
Introduction to Machine Learning: Part I

Prof. Sean Dobbs1 & Daniel Lersch2

April 16, 2020

1 (sdobbs@fsu.edu)
2 (dlersch@jlab.org)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 1 / 27

(sdobbs@fsu.edu)
(dlersch@jlab.org)

About this Lecture

Part I:
I Introduction to DataFrames
I Basic concepts of machine learning

(with focus on feedforward neural networks)

Part II:
I Machine learning in (physics) data analysis
I Performance evaluation

Part III:
I Algorithm tuning
I Hyper parameter optimization

Part IV:
I Custom neural networks with Tensorflow
I Transition to Deep Learning

The individual contents might be subject to change

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 2 / 27

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 / 27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 / 27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 / 27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 / 27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 / 27

https://scikit-learn.org/stable/
dlersch@jlab.org

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 3 / 27

https://scikit-learn.org/stable/
dlersch@jlab.org

Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 2019
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I The slides of the lecture are available at:

http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 4 / 27

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 2019
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I The slides of the lecture are available at:

http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 4 / 27

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 20193

I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by
Aurélien Géron

I The internet is full of good (but also very bad!) literature4 → browse with
caution

I The slides of the lecture are available at:
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning

without any theory / math is considered as bad
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 4 / 27

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 5 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda

AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 5 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda

Machine Learning in (Hadron) Physics

Modern experiments become more complex (& 10 k detection channels)
⇒ Large, correlated data sets

Use machine learning to:
I Analyze / sort data
I Calibrate data
I Simulate data

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 27

Machine Learning in (Hadron) Physics

Modern experiments become more complex (& 10 k detection channels)
⇒ Large, correlated data sets

Use machine learning to:
I Analyze / sort data
I Calibrate data
I Simulate data

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 27

Machine Learning in (Hadron) Physics
Modern experiments become more complex (& 10 k detection channels)
⇒ Large, correlated data sets

Use machine learning to:
I Analyze / sort data
I Calibrate data
I Simulate data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

E(FCAL)/p

0

100

200

300

400

500

600

700

800

900
310×

E
nt

rie
s

[a
.u

.]

Fraction of GlueX-I 2018 Data

-πIdentified as

-
Identifed as e

⇒ Particle identification at GlueX
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 27

Machine Learning in (Hadron) Physics
Modern experiments become more complex (& 10 k detection channels)
⇒ Large, correlated data sets

Use machine learning to:
I Analyze / sort data
I Calibrate data
I Simulate data

⇒ Simulate particles (leptons) at GlueX
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 27

Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 7 / 27

Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 7 / 27

Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 7 / 27

DataFrames: A (very) brief Introduction

DataFrames are an elegant way to structure and manipulate (large) data sets

General layout of a DataFrame:

Index Col1 Col2 · · · Col N
0 value(col1,row1) value(col2,row1) · · · value(colN,row1)
1 value(col1,row2) value(col2,row2) · · · value(colN,row2)
...

...
...

...
...

They may contain multiple data types

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 / 27

DataFrames: A (very) brief Introduction

DataFrames are an elegant way to structure and manipulate (large) data sets

General layout of a DataFrame:

Index Col1 Col2 · · · Col N
0 value(col1,row1) value(col2,row1) · · · value(colN,row1)
1 value(col1,row2) value(col2,row2) · · · value(colN,row2)
...

...
...

...
...

They may contain multiple data types

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 / 27

DataFrames: A (very) brief Introduction

DataFrames are an elegant way to structure and manipulate (large) data sets

General layout of a DataFrame:

Index Col1 Col2 · · · Col N
0 value(col1,row1) value(col2,row1) · · · value(colN,row1)
1 value(col1,row2) value(col2,row2) · · · value(colN,row2)
...

...
...

...
...

