)

“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning

I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24



Autoencoders: Basics

Consists of two parts: encoder + decoder → Symmetric sandwich architecture
Train autoencoder for: Data In ≈ Data Out
But: Number of neurons needs to decrease in encoding part and increase in
decoding part → Otherwise no effect ↔ Identity function
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Autoencoders: Compression and Decompression
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Autoencoders: Anomaly Detection in Data
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Autoencoders: (Current) Realization at GlueX

Train autoencoder on simulated single particle tracks → One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)

Autoencoder outputs help to understand model performance

Anomaly detector (aka classifer) allows to translate the decoded data into a
likelihood
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Reference Models and Analysis Procedures

It is very helpful to have a reference model2, running in parallel to your machine /
deep learning analysis

⇒ Helps to understand / debug the model your are developing

In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p → Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

Use Bayesian formalism to combine predictions from pion- and lepton-
autoencoders into a likelihood

2Preferably not machine learning based
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Lepton Identification Performance on simulated single
e+-/π+-Tracks

PID Method Efficiency [%] False Rate [%] MCC-Score
E/p 92 6 0.86

Classic ML 93 6 0.87
Autoencoder 94 5 0.89
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Application on GlueX Lepton Data
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Found: π0 → e+e−γ and η → e+e−γ
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Predicted Lepton Features
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Remeber: E/p ∼ 1 for leptons and predominantly ∼ 0 for pions

Autoencoder reconstructs E/p by taking correlations of provided features into account
⇒ basically a multidimensional fit
⇒ similar to a kinematic fit, but on a single track level!

Cuts on predicted E/p allow for background suppression
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Debugging / Understanding your Model

Very important - not only for you, but also for the analyzer who is using your model

Autoencoder allows to formulate residuals: Network Input - Network Output
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Shown below: χ2(Residual) =
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Network Input[i ]− Network Output[i ]
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Very important - not only for you, but also for the analyzer who is using your model
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χ2 and residuals are ≈ 0 → Deviations due to pions and poorly reconstructed events
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Inspecting the Decoder (first generation autoencoder)
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Generating Lepton (like) Data (first generation autoencoder)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 22 / 24



Moving forward: Constraint hypothesis fitting with
Autoencoders

Analogue to kinematic fitter: Include constraints related to particle hypothesis
For leptons: Energy deposits in calorimeter E(cal) ∼ Momentum p

Right column shows network predictions, using the lepton constraints
⇒ Improvement in resolution!
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Summary and Outlook

Used autoencoder neural networks for PID in GlueX

Obtained promising results

Might be a bit too much for lepton ID, but:
I the goal is to design a generic algorithm
I want to proof and develop the concept on an “easy” case

Besides simple classification, autoencoder networks...

... support the user regarding debugging and understanding the model

... interpret the data with respect to a given particle hypothesis (analogue to a
kinematic fitter)

... are easy to train due to the constraint architecture (used tied weights here)

... de-noise the data (not shown here today)

... are somewhat more robust with respect to training data / real data mismatch

The price one has to pay is the model size: ∼ 103 vs ∼ 102 parameters
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