Particle Identification with Autoencoder Neural Networks

Daniel Lersch & Sean Dobbs

June 19, 2020

Daniel Lersch (FSU) JLUO Al Meeting

Overview

1. Very short introduction to machine learning
2. Definition and properties of (deep) neural networks

3. Application of autoencoders for particle identification at GlueX

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 2 /24

Basic Components of Machine Learning

Daniel Lersch (FSU) JLUO Al Meeting

Basic Components of Machine Learning

-

Input Data:
- numbers
- pictures
- text

-

Daniel Lersch (FSU) JLUO Al Meeting

Basic Components of Machine Learning

- -

Input Data:
- numbers
- pictures Inteljnal Parameters:
- text - weights
- thresholds

i - slope gradients

Daniel Lersch (FSU) JLUO Al Meeting

Basic Components of Machine Learning

- -

Input Data: Output Data:

- numbers - labels [0,1,2,..]
- pictures Internal Parameters: - function values
- text - weights - pictures

. - thresholds - text

- slope gradients .

Daniel Lersch (FSU) JLUO Al Meeting

Basic Components of Machine Learning

- -

Input Data: Output Data:

- numbers - labels [0,1,2,..]
- pictures Internal Parameters: - function values
- text - weights - pictures

. - thresholds - text

- slope gradients .

How to set these parameters?

Daniel Lersch (FSU) JLUO Al Meeting

Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
@ The parameter adjustment is done during training

Daniel Lersch (FSU) JLUO Al Meeting

Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training

INPUT

your training data:
- simulations
- measured data

>

- any data, that is understood well

ML ALGORITHM

update internal parameters

OUTPUT

<

Daniel Lersch (FSU) JLUO Al Meeting

June 19, 2020

4/24

Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training

OUTPUT

INPUT w1 ML ALGORITHM

6000V
50000

40000
éz.oooo update internal parameters

20000 ive Pion

Al Parices
10000 Idontifed as Electron IError = f(output’ targets)l <—
LN
0.50 supervised learning

%7010 020 030 040

dE(cal)/p

Daniel Lersch (FSU) JLUO Al Meeting

(e.g. classification, regression)

June 19, 2020 4 /24

Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately
@ The parameter adjustment is done during training

INPUT

>

pecia
oY

ML ALGORITHM

update internal parameters

OUTPUT

I Error =f(output) I <

unsupervised learning
(e.g. clustering algorithms)

Daniel Lersch (FSU) JLUO Al Meeting

June 19, 2020

4/24

Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training

INPUT

ﬂwronment

j REWera
Interpreter
NSt @,

g

Action

ML ALGORITHM

update internal parameters

Error = f(output,interaction

with environment)

uid=57895741

reinforcement learning

OUTPUT

«—

(e.g. self driving cars, game playing algorithms)

JLUO Al Meeting

Daniel Lersch (FSU)

June 19, 2020

4/24

Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by
setting its internal parameters appropriately

@ The parameter adjustment is done during training

@ NOTE: The algorithms behavior / performance highly depends on the provided training
data

Daniel Lersch (FSU) JLUO Al Meeting

Training of Machine Learning Algorithms

@ Any machine learning algorithms “learn” patterns / actions from a given data set by

setting its internal parameters appropriately
@ The parameter adjustment is done during training
@ NOTE: The algorithms behavior / performance highly depends on the provided training

data

@ Your algorithm is useless if the training data significantly differs from the data you are
trying to analyze (However, there is some room for variations...)

INPUT

Daniel Lersch (FSU) JLUO Al Meeting

>

ML ALGORITHM

OUTPUT

June 19, 2020

4/24

The Multilayer Perceptron

Variable 1

Variable 2

Variable 3

Input layer

Hidden layer

@ Most popular example for machine learning algorithms
@ Belongs to the class of feedforward neural networks
@ Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 5 /24

The Multilayer Perceptron

Variable 1

Variable 2

Variable 3

Input layer

Hidden layer

@ Most popular example for machine learning algorithms
@ Belongs to the class of feedforward neural networks
@ Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 5 /24

A single Neuron

Output
neuron 1 w
—]

Output

neuron 2 Neuron j

Output

neuron k Sl = W1l x output neuron 1 +

W,, x output neuron 2 +

K

A(S,*b)