They may contain multiple data types

→ Numbers

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 / 27

DataFrames: A (very) brief Introduction

DataFrames are an elegant way to structure and manipulate (large) data sets

General layout of a DataFrame:

Index Col1 Col2 · · · Col N
0 value(col1,row1) value(col2,row1) · · · value(colN,row1)
1 value(col1,row2) value(col2,row2) · · · value(colN,row2)
...

...
...

...
...

They may contain multiple data types

→ Text

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 / 27

DataFrames: A (very) brief Introduction

DataFrames are an elegant way to structure and manipulate (large) data sets

General layout of a DataFrame:

Index Col1 Col2 · · · Col N
0 value(col1,row1) value(col2,row1) · · · value(colN,row1)
1 value(col1,row2) value(col2,row2) · · · value(colN,row2)
...

...
...

...
...

They may contain multiple data types

→ Text and Numbers

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 / 27

DataFrames: A (very) brief Introduction

DataFrames are an elegant way to structure and manipulate (large) data sets

General layout of a DataFrame:

Index Col1 Col2 · · · Col N
0 value(col1,row1) value(col2,row1) · · · value(colN,row1)
1 value(col1,row2) value(col2,row2) · · · value(colN,row2)
...

...
...

...
...

They may contain multiple data types

→ Vectors

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 8 / 27

Creating,Loading and Saving DataFrames
Create a DataFrame from scratch
import pandas as pd
#Define the data:
data = {

’Col1’: [1,2,3],
’Col2’: [’a’,’b’,’c’],
’Col3’: [True,False,True]

}
#Create the dataframe:
df = pd.DataFrame(data)
#And print it:
print(df)

Or load it from a .json, .csv, file

After working with your DataFrame, you might want to save it

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 9 / 27

Creating,Loading and Saving DataFrames

Create a DataFrame from scratch

Or load it from a .json, .csv, file
import pandas as pd
df_1 = pd.read_csv(...)
df_2 = pd.read_json(...)
df_3 = pd.read_pickle(...)
df_4 = pd.read_excel(...)

After working with your DataFrame, you might want to save it

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 9 / 27

Creating,Loading and Saving DataFrames

Create a DataFrame from scratch

Or load it from a .json, .csv, file

After working with your DataFrame, you might want to save it
import pandas as pd
df_1.to_csv(...)
df_2.to_json(...)
df_3.to_pickle(...)
df_4.to_excel(...)

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 9 / 27

Creating and Manipulating DataFrames

Create a DataFrame from numpy arrays
import numpy as np
import pandas as pd
#Create 20 data points, having 2 values between -10 and 10 each:
data = np.random.uniform(low=-10,high=10,size=(20,2))
#Turn this 20x2 array into a DataFrame:
df = pd.DataFrame(data)
#And name the two columns:
df.columns = [’Values_1’,’Value_2’]

Create a third column which is equal to the second column multiplied by 2

Create a fourth column, based on the first column + a user-defined function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames
Create a DataFrame from numpy arrays
import numpy as np
import pandas as pd
#Create 20 data points, having 2 values between -10 and 10 each:
data = np.random.uniform(low=-10,high=10,size=(20,2))
#Turn this 20x2 array into a DataFrame:
df = pd.DataFrame(data)
#And name the two columns:
df.columns = [’Values_1’,’Value_2’]

Create a third column which is equal to the second column multiplied by 2
Create a fourth column, based on the first column + a user-defined function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames

Create a DataFrame from numpy arrays

Create a third column which is equal to the second column multiplied by 2
df[’Value_3’] = df[’Value_2’]*2

Create a fourth column, based on the first column + a user-defined function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames

Create a DataFrame from numpy arrays

Create a third column which is equal to the second column multiplied by 2
df[’Value_3’] = df[’Value_2’]*2

Create a fourth column, based on the first column + a user-defined function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames

