
Particle Identification with Autoencoder Neural Networks

Daniel Lersch & Sean Dobbs

June 19, 2020

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 1 / 24



Overview

1. Very short introduction to machine learning

2. Definition and properties of (deep) neural networks

3. Application of autoencoders for particle identification at GlueX

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 2 / 24



Basic Components of Machine Learning

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 3 / 24



Basic Components of Machine Learning

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 3 / 24



Basic Components of Machine Learning

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 3 / 24



Basic Components of Machine Learning

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 3 / 24



Basic Components of Machine Learning

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 3 / 24



Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training

NOTE: The algorithms behavior / performance highly depends on the provided training
data
Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 4 / 24



Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training

NOTE: The algorithms behavior / performance highly depends on the provided training
data
Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 4 / 24



Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training

NOTE: The algorithms behavior / performance highly depends on the provided training
data
Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 4 / 24



Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training

NOTE: The algorithms behavior / performance highly depends on the provided training
data
Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 4 / 24



Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training

NOTE: The algorithms behavior / performance highly depends on the provided training
data
Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 4 / 24



Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training
NOTE: The algorithms behavior / performance highly depends on the provided training
data

Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 4 / 24



Training of Machine Learning Algorithms
Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
The parameter adjustment is done during training
NOTE: The algorithms behavior / performance highly depends on the provided training
data
Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 4 / 24



The Multilayer Perceptron

Most popular example for machine learning algorithms
Belongs to the class of feedforward neural networks
Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 5 / 24



The Multilayer Perceptron

Most popular example for machine learning algorithms
Belongs to the class of feedforward neural networks
Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 5 / 24



A single Neuron

Basic ingredients: Information from previous neurons, weights, bias and activation
function

Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 6 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda


A single Neuron

Basic ingredients: Information from previous neurons, weights, bias and activation
function
Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 6 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda


A single Neuron

Basic ingredients: Information from previous neurons, weights, bias and activation
function
Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 6 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda


The Universal Approximation Theorem for Neural Networks

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

⇒ Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
”[...] there are no nemesis functions that cannot be modeled by neural networks“

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 7 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=80265


Training a (deep) Neural Network
Bottom left picture taken from here
Bottom right picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

Gradient Descent: wk+1 = wk − η∇L(wk) = wk −
η

m

m∑∑∑
i=1

∇L(x i ,wk) (1)

It is all about updating the weights wk

L: Loss function ∝ prediction - truth
η : Learning rate (Common choice: 1/N(Training epochs))
m: Batch size
Problem: ∇L = 0 (vanishing gradient)
Different variants of stochastic gradient descent (L-BFGS, Adam, SGD,...)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 8 / 24

https://www.guru99.com/backpropogation-neural-network.html
https://sites.google.com/lbl.gov/dl4sci2019/agenda


Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters, but used to determine when training is complete

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda


Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters1, but used to determine when training is complete

1This data is ”unseen“ by the algorithm during the training stage
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24



Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters1, but used to determine when training is complete

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is ”unseen“ by the algorithm during the training stage
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda


Overfitting

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters1, but used to determine when training is complete

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is ”unseen“ by the algorithm during the training stage
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 9 / 24

https://sites.google.com/lbl.gov/dl4sci2019/agenda


From Machine to Deep Learning (in a very naive picture)

“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning

I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24



From Machine to Deep Learning (in a very naive picture)
“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning

I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24



From Machine to Deep Learning (in a very naive picture)
“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning
I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Picture taken from here

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24

http://neuralnetworksanddeeplearning.com/chap6.html


From Machine to Deep Learning (in a very naive picture)

“Classical” Machine learning

I Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) → Also known as
feature-engineering

I By pre-processing, you already encode information into the data
I Moderate model size (e.g 1-2 hidden layers in a neural network)

Deep learning

I Still machine learning, but uses neural networks only
I Leave out (certain) pre-processing steps → Let the model do the work for you
I The neural network becomes deep → Pre-processing is basically done in extra

hidden layers

Deep learning is not trivial, but fortunately there are many frameworks
I Pytorch
I Keras
I Tensorflow (used for the work presented here)
I ...

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 10 / 24



Autoencoders: Basics

Consists of two parts: encoder + decoder → Symmetric sandwich architecture
Train autoencoder for: Data In ≈ Data Out
But: Number of neurons needs to decrease in encoding part and increase in
decoding part → Otherwise no effect ↔ Identity function

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 11 / 24



Autoencoders: Basics

Consists of two parts: encoder + decoder → Symmetric sandwich architecture
Train autoencoder for: Data In ≈ Data Out
But: Number of neurons needs to decrease in encoding part and increase in
decoding part → Otherwise no effect ↔ Identity function

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 11 / 24



Autoencoders: Basics

Consists of two parts: encoder + decoder → Symmetric sandwich architecture
Train autoencoder for: Data In ≈ Data Out
But: Number of neurons needs to decrease in encoding part and increase in
decoding part → Otherwise no effect ↔ Identity function