1

_ 1
|
Output]

neuron N-1 W,, x output neuron N

Output
neuron N

1w
1

Nj

Previous neurons

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 6 /24

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

A single Neuron

Output
neuron 1 w
—]

Output

neuron 2 Neuron j

Output
neuron k Sl = W1l x output neuron 1 +

W,, x output neuron 2 +

Output

neuron N-1 W,, x output neuron N

Output
neuron N

1

Sigmoid i Leaky ReLU i

- o(a) = 1= max(0.1z,)

Wy L

ftanh M
! e« []
Previous neurons ReLU l ELU 7

max(0, z) {(s2d |

Most commonly used in modern networks as
hidden layer activations

@ Basic ingredients: Information from previous neurons, weights, bias and activation
function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 6 /24

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

A single Neuron

Output
neuron 1

Output
neuron 2

Output
neuron k

Neuron j

S, =W, x output neuron 1 +

Output
neuron N-1

Output
neuron N

Previous neurons

W,, x output neuron 2 +

W, x output neuron N

Leaky ReLU
max(0.1z,)

1w
1

Nj

Maxout

max(w{ z + by, wi z + by)

ELU ’
2 220
afe-1) <0 /—

Often used for output layers

ReLU
max(0,)

@ Basic ingredients: Information from previous neurons, weights, bias and activation

function

@ Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for

science school 2019

Daniel Lersch (FSU) JLUO Al Meeting

June 19, 2020 6 /24

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

The Universal Approximation Theorem for Neural Networks

“a single hidden layer neural network with T
.) . | ny(x) = Relu(—&¢ — 7.7)
a linear output unit can approximate any — . 1 nale) = Retu(~1.22 — 1.3)

s . " . . | nalz) = Relu(l.2z 4 1)
continuous function arbitrarily well, given _ _)Rl 5]
enough hidden units” -- Hornik, 1991, 7 T R
htto/izmiones comistatic/statistical-leaming/hornik-nn-1991.odf / | / e

Z(z) = —my{x) — na(z) — na(z)
This, of course, does not imply that we ,/ :] malnats)
have an optimization algorithm that can Fig. credit fowa 8 comian-neursknetworks-really-ieam-any-function-55e 10661 e

find such a function. The layer could also
be too large to be practical.

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

= Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
"[..] there are no nemesis functions that cannot be modeled by neural networks"

Daniel Lersch (FSU) JLUO Al Meeting

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=80265

Training a (deep) Neural Network

Bottom left picture taken from here

Bottom right picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

Hidden layer(s)

Output layer

.
Difference

n

desired values

How Backpropagation Works

Loss

low learning rate

high learning rate

good learning rate

Training Step

m
Gradient Descent: wy, 3 = wy — nVL(wg) = wy — n ZVL(X,', wy)
m

@ It is all about updating the weights wy
L: Loss function o prediction - truth

i=1

71 : Learning rate (Common choice: 1/N(Training epochs))

m: Batch size
@ Problem: VL = 0 (vanishing gradient)

@ Different variants of stochastic gradient descent (L-BFGS, Adam, SGD,...)

Daniel Lersch (FSU) JLUO Al Meeting

June 19, 2020

1

8 /24

https://www.guru99.com/backpropogation-neural-network.html
https://sites.google.com/lbl.gov/dl4sci2019/agenda

Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

® Training examples
m New example

X

Underfitting Good fit! Overfitting

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 9 /24

https://sites.google.com/lbl.gov/dl4sci2019/agenda

Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters®, but used to determine when training is complete

1This data is "unseen” by the algorithm during the training stage

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 9 /24

Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters®, but used to determine when training is complete

underfitting overfitting

validation error

error

Genen%alization Gap

1 training error

Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is "unseen” by the algorithm during the training stage

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 9 /24

https://sites.google.com/lbl.gov/dl4sci2019/agenda

Overfitting

@ Want to enable network to abstract / generalize on unknown data AND avoid

overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters!, but used to determine when training is complete

underfitting overfitting

validation error

Early
iStopping

l

error

training error

Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

1This data is "unseen” by the algorithm during the training stage
iy) 2

9/24

https://sites.google.com/lbl.gov/dl4sci2019/agenda

From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning

Daniel Lersch (FSU) JLUO Al Meeting

From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning

> Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) — Also known as
feature-engineering