Create a DataFrame from numpy arrays

Create a third column which is equal to the second column multiplied by 2

Create a fourth column, based on the first column + a user-defined function
#Define your function:
def lin_func(x,m,b):

return m*x+b
#Use the lambda function to create a fourth column,
#based on the values from the first column:
df[’Value_4’] = df[’Value_1’].apply(lambda x: lin_func(x,-0.5,3.3))
#Value_4 = -0.5*Value_1 + 3.3

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Creating and Manipulating DataFrames
Create a DataFrame from numpy arrays
Create a third column which is equal to the second column multiplied by 2
Create a fourth column, based on the first column + a user-defined function
#Define your function:
def lin_func(x,m,b):

return m*x+b
#Use the lambda function to create a fourth column,
#based on the values from the first column:
df[’Value_4’] = df[’Value_1’].apply(lambda x: lin_func(x,-0.5,3.3))
#Value_4 = -0.5*Value_1 + 3.3

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 10 / 27

Analyzing DataFrames

Python provides many tools to analyze a DataFrame or its columns

Example: Get mean and std. dev. from the second column

Since the second column follows a uniform distribution between -10 and 10, expect:

You can also access the mean / std. dev. for all DataFrame columns

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27

Analyzing DataFrames

Python provides many tools to analyze a DataFrame or its columns

Example: Get mean and std. dev. from the second column
mean_col2 = df[’Value_2’].mean()
sigma_col2 = df[’Value_2’].std()

Since the second column follows a uniform distribution between -10 and 10, expect:

You can also access the mean / std. dev. for all DataFrame columns

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27

Analyzing DataFrames

Python provides many tools to analyze a DataFrame or its columns

Example: Get mean and std. dev. from the second column
mean_col2 = df[’Value_2’].mean()
sigma_col2 = df[’Value_2’].std()

Since the second column follows a uniform distribution between -10 and 10,
expect:

Expected Values Col2 Observed Values Col2
mean 0.0 −0.1
sigma 20/

√
12 ≈ 5.77 5.61

You can also access the mean / std. dev. for all DataFrame columns

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27

Analyzing DataFrames

Python provides many tools to analyze a DataFrame or its columns

Example: Get mean and std. dev. from the second column
mean_col2 = df[’Value_2’].mean()
sigma_col2 = df[’Value_2’].std()

Since the second column follows a uniform distribution between -10 and 10,
expect:

Expected Values Col2 Observed Values Col2
mean 0.0 −0.1
sigma 20/

√
12 ≈ 5.77 5.61

You can also access the mean / std. dev. for all DataFrame columns
mean_all = df.mean()
sigma_all = df.std()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 11 / 27

Visualizing DataFrames with pyplot

Want to plot different columns from the DataFrame

Histogram the fourth column
import matplotlib.pyplot as plt
plt.rcParams.update({’font.size’: 18}) #--> Set the font size
plt.hist(df[’Value_4’],bins=100) #--> Plot fourth column in 100 bins
plt.xlabel(’Value_4’)
plt.ylabel(’Entries’)
plt.show()

Plot correlation between first and fourth column

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 / 27

Visualizing DataFrames with pyplot
Want to plot different columns from the DataFrame
Histogram the fourth column
import matplotlib.pyplot as plt
plt.rcParams.update({’font.size’: 18}) #--> Set the font size
plt.hist(df[’Value_4’],bins=100) #--> Plot fourth column in 100 bins
plt.xlabel(’Value_4’)
plt.ylabel(’Entries’)
plt.show()

Plot correlation between first and fourth column

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 / 27

Visualizing DataFrames with pyplot

Want to plot different columns from the DataFrame

Histogram the fourth column

Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each axis
plt.hist2d(df[’Value_1’],df[’Value_4’],bins=100)
plt.xlabel(’Value_1’)
plt.ylabel(’Value_4’)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 / 27

Visualizing DataFrames with pyplot
Want to plot different columns from the DataFrame
Histogram the fourth column
Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each axis
plt.hist2d(df[’Value_1’],df[’Value_4’],bins=100)
plt.xlabel(’Value_1’)
plt.ylabel(’Value_4’)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 12 / 27

DataFrames: Summary and Outlook

Introduced DataFrames for convenient data analysis / visualization

Did NOT show all functionalities
I Concatenating / stacking DataFrames
I Shuffling DataFrames
I ...

