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Overview

1. Very short introduction to machine learning
2. Definition and properties of (deep) neural networks

3. Application of autoencoders for particle identification at GlueX
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Basic Components of Machine Learning
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Basic Components of Machine Learning

-

Input Data:
- numbers
- pictures
- text

-
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Basic Components of Machine Learning

- -

Input Data: Output Data:

- numbers - labels [0,1,2,..]
- pictures Internal Parameters: - function values
- text - weights - pictures

. - thresholds - text

- slope gradients .

How to set these parameters?
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Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
@ The parameter adjustment is done during training
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Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training

INPUT

your training data:
- simulations
- measured data

>

- any data, that is understood well

ML ALGORITHM

update internal parameters

OUTPUT

<
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Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training

OUTPUT

INPUT w1 ML ALGORITHM

6000V
50000
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éz.oooo update internal parameters

20000 ive Pion

Al Parices
10000 Idontifed as Electron IError = f(output’ targets)l <—
LN
0.50 supervised learning

%7010 020 030 040

dE(cal)/p
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Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
@ The parameter adjustment is done during training

INPUT

>

pecia
oY

ML ALGORITHM

update internal parameters

OUTPUT

I Error =f(output) I <

unsupervised learning
(e.g. clustering algorithms)
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Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training

INPUT

ﬂwronment

j REWera
Interpreter
NSt @,

g

Action

ML ALGORITHM

update internal parameters

Error = f(output,interaction

with environment)

uid=57895741

reinforcement learning

OUTPUT

«—

(e.g. self driving cars, game playing algorithms)
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Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately

@ The parameter adjustment is done during training

@ NOTE: The algorithms behavior / performance highly depends on the provided training
data
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Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training
@ NOTE: The algorithms behavior / performance highly depends on the provided training

data

@ Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

INPUT
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ML ALGORITHM

OUTPUT
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The Multilayer Perceptron

Variable 1

Variable 2

Variable 3

Input layer

Hidden layer

@ Most popular example for machine learning algorithms
@ Belongs to the class of feedforward neural networks
@ Architecture: Hidden layers with a set of neurons
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A single Neuron

Output
neuron 1 w
— ]

Output

neuron 2 Neuron j

Output

neuron k Sl = W1l x output neuron 1 +

W,, x output neuron 2 +

K

A(S,*b)

1

_ 1
|
Output ]

neuron N-1 W,, x output neuron N

Output
neuron N

1w
1

Nj

Previous neurons

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function
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A single Neuron

Output
neuron 1 w
— ]

Output

neuron 2 Neuron j

Output
neuron k Sl = W1l x output neuron 1 +

W,, x output neuron 2 +

Output

neuron N-1 W,, x output neuron N

Output
neuron N

1

Sigmoid i Leaky ReLU i

- o(a) = 1= max(0.1z, )

Wy L

ftanh M
! e« [ ]
Previous neurons ReLU l ELU 7

max(0, z) {( s2d |

Most commonly used in modern networks as
hidden layer activations

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019
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A single Neuron

Output
neuron 1

Output
neuron 2

Output
neuron k

Neuron j

S, =W, x output neuron 1 +

Output
neuron N-1

Output
neuron N

Previous neurons

W,, x output neuron 2 +

W, x output neuron N

Leaky ReLU
max(0.1z, )

1w
1

Nj

Maxout

max(w{ z + by, wi z + by)

ELU ’
2 220
afe-1) <0 /—

Often used for output layers

ReLU
max(0, )

@ Basic ingredients: Information from previous neurons, weights, bias and activation

function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for

science school 2019
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The Universal Approximation Theorem for Neural Networks

“a single hidden layer neural network with T
. ) . | ny(x) = Relu(—&¢ — 7.7)
a linear output unit can approximate any — . 1 nale) = Retu(~1.22 — 1.3)

s . " . . | nalz) = Relu(l.2z 4 1)
continuous function arbitrarily well, given _ _ )Rl 5]
enough hidden units” -- Hornik, 1991, 7 T R
htto/izmiones comistatic/statistical-leaming/hornik-nn-1991.odf / | / e

Z(z) = —my{x) — na(z) — na(z)
This, of course, does not imply that we ,/ : ] malnats)
have an optimization algorithm that can Fig. credit fowa 8 comian-neursknetworks-really-ieam-any-function-55e 10661 e

find such a function. The layer could also
be too large to be practical.