> By pre-processing, you already encode information into the data

» Moderate model size (e.g 1-2 hidden layers in a neural network)

e
_— /

Variable 1|

Variable 2

Hidden layer

Daniel Lersch (FSU JLUO Al Meeting June 19, 2020 10 / 24

From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning
> Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) — Also known as
feature-engineering
> By pre-processing, you already encode information into the data
» Moderate model size (e.g 1-2 hidden layers in a neural network)
@ Deep learning
» Still machine learning, but uses neural networks only
> Leave out (certain) pre-processing steps — Let the model do the work for you
» The neural network becomes deep — Pre-processing is basically done in extra
hidden layers

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Picture taken from here

Daniel Lersch (F JLUO Al Meeti June 19, 2020

10 / 24

http://neuralnetworksanddeeplearning.com/chap6.html

From Machine to Deep Learning (in a very naive picture)

@ “Classical” Machine learning

> Features (inputs for your algorithm) are obtained after some pre-processing
(calibration, analysis cuts, variable selection,...) — Also known as
feature-engineering

> By pre-processing, you already encode information into the data

> Moderate model size (e.g 1-2 hidden layers in a neural network)

@ Deep learning

> Still machine learning, but uses neural networks only

> Leave out (certain) pre-processing steps — Let the model do the work for you

> The neural network becomes deep — Pre-processing is basically done in extra
hidden layers

@ Deep learning is not trivial, but fortunately there are many frameworks

v

Pytorch

> Keras

> Tensorflow (used for the work presented here)
>

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 10 / 24

Autoencoders: Basics

Data In Data Out

—

ENCODER DECODER

. Dense layer with n neurons (n scales with height)

@ Consists of two parts: encoder + decoder — Symmetric sandwich architecture
@ Train autoencoder for: Data In ~ Data Out

@ But: Number of neurons needs to decrease in encoding part and increase in
decoding part — Otherwise no effect <+ ldentity function

Daniel Lersch (FSU) June 19, 2020

11 / 24

Autoencoders: Basics

Data In Data Out
e

ENCODER DECODER

. Dense layer with n neurons (n scales with height)

@ Consists of two parts: encoder + decoder — Symmetric sandwich architecture
@ Train autoencoder for: Data In ~ Data Out

@ But: Number of neurons needs to decrease in encoding part and increase in
decoding part — Otherwise no effect <+ ldentity function

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 11 / 24

Autoencoders: Basics

Data In I I Data Out
e [e
ENCODER DECODER

Compress Data
= dimensional reduction

. Dense layer with n neurons (n scales with height)

@ Consists of two parts: encoder + decoder — Symmetric sandwich architecture
@ Train autoencoder for: Data In ~ Data Out

@ But: Number of neurons needs to decrease in encoding part and increase in
decoding part — Otherwise no effect <+ ldentity function

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 11 / 24

Autoencoders: Basics

Data In
e

ENCODER

Data Out

DECODER

Decompress Data

. Dense layer with n neurons (n scales with height)

@ Consists of two parts: encoder + decoder — Symmetric sandwich architecture

@ Train autoencoder for: Data In ~ Data Out

@ But: Number of neurons needs to decrease in encoding part and increase in
decoding part — Otherwise no effect <+ ldentity function

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 11 / 24

Autoencoders: Compression and Decompression

9 Features

ENCODER

I

Features:

- momentum

- theta

- ddEdx(CDC)

- dE(BCAL 0)

- dE(BCAL all)
- ddEdx(FDC)

- dE(FCAL)

- E9E25 (FCAL)
- E1E9 (FCAL)

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 12 / 24

Autoencoders: Compression and Decompression

9 Features

ENCODER

— -

Encoder Correlations

0.36

0.75

4D representation 100 05 e 100
0.89 1.00 3 025
0.00

-0.25

Compression / dimensional reduction
from 9 —> 4 dimensions

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 12 / 24

Autoencoders: Compression and Decompression

9 Features

ENCODER

Encoder Correlations

1.00
o 075
1.00 0.89 XA |} o.50
025

.62 0.89 1.00 [ERE
0.00

0.36 -0.08 —013

3

DECODER

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 12 / 24

Autoencoders: Anomaly Detection in Data

Feature correlations similar to training data

-

ENCODER DECODER

Input Data
ﬁ

ENCODER DECODER

-

Feature correlations NOT similar to training data

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 13 / 24

Autoencoders: Anomaly Detection

in Data

Feature correlations similar to training data

ENCODER
A
Input Data encrypts data into
— lower dimensional
representation
\ 4

ENCODER

-

-

DECODER

DECODER

Feature correlations NOT similar to training data

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020

13 / 24

Autoencoders: Anomaly Detection in Data

Feature correlations similar to training data

-

ENCODER DECODER
A
Input Data decrypts data into
—l original feature
< space
v
ENCODER DECODER