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 11 / 24



Autoencoders: Basics

Consists of two parts: encoder + decoder → Symmetric sandwich architecture
Train autoencoder for: Data In ≈ Data Out
But: Number of neurons needs to decrease in encoding part and increase in
decoding part → Otherwise no effect ↔ Identity function

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 11 / 24



Autoencoders: Compression and Decompression

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 12 / 24



Autoencoders: Compression and Decompression

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 12 / 24



Autoencoders: Compression and Decompression

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 12 / 24



Autoencoders: Anomaly Detection in Data

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 13 / 24



Autoencoders: Anomaly Detection in Data

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 13 / 24



Autoencoders: Anomaly Detection in Data

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 13 / 24



Autoencoders: Anomaly Detection in Data

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 13 / 24



Autoencoders: (Current) Realization at GlueX

Train autoencoder on simulated single particle tracks → One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)

Autoencoder outputs help to understand model performance

Anomaly detector (aka classifer) allows to translate the decoded data into a
likelihood

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 14 / 24



Autoencoders: (Current) Realization at GlueX

Train autoencoder on simulated single particle tracks → One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)

Autoencoder outputs help to understand model performance

Anomaly detector (aka classifer) allows to translate the decoded data into a
likelihood

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 14 / 24



Autoencoders: (Current) Realization at GlueX

Train autoencoder on simulated single particle tracks → One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)

Autoencoder outputs help to understand model performance

Anomaly detector (aka classifer) allows to translate the decoded data into a
likelihood

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 14 / 24



Reference Models and Analysis Procedures

It is very helpful to have a reference model2, running in parallel to your machine /
deep learning analysis

⇒ Helps to understand / debug the model your are developing

In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p → Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

Use Bayesian formalism to combine predictions from pion- and lepton-
autoencoders into a likelihood

2Preferably not machine learning based
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 15 / 24



Reference Models and Analysis Procedures

It is very helpful to have a reference model2, running in parallel to your machine /
deep learning analysis

⇒ Helps to understand / debug the model your are developing

In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p → Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

Use Bayesian formalism to combine predictions from pion- and lepton-
autoencoders into a likelihood

2Preferably not machine learning based
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 15 / 24



Reference Models and Analysis Procedures

It is very helpful to have a reference model2, running in parallel to your machine /
deep learning analysis

⇒ Helps to understand / debug the model your are developing

In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p → Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

Use Bayesian formalism to combine predictions from pion- and lepton-
autoencoders into a likelihood

2Preferably not machine learning based
Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 15 / 24



Lepton Identification Performance on simulated single
e+-/π+-Tracks

PID Method Efficiency [%] False Rate [%] MCC-Score
E/p 92 6 0.86

Classic ML 93 6 0.87
Autoencoder 94 5 0.89

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 16 / 24



Lepton Identification Performance on simulated single
e−-/π−-Tracks

PID Method Efficiency [%] False Rate [%] MCC-Score
E/p 90 10 0.8

Classic ML 91 8 0.83
Autoencoder 93 8 0.85

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 17 / 24



Application on GlueX Lepton Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

]2) [GeV/c-,e+M(e

1

10

210

310

410

510

610

E
nt

rie
s 

[a
.u

.] No cut
E/p - cut
ML (classic)
ML (new)

φ

ψJ/

]2) [GeV/cγ,-,e+M(e
0 0.5 1 1.5 2 2.5 3

E
nt

rie
s 

[a
.u

.]

410

510

610 No cut
E/p-cut
ML(classic)
ML(new)

Analyzed small sample of GlueX
e+e−-trees

Did not tune cuts

Found: Φ→ e+e− and J/ψ → e+e−

Analyzed small sample of GlueX
e+e−γ-trees

Used rather tight cuts: Networks & 70%,
E/p ∈ [0.8, 1.1]

Found: π0 → e+e−γ and η → e+e−γ

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 18 / 24



Application on GlueX Lepton Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

]2) [GeV/c-,e+M(e

1

10

210

310

410

510

610

E
nt

rie
s 

[a
.u

.] No cut
E/p - cut
ML (classic)
ML (new)

φ

ψJ/

]2) [GeV/cγ,-,e+M(e
0 0.5 1 1.5 2 2.5 3

E
nt

rie
s 

[a
.u

.]

410

510

610 No cut
E/p - cut
ML (classic)
ML (new)

Analyzed small sample of GlueX
e+e−-trees

Did not tune cuts

Found: Φ→ e+e− and J/ψ → e+e−

Analyzed small sample of GlueX
e+e−γ-trees

Used rather tight cuts: Networks & 90%,
E/p ∈ [0.85, 1.05]

Found: π0 → e+e−γ and η → e+e−γ

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 18 / 24



Predicted Lepton Features

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E(BCAL / FCAL)/p

0

100

200

300

400

500

600

310×

E
nt

rie
s 

[a
.u

.]