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

= Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
"[..] there are no nemesis functions that cannot be modeled by neural networks"
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Training a (deep) Neural Network

Bottom left picture taken from here

Bottom right picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

Hidden layer(s)

Output layer

.
Difference

n

desired values

How Backpropagation Works

Loss

low learning rate

high learning rate

good learning rate

Training Step

m
Gradient Descent: wy, 3 = wy — nVL(wg) = wy — n ZVL(X,', wy)
m

@ It is all about updating the weights wy
L: Loss function o prediction - truth

i=1

71 : Learning rate (Common choice: 1/N(Training epochs))

m: Batch size
@ Problem: VL = 0 (vanishing gradient)

@ Different variants of stochastic gradient descent (L-BFGS, Adam, SGD,...)
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Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

® Training examples
m New example

X

Underfitting Good fit! Overfitting

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters®, but used to determine when training is complete

1This data is "unseen” by the algorithm during the training stage
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Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters®, but used to determine when training is complete

underfitting overfitting

validation error

error

Genen%alization Gap

1 training error

# Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is "unseen” by the algorithm during the training stage
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Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid

overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters!, but used to determine when training is complete

underfitting overfitting

validation error

Early
iStopping

l

error

training error

# Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is "unseen” by the algorithm during the training stage
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From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning
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From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning

> Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) — Also known as
feature-engineering

> By pre-processing, you already encode information into the data

» Moderate model size (e.g 1-2 hidden layers in a neural network)

e
_— /

Variable 1|

Variable 2

Hidden layer
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From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning
> Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) — Also known as
feature-engineering
> By pre-processing, you already encode information into the data
» Moderate model size (e.g 1-2 hidden layers in a neural network)
@ Deep learning
» Still machine learning, but uses neural networks only
> Leave out (certain) pre-processing steps — Let the model do the work for you
» The neural network becomes deep — Pre-processing is basically done in extra
hidden layers

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Picture taken from here
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From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning

> Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) — Also known as
feature-engineering

> By pre-processing, you already encode information into the data

> Moderate model size (e.g 1-2 hidden layers in a neural network)

@ Deep learning

> Still machine learning, but uses neural networks only

> Leave out (certain) pre-processing steps — Let the model do the work for you

> The neural network becomes deep — Pre-processing is basically done in extra
hidden layers

@ Deep learning is not trivial, but fortunately there are many frameworks

v

Pytorch

> Keras

> Tensorflow (used for the work presented here)
>
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Autoencoders: Basics

Data In Data Out

—

ENCODER DECODER

. Dense layer with n neurons (n scales with height)

@ Consists of two parts: encoder + decoder — Symmetric sandwich architecture
@ Train autoencoder for: Data In ~ Data Out

@ But: Number of neurons needs to decrease in encoding part and increase in
decoding part — Otherwise no effect <+ ldentity function
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Autoencoders: Basics

Data In I I Data Out
e [ e
ENCODER DECODER

Compress Data
= dimensional reduction

. Dense layer with n neurons (n scales with height)

@ Consists of two parts: encoder + decoder — Symmetric sandwich architecture
@ Train autoencoder for: Data In ~ Data Out
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Autoencoders: Basics

Data In
e

ENCODER

Data Out

DECODER

Decompress Data

. Dense layer with n neurons (n scales with height)

@ Consists of two parts: encoder + decoder — Symmetric sandwich architecture
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Autoencoders: Compression and Decompression

9 Features

ENCODER

I

Features:

- momentum

- theta

- ddEdx(CDC)

- dE(BCAL 0)

- dE(BCAL all)
- ddEdx(FDC)

- dE(FCAL)

- E9E25 (FCAL)
- E1E9 (FCAL)
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Autoencoders: Compression and Decompression

9 Features

ENCODER

— -

Encoder Correlations

0.36

0.75

4D representation 100 05 e 100
0.89 1.00 3 025
0.00

-0.25

Compression / dimensional reduction
from 9 —> 4 dimensions
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Autoencoders: Compression and Decompression

9 Features

ENCODER

Encoder Correlations

1.00
o 075
1.00 0.89 XA |} o.50
025

.62 0.89 1.00 [ERE
0.00

0.36 -0.08 —013

3

DECODER
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Autoencoders: Anomaly Detection in Data

Feature correlations similar to training data

-

ENCODER DECODER

Input Data
ﬁ

ENCODER DECODER

-

Feature correlations NOT similar to training data
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Autoencoders: Anomaly Detection

in Data

Feature correlations similar to training data

ENCODER
A
Input Data encrypts data into
— lower dimensional
representation
\ 4

ENCODER

-

-

DECODER

DECODER

Feature correlations NOT similar to training data
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Autoencoders: Anomaly Detection in Data

Feature correlations similar to training data

-

ENCODER DECODER
A
Input Data decrypts data into
—l original feature
< space
v
ENCODER DECODER

-

Feature correlations NOT similar to training data
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Autoencoders: Anomaly Detection in Data

Feature correlations similar to training data

- v

ENCODER DECODER Everything is fine

Input Data
ﬁ

ENCODER DECODER Anomaly

‘- O

Feature correlations NOT similar to training data
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Autoencoders: (Current) Realization at GlueX