-

Feature correlations NOT similar to training data

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 13 / 24

Autoencoders: Anomaly Detection in Data

Feature correlations similar to training data

- v

ENCODER DECODER Everything is fine

Input Data
ﬁ

ENCODER DECODER Anomaly

‘- O

Feature correlations NOT similar to training data

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 13 / 24

Autoencoders: (Current) Realization at GlueX

Model loss
—— Train
0.157 —— Test
Data In $0.10
— Q
0.05
0.00 ‘ : : ‘
0 100 200 300
Epoch

ENCODER DECODER

@ Train autoencoder on simulated single particle tracks — One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 14 / 24

Autoencoders: (Current) Realization at GlueX

. }rrtl

ENCODER DECODER

Analysis,
Debuggmg,

@ Train autoencoder on simulated single particle tracks — One autoencoder per
particle species and per charge (as apposed to “classic” machine learning)

@ Autoencoder outputs help to understand model performance

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 14 / 24

Autoencoders: (Current) Realization at GlueX

Analysis,
Debugging,

—-
Data In
— I"I‘ CLASSIFIER
-l

Likelihood for

ENCODER DECODER ™"

@ Train autoencoder on simulated single particle tracks — One autoencoder per
particle species and per charge (as apposed to “classic’ machine learning)

@ Autoencoder outputs help to understand model performance

@ Anomaly detector (aka classifer) allows to translate the decoded data into a
likelihood

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 14 / 24

Reference Models and Analysis Procedures

@ It is very helpful to have a reference model®, running in parallel to your machine /
deep learning analysis

= Helps to understand / debug the model your are developing

2Preferably not machine learning based

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 15 / 24

Reference Models and Analysis Procedures

@ It is very helpful to have a reference model®, running in parallel to your machine /
deep learning analysis

= Helps to understand / debug the model your are developing
@ In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p — Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

2Preferably not machine learning based

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 15 / 24

Reference Models and Analysis Procedures

@ It is very helpful to have a reference model®, running in parallel to your machine /
deep learning analysis

= Helps to understand / debug the model your are developing

@ In this Analysis use:

1. E/p-cut: Uses energy deposit E in either BCAL / FCAL and the momentum
p — Not machine learning based and straight forward to apply

2. “Classic” machine learning approach: Neural network trained on leptons vs.
pions (one for each charge)

@ Use Bayesian formalism to combine predictions from pion- and lepton-
autoencoders into a likelihood

2Preferably not machine learning based

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 15 / 24

Lepton Identification Performance on simulated single
e"-/nt-Tracks

1.0 , ! s 2 2 3 .
0.8 - e
. .
0.8 m
better than V3 -
random guess // 0.6 -
a().6 ,
_ﬁ 4 worse than g -
% /’ random guess 3 04
*o.4 ’ ’
’
’
’ o =
’
0.2 ’ 021"
4
’ = E/pcut = E/pcut
,' = NN (classic) e NN (new)
0.0 * NN (new) » * NN (classic)
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
False Positive Rate Threshold

PID Method || Efficiency [%] | False Rate [%] | MCC-Score

E/p 92 6 0.86
Classic ML 93 6 0.87
Autoencoder 94 5 0.89

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 16 / 24

Lepton Identification Performance
e -/m -Tracks

on simulated single

1.0 . e
o e 0 ® Poe
0.8 . L
.
.
.
0.8 - .
better than ’ 0.6
random guess 4 i -
’
>0.6
’
2 o .
o worse than 5
% ’ random guess 304
] ’
0.4 7 .
’
’
’
’ .
0.2 , 0.2
’
/' = E/pcut E/p cut
7 = NN (classic) NN (new)
0.0 * NN (new) . NN (classic)
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

