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The Second ML Challenge

@ GlueX Forward Drift Chamber (FDC)

> 24 planes

> Each plane: v, =

@ Goal: Reconstruct particle in plane i + 1, when all previous planes fired
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Preparing the Data for the Algorithm(s)

@ Strategy: Introduce pattern into data, for ML algorithm to learn

Daniel Lersch (FSU) Al Lunch-Seminar



Preparing the Data for the Algorithm(s)

@ Strategy: Introduce pattern into data, for ML algorithm to learn
@ Apply function f to each vector V; in the sequence:

‘71'7" <t
f(\_/;’ t) =S0;,i ==t, (1)
€, >t
@ with:
€ €
€ €
< Z - €
0; = Et , € = € (2)
€ €
€ €
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Preparing the Data for the Algorithm(s)

@ Strategy: Introduce pattern into data, for ML algorithm to learn
@ Apply function f to each vector V; in the sequence:

‘71'7" < t’
F(78) = {8, i ==, (1)
€, >t
@ with:
€ €
€ €
2 z i €
0; = Et , € = € (2)
€ €
€ €
@ Using € = 0 leads to the sequence:
0 0
0 0
R N z 0
Vo, Vi, V2, .oy Vi1, Ot oo | (3)
0 0
0 0

@ This is dangerous! = Vanishing gradient!
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Model Selection

@ After a few test runs, decided to run with the following models:

n—1
Ml(”y uo, U, .., Un—l) = Llstm(uo) + Z I—dense(uf) + Ldense(6) (4)
i=1
n—1
M2(”7 uo, U1, .., Un—l) = Ldense(uo) + Z Ldense(ui) + Ldense(ﬁ) (5)
i=1
@ with:
Variable H Meaning

Dense network layer
Number of hidden layers
Number of neurons in layer i

Listm LSTM recursive network layer
Ldense

@ NOTE: Input layer is not shown here

@ Activation functions:

> Output layer: Linear = Want to regress the data
> Every other layer: ReLU = Have a lot of “0" in the data
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Short Reminder: RNN vs. LSTM
RNN (3] ® ()

v

Eﬂ | A

@ ©

Also tested RNN, but LSTM showed better performance

Pictures taken from here (good explanation)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Interpretation and Training Strategy

@ Model 1: Recurrent + regressor = Learn series (encoded in pattern) and fit data
@ Model 2: Simple regressor = Simply fit the data, including the “0" pattern

@ Training strategy:

i) Train (and evaluate) several models on subset of training data = Save time

ii) Re-train (and re-evaluate) “best” model on full training (validation) data

Daniel Lersch (FSU)
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The Night before the Submission Deadline...

Everything was setup to train a deep neural net,

Daniel Lersch (FSU) Al Lunch-Seminar



The Night before the Submission Deadline...

but...
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Final Configuration(s)

@ M1 = Listm(50) + 2 - Lgense(50) + Lyense (6) with 16.8k parameters (left)
@ M2 = 3 Lgense(50) + Ldense (6) with 10.4k parameters (right)
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Ideas and Tests that did not work out...

Picture taken from: http://screenrant.com/things-you-did-not-know-about-wile-e-coyote/
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Ideas and Tests that did not work out...

@ Introduced random noise ny; = N(0.0, o,;) # O to training data:

Nyt

,
Ny,
o o o - Zr
Vo, Vi, V2, ..., Vt—1,
Npx,t
Npy,t
npz,t
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Ideas and Tests that did not work out...

@ Introduced random noise ni; = N(0.0,04,;) # O to training data:
= Worsened performance

@ Changed order in model: Istm - dense - dense - .. — dense - Istm - dense - ...
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Ideas and Tests that did not work out...

Introduced random noise ni ; = N(0.0,0,;) # 0 to training data:

Worsened performance

Changed order in model: Istm - dense - dense - .. — dense - Istm - dense - ...
Worsened performance = Algorithm seemed to “forget”

Introduced regularization

No significant effect on performance

o l oV o I o

And many more...
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Lesson(s) learned...

@ Always check the training curve(s)

M1(1,50) const. decay M1(1,50) exp. decay

= Training = Training
10! { — validation —— Validation
4x10°
3x10°
6x10°
K
£3a0 H
2x10° 100
1 7 3 b 3 : 3 ) - 1 16
epoch epoch
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Lesson(s) learned...

@ Always check the training curve(s)
@ Always check the shape of your data, when using tensorflow

—=0.75

1.00 —1.00
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@ Pre-training / transferring weights can be very helpful
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Lesson(s) learned...

@ Always check the training curve(s)

@ Always check the shape of your data, when using tensorflow

@ Pre-training / transferring weights can be very helpful

@ Always read the manual = Had to re-do significant amount of work

Picture taken from here
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http://fanboyplanet.com/the-greatest-battle-of-them-all-coyote-vs-acme/

Lesson(s) learned...

Always check the training curve(s)
Always check the shape of your data, when using tensorflow
Pre-training / transferring weights can be very helpful

Always read the manual = Had to re-do significant amount of work

Think about how you train your algorithm
= Fixed Istm-parameters during the second stage training
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Lesson(s) learned...

Always check the training curve(s)
Always check the shape of your data, when using tensorflow
Pre-training / transferring weights can be very helpful

Always read the manual = Had to re-do significant amount of work

Think about how you train your algorithm
= Fixed Istm-parameters during the second stage training

Do not be afraid to push your model to the limits
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