Model loss
—— Train
0.157 —— Test
Data In $0.10
— Q
0.05
0.00 ‘ : : ‘
0 100 200 300
Epoch

ENCODER DECODER

@ Train autoencoder on simulated single particle tracks — One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)
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Autoencoders: (Current) Realization at GlueX

. }rrtl

ENCODER DECODER

Analysis,
Debuggmg,

@ Train autoencoder on simulated single particle tracks — One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)

@ Autoencoder outputs help to understand model performance

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 14 / 24



Autoencoders: (Current) Realization at GlueX

Analysis,
Debugging,

—-
Data In
— I"I‘ CLASSIFIER
-l

Likelihood for

ENCODER DECODER ™"

@ Train autoencoder on simulated single particle tracks — One autoencoder per
particle species and per charge (as apposed to “classic’ machine learning)

@ Autoencoder outputs help to understand model performance

@ Anomaly detector (aka classifer) allows to translate the decoded data into a
likelihood
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Reference Models and Analysis Procedures

@ It is very helpful to have a reference model®, running in parallel to your machine /
deep learning analysis

= Helps to understand / debug the model your are developing

2Preferably not machine learning based
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Reference Models and Analysis Procedures

@ It is very helpful to have a reference model®, running in parallel to your machine /
deep learning analysis

= Helps to understand / debug the model your are developing
@ In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p — Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

2Preferably not machine learning based
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Reference Models and Analysis Procedures

@ It is very helpful to have a reference model®, running in parallel to your machine /
deep learning analysis

= Helps to understand / debug the model your are developing

@ In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p — Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

@ Use Bayesian formalism to combine predictions from pion- and lepton-
autoencoders into a likelihood

2Preferably not machine learning based
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Lepton Identification Performance on simulated single
e"-/nt-Tracks

1.0 , ! s 2 2 3 .
0.8 - e
. .
0.8 m
better than V3 -
random guess // 0.6 -
a().6 ,
_ﬁ 4 worse than g -
% /’ random guess 3 04
*o.4 ’ ’
’
’
’ o =
’
0.2 ’ 021"
4
’ = E/pcut =  E/pcut
,' = NN (classic) e NN (new)
0.0 * NN (new) » * NN (classic)
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
False Positive Rate Threshold

PID Method || Efficiency [%] | False Rate [%] | MCC-Score

E/p 92 6 0.86
Classic ML 93 6 0.87
Autoencoder 94 5 0.89
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Lepton Identification Performance
e -/m -Tracks

on simulated single

1.0 . e
o e 0 ® Poe
0.8 . L
.
.
.
0.8 - .
better than ’ 0.6
random guess 4 i -
’
>0.6
’
2 o .
o worse than 5
% ’ random guess 304
] ’
0.4 7 .
’
’
’
’ .
0.2 , 0.2
’
/' =  E/pcut E/p cut
7 = NN (classic) NN (new)
0.0 * NN (new) . NN (classic)
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

False Positive Rate

Threshold

PID Method || Efficiency [%] | False Rate [%] | MCC-Score

E/p 90 10 0.8
Classic ML 91 3 0.83
Autoencoder 93 8 0.85
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Application on GlueX Lepton Data

— No cut

:i ? 100 — No cut
<, — Elp - cut . & E — Elp-cut
? — m:: (classic) P — ML(classic)
2 — ML (new) ..GE) r —— ML(new)
c c El
T woo:
? 10
10 0‘5 H1H 15 2 2.5‘”3‘ ‘3.5 l“l 4.‘5 0‘ — ‘0.5‘ = ‘1‘ = ‘1‘5‘ = ‘2“ 2.‘5 3
M(e*,e) [GeV/c?] M(e".ey) [GeV/c?]

@ Analyzed small sample of GlueX
et e y-trees

@ Used rather tight cuts: Networks 2> 70%,
E/pe[0.8,1.1]

@ Found: 70 — ete~yand n — ete v

@ Analyzed small sample of GlueX
eTe -trees

@ Did not tune cuts
@ Found: ® — eTe™ and J/vp — ete™
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Application on GlueX Lepton Data

5 — No cut -
s > . —— No cut
S, —Efp- (I:Ut ) G, v E —— Elp-cut
g o mt (classic) " [ —— ML (classic)
2 —_ ML (new) 2 F —— ML (new)
< e 10E
L L [ E
3 10t J
10 0‘5 H1H 15 2 2.5”‘3‘ ‘3.5 l"l 4.‘5 . = — | 2.‘5
M(e*,e) [GeV/c?] M(e' e y) [GeV/c?