False Positive Rate

Threshold

PID Method || Efficiency [%] | False Rate [%] | MCC-Score

E/p 90 10 0.8
Classic ML 91 3 0.83
Autoencoder 93 8 0.85

Daniel Lersch (FSU) JLUO Al Meeting

June 19, 2020

17 / 24

Application on GlueX Lepton Data

— No cut

:i ? 100 — No cut
<, — Elp - cut . & E — Elp-cut
? — m:: (classic) P — ML(classic)
2 — ML (new) ..GE) r —— ML(new)
c c El
T woo:
? 10
10 0‘5 H1H 15 2 2.5‘”3‘ ‘3.5 l“l 4.‘5 0‘ — ‘0.5‘ = ‘1‘ = ‘1‘5‘ = ‘2“ 2.‘5 3
M(e*,e) [GeV/c?] M(e".ey) [GeV/c?]

@ Analyzed small sample of GlueX
et e y-trees

@ Used rather tight cuts: Networks 2> 70%,
E/pe[0.8,1.1]

@ Found: 70 — ete~yand n — ete v

@ Analyzed small sample of GlueX
eTe -trees

@ Did not tune cuts
@ Found: ® — eTe™ and J/vp — ete™

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 18 / 24

Application on GlueX Lepton Data

5 — No cut -
s > . —— No cut
S, —Efp- (I:Ut) G, v E —— Elp-cut
g o mt (classic) " [—— ML (classic)
2 —_ ML (new) 2 F —— ML (new)
< e 10E
L L [E
3 10t J
10 0‘5 H1H 15 2 2.5”‘3‘ ‘3.5 l"l 4.‘5 . = — | 2.‘5
M(e*,e) [GeV/c?] M(e' e y) [GeV/c?

@ Analyzed small sample of GlueX
et e y-trees

@ Used rather tight cuts: Networks = 90%,
E/p € [0.85,1.05]

@ Found: 70 — ete~yand n — ete v

@ Analyzed small sample of GlueX
eTe -trees

@ Did not tune cuts
@ Found: ® — eTe™ and J/vp — ete™

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 18 / 24

Predicted Lepton Features

— —
= Particle Charge < 0 =] No cut
5, 5, — Elp-cut
500 — —— Elp - From Data .
8 g —— ML (classic)
S w0l —— Elp- From lepton model = — ML (new)
c c
m L

200

100

L I I I I I i E
14 16 18 2 0 05 1 15 2 25 3 35 4 45

I
0.2 0.4 0.6 0.8 1 12

E(BCAL / FCAL)/p M(e*,e) [GeV/c?|

@ Remeber: E/p ~ 1 for leptons and predominantly ~ 0 for pions

@ Autoencoder reconstructs E/p by taking correlations of provided features into account

= basically a multidimensional fit
= similar to a kinematic fit, but on a single track level!

@ Cuts on predicted E/p allow for background suppression

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 19 / 24

Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model

Daniel Lersch (FSU) JLUO Al Meeting

Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model

@ Autoencoder allows to formulate residuals: Network Input - Network Output

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 20 / 24

Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
@ Autoencoder allows to formulate residuals: Network Input - Network Output

N 2
@ Shown below: x?(Residual) = > (Netvvork Input[i] — Network Output[i]) and a few

i=1
residuals BEFORE a bug-fix

3

Electron Mode! / Hypothesis 7000 [~ | —— eectron Movel Hypothesis

6000

Positron Model / Hypothesis o oivon odel Fypotesis

5000

Entries [a.u.]
Entries [a.u.]

4000

3000

2000

1000

1Y [.
4 6 8 10 12

14 16 18 =

I L L et
15 T =05 0 05 1 15

¥?(Residual) Residual p

@ x? and residuals expected to be ~ 0

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 20 / 24

Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
@ Autoencoder allows to formulate residuals: Network Input - Network Output

N 2
@ Shown below: x?(Residual) = > (Network Input[i] — Network Output[i]) and a few

i=1
residuals BEFORE a bug-fix

=
&3

5
5

——— Electron Model / Hypothesis ——— Electron Model / Hypothesis

=
"
=

—— Positron Model ! Hypothesis

Positron Model / Hypothesis

-
5

5

Entries [a.u.]
Entries [a.u.]