Python provides a detailed documentation about DataFrames and related functions

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 13 / 27

Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 14 / 27

Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 14 / 27

Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 14 / 27

Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 14 / 27

Training of Machine Learning Algorithms I

Any algorithm ”learns“ patterns / actions from a given data set by setting its
internal parameters appropriately

Those parameters are set during training

Goal: Minimize error

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 15 / 27

Training of Machine Learning Algorithms I
Any algorithm ”learns“ patterns / actions from a given data set by setting its
internal parameters appropriately

Those parameters are set during training

Goal: Minimize error

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 15 / 27

Training of Machine Learning Algorithms I
Any algorithm ”learns“ patterns / actions from a given data set by setting its
internal parameters appropriately

Those parameters are set during training

Goal: Minimize error

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 15 / 27

Training of Machine Learning Algorithms I
Any algorithm ”learns“ patterns / actions from a given data set by setting its
internal parameters appropriately

Those parameters are set during training

Goal: Minimize error

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 15 / 27

Training of Machine Learning Algorithms I
Any algorithm ”learns“ patterns / actions from a given data set by setting its
internal parameters appropriately

Those parameters are set during training

Goal: Minimize error

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 15 / 27

Training of Machine Learning Algorithms I
Any algorithm ”learns“ patterns / actions from a given data set by setting its
internal parameters appropriately

Those parameters are set during training

Goal: Minimize error

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 15 / 27

Training of Machine Learning Algorithms II

The algorithm training is (depending on the data and the problem itself) an
iterative process

I Algorithms internal parameters are updated several times
I Ideally: Error should get smaller with every update

Most important tool to check whether training was successful: Training Curve

The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms
→ You do not need to take care of updating the algorithms parameters

Tricky: How to set up and evaluate the training properly (will be discussed soon)

Next: Discuss training of a feedforward neural network

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 16 / 27

Training of Machine Learning Algorithms II

The algorithm training is (depending on the data and the problem itself) an
iterative process

I Algorithms internal parameters are updated several times
I Ideally: Error should get smaller with every update

Most important tool to check whether training was successful: Training Curve

The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms
→ You do not need to take care of updating the algorithms parameters

Tricky: How to set up and evaluate the training properly (will be discussed soon)

Next: Discuss training of a feedforward neural network

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 16 / 27

Training of Machine Learning Algorithms II

The algorithm training is (depending on the data and the problem itself) an
iterative process

I Algorithms internal parameters are updated several times
I Ideally: Error should get smaller with every update

Most important tool to check whether training was successful: Training Curve

The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms
→ You do not need to take care of updating the algorithms parameters 5

Tricky: How to set up and evaluate the training properly (will be discussed soon)

Next: Discuss training of a feedforward neural network

5There are exceptions of course which will be discussed in a later part of this lecture
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 16 / 27

Training of Machine Learning Algorithms II

The algorithm training is (depending on the data and the problem itself) an
iterative process

I Algorithms internal parameters are updated several times
I Ideally: Error should get smaller with every update

Most important tool to check whether training was successful: Training Curve

The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms
→ You do not need to take care of updating the algorithms parameters 5

Tricky: How to set up and evaluate the training properly (will be discussed soon)

Next: Discuss training of a feedforward neural network

5There are exceptions of course which will be discussed in a later part of this lecture
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 16 / 27

Training of Machine Learning Algorithms II

The algorithm training is (depending on the data and the problem itself) an
iterative process

I Algorithms internal parameters are updated several times
I Ideally: Error should get smaller with every update