Particle Charge < 0

E/p - From Data

E/p - From lepton model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

]2) [GeV/c-,e+M(e

10

210

310

410

510

E
nt

rie
s 

[a
.u

.] No cut
E/p - cut
ML (classic)
ML (new)

φ

ψJ/

Remeber: E/p ∼ 1 for leptons and predominantly ∼ 0 for pions

Autoencoder reconstructs E/p by taking correlations of provided features into account
⇒ basically a multidimensional fit
⇒ similar to a kinematic fit, but on a single track level!

Cuts on predicted E/p allow for background suppression

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 19 / 24



Debugging / Understanding your Model

Very important - not only for you, but also for the analyzer who is using your model

Autoencoder allows to formulate residuals: Network Input - Network Output

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 20 / 24



Debugging / Understanding your Model

Very important - not only for you, but also for the analyzer who is using your model

Autoencoder allows to formulate residuals: Network Input - Network Output

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 20 / 24



Debugging / Understanding your Model

Very important - not only for you, but also for the analyzer who is using your model

Autoencoder allows to formulate residuals: Network Input - Network Output

Shown below: χ2(Residual) =
N∑
i=1

(
Network Input[i ]− Network Output[i ]

)2
and a few

residuals BEFORE a bug-fix

0 2 4 6 8 10 12 14 16 18 20

(Residual)2χ

1

10

210

310

410

510

610

710

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Residual p

0

1000

2000

3000

4000

5000

6000

7000

310×

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

χ2 and residuals expected to be ≈ 0

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 20 / 24



Debugging / Understanding your Model

Very important - not only for you, but also for the analyzer who is using your model

Autoencoder allows to formulate residuals: Network Input - Network Output

Shown below: χ2(Residual) =
N∑
i=1

(
Network Input[i ]− Network Output[i ]

)2
and a few

residuals BEFORE a bug-fix

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Residual E(BCAL 0)

0

2

4

6

8

10

12

14

16

610×

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Residual E(BCAL 2)

0

2

4

6

8

10

12

14

16

610×

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

Turned out that energy deposits of BCAL layers >=2 are -1 in DSelector

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 20 / 24



Debugging / Understanding your Model
Very important - not only for you, but also for the analyzer who is using your model

Autoencoder allows to formulate residuals: Network Input - Network Output

Shown below: χ2(Residual) =
N∑
i=1

(
Network Input[i ]− Network Output[i ]

)2
and a few

residuals AFTER a bug-fix

0 1 2 3 4 5 6

(Residual)2χ

1

10

210

310

410

510

610

710

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Residual p

0

500

1000

1500

2000

2500

3000

3500

4000

310×

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

Current model uses BCAL pre-shower and sum over all Layers only

χ2 and residuals are ≈ 0 → Deviations due to pions and poorly reconstructed events

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 20 / 24



Debugging / Understanding your Model
Very important - not only for you, but also for the analyzer who is using your model

Autoencoder allows to formulate residuals: Network Input - Network Output

Shown below: χ2(Residual) =
N∑
i=1

(
Network Input[i ]− Network Output[i ]

)2
and a few

residuals AFTER a bug-fix

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Residual E(BCAL 0)

0

1000

2000

3000

4000

5000

6000

7000
310×

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Residual E(BCAL)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

310×

E
nt

rie
s 

[a
.u

.]

Electron Model / Hypothesis

Positron Model / Hypothesis

Current model uses BCAL pre-shower and sum over all Layers only

χ2 and residuals are ≈ 0 → Deviations due to pions and poorly reconstructed events

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 20 / 24



Inspecting the Decoder (first generation autoencoder)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 21 / 24



Inspecting the Decoder (first generation autoencoder)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 21 / 24



Inspecting the Decoder (first generation autoencoder)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 21 / 24



Generating Lepton (like) Data (first generation autoencoder)

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 22 / 24



Moving forward: Constraint hypothesis fitting with
Autoencoders

Analogue to kinematic fitter: Include constraints related to particle hypothesis
For leptons: Energy deposits in calorimeter E(cal) ∼ Momentum p

Right column shows network predictions, using the lepton constraints
⇒ Improvement in resolution!

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 23 / 24



Summary and Outlook

Used autoencoder neural networks for PID in GlueX

Obtained promising results

Might be a bit too much for lepton ID, but:
I the goal is to design a generic algorithm
I want to proof and develop the concept on an “easy” case

Besides simple classification, autoencoder networks...

... support the user regarding debugging and understanding the model

... interpret the data with respect to a given particle hypothesis (analogue to a
kinematic fitter)

... are easy to train due to the constraint architecture (used tied weights here)

... de-noise the data (not shown here today)

... are somewhat more robust with respect to training data / real data mismatch

The price one has to pay is the model size: ∼ 103 vs ∼ 102 parameters

Daniel Lersch (FSU) JLUO AI Meeting June 19, 2020 24 / 24