N & o
N s o

L L L
15 = =05 05 T 15 =

Residual E(BCAL 0) Residual E(BCAL 2)

I L L L
05 T 15

|
|
L
o
o
o

@ Turned out that energy deposits of BCAL layers >=2 are -1 in DSelector

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 20 / 24

Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
@ Autoencoder allows to formulate residuals: Network Input - Network Output
N 2
@ Shown below: x?(Residual) = > (Network Input[i] — Network Output[i]) and a few

i=1
residuals AFTER a bug-fix

15
2

4000
—— Electron Model / Hypothesis

Electron Model / Hypothesis
3500

3000

Positron Model / Hypothesis

Positron Model / Hypothesis

2500

Entries [a.u.]
Entries [a.u.]

2000

1500

1000

@
8
s

S T T PEII I I I T T

L
0.5 1 15

!
|
i
@
|
L
)
o
o

0 1 2 3 4 5 6

¥?(Residual) Residual p

@ Current model uses BCAL pre-shower and sum over all Layers only

@ %2 and residuals are = 0 — Deviations due to pions and poorly reconstructed events

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 20 / 24

Debugging / Understanding your Model

@ Very important - not only for you, but also for the analyzer who is using your model
@ Autoencoder allows to formulate residuals: Network Input - Network Output
N 2
@ Shown below: x?(Residual) = > (Network Input[i] — Network Output[i]) and a few

i=1
residuals AFTER a bug-fix

2

@

3

1 7000 - 4500
=] C =} =
P Elecron Model Hypothesis S 000f ecton ol ypotoss
— F — E
(7} C) 3500
Q 5000~ 5 E
s £ Positon Model Hypothesis 5 000 Position Model | Hypothesis
Llﬁ 4000 e Llﬁ 2500/
3000 2000
E 1500
2000~ E
£ 1000
1000~ E
= 500~
£ L L Il L L L E L L Il L L L
2 -15 -1 05 0 05 T 15 =2 -15 -1 05 0 05 T 15
Residual E(BCAL 0) Residual E(BCAL)

@ Current model uses BCAL pre-shower and sum over all Layers only
@ %2 and residuals are = 0 — Deviations due to pions and poorly reconstructed events

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 20 / 24

Inspecting the Decoder (first generation autoencoder)
Original

Produce binned Histogram
Lepton Data
—— - 12

10

Encoder Output 2
o

Encoder Output 1

Generated g I

Sample 2 random variables
from histogram

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 21 /24

Inspecting the Decoder (first generation autoencoder)
Original

Produce binned Histogram
Lepton Data
—— - 12

10

Encoder Output 2
o

Ideally done only once,
unless your model needs to be tuned...

Encoder Output 1

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 21 /24

Inspecting the Decoder (first generation autoencoder)

binned Histogram

Can be done many times
—> data generator

Encoder Output 2

Encoder Output 1

Generated g I

Sample 2 random variables
from histogram

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 21 /24

Generating Lepton (like) Data (first generation autoencoder)

Left: Original Data / Right: Generated Data

0.0 2.5 5.0 75 0.0 2.5 5.0 75
Momentum Momentum

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 22 /24

Moving forward: Constraint hypothesis fitting with
Autoencoders

=
o
T«

Electrons

Electrons

Entries [a.u.]
=
o
™

=
(=)
e

=
o
T«

Pions Pions

=
o
w

=
o
4

Entries [a.u.]

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Reconstructed E(cal)/p Fitted E(cal)/p

@ Analogue to kinematic fitter: Include constraints related to particle hypothesis
@ For leptons: Energy deposits in calorimeter E(cal) ~ Momentum p

@ Right column shows network predictions, using the lepton constraints
= Improvement in resolution!

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 23 /24

Summary and Outlook

@ Used autoencoder neural networks for PID in GlueX
@ Obtained promising results
@ Might be a bit too much for lepton ID, but:

> the goal is to design a generic algorithm
> want to proof and develop the concept on an “easy’ case

@ Besides simple classification, autoencoder networks...

. support the user regarding debugging and understanding the model
interpret the data with respect to a given particle hypothesis (analogue to a
kinematic fitter)

. are easy to train due to the constraint architecture (used tied weights here)

. de-noise the data (not shown here today)

. are somewhat more robust with respect to training data / real data mismatch

@ The price one has to pay is the model size: ~ 10® vs ~ 102 parameters

Daniel Lersch (FSU) JLUO Al Meeting June 19, 2020 24 / 24