Most important tool to check whether training was successful: Training Curve

The training itself is not difficult, as many frameworks already support the training
procedures for a variety of machine learning algorithms
→ You do not need to take care of updating the algorithms parameters 5

Tricky: How to set up and evaluate the training properly (will be discussed soon)

Next: Discuss training of a feedforward neural network

5There are exceptions of course which will be discussed in a later part of this lecture
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 16 / 27

The Multilayer Perceptron

Most popular example for machine learning algorithms
Belongs to the class of feedforward neural networks
Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 17 / 27

The Multilayer Perceptron

Most popular example for machine learning algorithms
Belongs to the class of feedforward neural networks
Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 17 / 27

A single Neuron

Basic ingredients: Information from previous neurons, weights, bias and activation
function

Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 18 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

A single Neuron

Basic ingredients: Information from previous neurons, weights, bias and activation
function
Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 18 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

A single Neuron

Basic ingredients: Information from previous neurons, weights, bias and activation
function
Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for
science school 2019

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 18 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://sites.google.com/lbl.gov/dl4sci2019/agenda

The Universal Approximation Theorem for Neural Networks

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

⇒ Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
”[...] there are no nemesis functions that cannot be modeled by neural networks“

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 19 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=80265

The Universal Approximation Theorem for Neural Networks

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

⇒ Similarly formulated in 1990 by the Stone-Weierstrass-Theorem
”[...] there are no nemesis functions that cannot be modeled by neural networks“

⇒ Neural networks are powerful tools! But,...

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 19 / 27

https://sites.google.com/lbl.gov/dl4sci2019/agenda
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=80265

...Where is the Catch?

Suppose a multilayer perceptron with Nh hidden layers, Nin inputs and Nout outputs

The total number of trainable parameters is:

Npars =

Nh+1∑
i=1

[
ni−1 + 1

]
· ni (1)

Where: ni is the number of neurons in the current layer and ni−1 the number of
neurons in the previous layer

n0 = Nin and nNh+1 = Nout

The example network on slide 11 has: Nin = 3 inputs, Nh = 1 hidden layer with 5
neurons and Nout = 1 output

Therefore: Npars = (3+ 1) · 5+ (5+ 1) · 1 = 26

How do we set 26 parameters???

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

...Where is the Catch?

Suppose a multilayer perceptron with Nh hidden layers, Nin inputs and Nout outputs

The total number of trainable parameters is:

Npars =

Nh+1∑
i=1

[
ni−1 + 1

]
· ni (1)

Where: ni is the number of neurons in the current layer and ni−1 the number of
neurons in the previous layer

n0 = Nin and nNh+1 = Nout

The example network on slide 11 has: Nin = 3 inputs, Nh = 1 hidden layer with 5
neurons and Nout = 1 output

Therefore: Npars = (3+ 1) · 5+ (5+ 1) · 1 = 26

How do we set 26 parameters???

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

...Where is the Catch?

Suppose a multilayer perceptron with Nh hidden layers, Nin inputs and Nout outputs

The total number of trainable parameters is:

Npars =

Nh+1∑
i=1

[
ni−1 + 1

]
· ni (1)

Where: ni is the number of neurons in the current layer and ni−1 the number of
neurons in the previous layer

n0 = Nin and nNh+1 = Nout

The example network on slide 11 has: Nin = 3 inputs, Nh = 1 hidden layer with 5
neurons and Nout = 1 output

Therefore: Npars = (3+ 1) · 5+ (5+ 1) · 1 = 26

How do we set 26 parameters???

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

...Where is the Catch?

Suppose a multilayer perceptron with Nh hidden layers, Nin inputs and Nout outputs

The total number of trainable parameters is:

Npars =

Nh+1∑
i=1

[
ni−1 + 1

]
· ni (1)

Where: ni is the number of neurons in the current layer and ni−1 the number of
neurons in the previous layer

n0 = Nin and nNh+1 = Nout

The example network on slide 11 has: Nin = 3 inputs, Nh = 1 hidden layer with 5
neurons and Nout = 1 output

Therefore: Npars = (3+ 1) · 5+ (5+ 1) · 1 = 26

How do we set 26 parameters???