@ Analyzed small sample of GlueX
et e y-trees

@ Used rather tight cuts: Networks = 90%,
E/p € [0.85,1.05]

@ Found: 70 — ete~yand n — ete v

@ Analyzed small sample of GlueX
eTe -trees

@ Did not tune cuts
@ Found: ® — eTe™ and J/vp — ete™
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Predicted Lepton Features

— —
= Particle Charge < 0 =] No cut
5, 5, — Elp-cut
500 — —— Elp - From Data .
8 g —— ML (classic)
S w0l —— Elp- From lepton model = — ML (new)
c c
m L

200

100

L I I I I I i E
14 16 18 2 0 05 1 15 2 25 3 35 4 45

I
0.2 0.4 0.6 0.8 1 12

E(BCAL / FCAL)/p M(e*,e) [GeV/c?|

@ Remeber: E/p ~ 1 for leptons and predominantly ~ 0 for pions

@ Autoencoder reconstructs E/p by taking correlations of provided features into account

= basically a multidimensional fit
= similar to a kinematic fit, but on a single track level!

@ Cuts on predicted E/p allow for background suppression
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Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
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Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model

@ Autoencoder allows to formulate residuals: Network Input - Network Output
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Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
@ Autoencoder allows to formulate residuals: Network Input - Network Output

N 2
@ Shown below: x?(Residual) = > (Netvvork Input[i] — Network Output[i]) and a few

i=1
residuals BEFORE a bug-fix

3

Electron Mode! / Hypothesis 7000 [~ | —— eectron Movel  Hypothesis

6000

Positron Model / Hypothesis o oivon odel Fypotesis

5000

Entries [a.u.]
Entries [a.u.]

4000

3000

2000

1000

1Y [ .
4 6 8 10 12

14 16 18 =

I L L et
15 T =05 0 05 1 15

¥?(Residual) Residual p

@ x? and residuals expected to be ~ 0
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Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
@ Autoencoder allows to formulate residuals: Network Input - Network Output

N 2
@ Shown below: x?(Residual) = > (Network Input[i] — Network Output[i]) and a few

i=1
residuals BEFORE a bug-fix

=
&3

5
5

——— Electron Model / Hypothesis ——— Electron Model / Hypothesis

=
"
=

—— Positron Model ! Hypothesis

Positron Model / Hypothesis

-
5

5

Entries [a.u.]
Entries [a.u.]

N & o
N s o

L L L
15 = =05 05 T 15 =

Residual E(BCAL 0) Residual E(BCAL 2)

I L L L
05 T 15

|
|
L
o
o
o

@ Turned out that energy deposits of BCAL layers >=2 are -1 in DSelector
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Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
@ Autoencoder allows to formulate residuals: Network Input - Network Output
N 2
@ Shown below: x?(Residual) = > (Network Input[i] — Network Output[i]) and a few

i=1
residuals AFTER a bug-fix
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@ Current model uses BCAL pre-shower and sum over all Layers only

@ %2 and residuals are = 0 — Deviations due to pions and poorly reconstructed events
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@ Current model uses BCAL pre-shower and sum over all Layers only
@ %2 and residuals are = 0 — Deviations due to pions and poorly reconstructed events
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Inspecting the Decoder (first generation autoencoder)
Original

Produce binned Histogram
Lepton Data
—— - 12

10

Encoder Output 2
o

Encoder Output 1

Generated g I

Sample 2 random variables
from histogram
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Inspecting the Decoder (first generation autoencoder)
Original

Produce binned Histogram
Lepton Data
—— - 12

10

Encoder Output 2
o

Ideally done only once,
unless your model needs to be tuned...

Encoder Output 1
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Inspecting the Decoder (first generation autoencoder)

binned Histogram

Can be done many times
—> data generator

Encoder Output 2

Encoder Output 1

Generated g I

Sample 2 random variables
from histogram
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Generating Lepton (like) Data (first generation autoencoder)

Left: Original Data / Right: Generated Data

0.0 2.5 5.0 75 0.0 2.5 5.0 75
Momentum Momentum
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Moving forward: Constraint hypothesis fitting with
Autoencoders
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Reconstructed E(cal)/p Fitted E(cal)/p

@ Analogue to kinematic fitter: Include constraints related to particle hypothesis
@ For leptons: Energy deposits in calorimeter E(cal) ~ Momentum p

@ Right column shows network predictions, using the lepton constraints
= Improvement in resolution!
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Summary and Outlook

@ Used autoencoder neural networks for PID in GlueX
@ Obtained promising results
@ Might be a bit too much for lepton ID, but:

> the goal is to design a generic algorithm
> want to proof and develop the concept on an “easy’ case

@ Besides simple classification, autoencoder networks...

. support the user regarding debugging and understanding the model
interpret the data with respect to a given particle hypothesis (analogue to a
kinematic fitter)

. are easy to train due to the constraint architecture (used tied weights here)

. de-noise the data (not shown here today)

. are somewhat more robust with respect to training data / real data mismatch

@ The price one has to pay is the model size: ~ 10® vs ~ 102 parameters
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