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

...Where is the Catch?

Suppose a multilayer perceptron with Nh hidden layers, Nin inputs and Nout outputs

The total number of trainable parameters is:

Npars =

Nh+1∑
i=1

[
ni−1 + 1

]
· ni (1)

Where: ni is the number of neurons in the current layer and ni−1 the number of
neurons in the previous layer

n0 = Nin and nNh+1 = Nout

The example network on slide 11 has: Nin = 3 inputs, Nh = 1 hidden layer with 5
neurons and Nout = 1 output

Therefore: Npars = (3+ 1) · 5+ (5+ 1) · 1 = 26

How do we set 26 parameters???

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

...Where is the Catch?

Suppose a multilayer perceptron with Nh hidden layers, Nin inputs and Nout outputs

The total number of trainable parameters is:

Npars =

Nh+1∑
i=1

[
ni−1 + 1

]
· ni (1)

Where: ni is the number of neurons in the current layer and ni−1 the number of
neurons in the previous layer

n0 = Nin and nNh+1 = Nout

The example network on slide 11 has: Nin = 3 inputs, Nh = 1 hidden layer with 5
neurons and Nout = 1 output

Therefore: Npars = (3+ 1) · 5+ (5+ 1) · 1 = 26 6

How do we set 26 parameters???

6Now imagine a deep network with » 10 hidden layers and 10 neurons each
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

...Where is the Catch?

Suppose a multilayer perceptron with Nh hidden layers, Nin inputs and Nout outputs

The total number of trainable parameters is:

Npars =

Nh+1∑
i=1

[
ni−1 + 1

]
· ni (1)

Where: ni is the number of neurons in the current layer and ni−1 the number of
neurons in the previous layer

n0 = Nin and nNh+1 = Nout

The example network on slide 11 has: Nin = 3 inputs, Nh = 1 hidden layer with 5
neurons and Nout = 1 output

Therefore: Npars = (3+ 1) · 5+ (5+ 1) · 1 = 26 6

How do we set 26 parameters???

6Now imagine a deep network with » 10 hidden layers and 10 neurons each
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 20 / 27

Backpropagation

Picture taken from here

Error = Desired Output - Current Network Output ↔ Want to minimize this!

Data is passed forward → Error is propagated backwards → update weights

wi+1 = wi − η · ∇L(xdata,wk) (2)

η is the learning rate, i the learning epoch and xdata a (sub-set) of the training data
L is the error, or loss function
Most prominent example: L = [ytrue − ynetwork(xdata,wk)]

2

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 / 27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Picture taken from here

Error = Desired Output - Current Network Output ↔ Want to minimize this!
Data is passed forward → Error is propagated backwards → update weights

wi+1 = wi − η · ∇L(xdata,wk) (2)

η is the learning rate, i the learning epoch and xdata a (sub-set) of the training data
L is the error, or loss function
Most prominent example: L = [ytrue − ynetwork(xdata,wk)]

2

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 / 27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Picture taken from here

Error = Desired Output - Current Network Output ↔ Want to minimize this!
Data is passed forward → Error is propagated backwards → update weights

wi+1 = wi − η · ∇L(xdata,wk) (2)

η is the learning rate, i the learning epoch and xdata a (sub-set) of the training data

L is the error, or loss function
Most prominent example: L = [ytrue − ynetwork(xdata,wk)]

2

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 / 27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Picture taken from here

Error = Desired Output - Current Network Output ↔ Want to minimize this!
Data is passed forward → Error is propagated backwards → update weights

wi+1 = wi − η · ∇L(xdata,wk) (2)

η is the learning rate, i the learning epoch and xdata a (sub-set) of the training data
L is the error, or loss function

Most prominent example: L = [ytrue − ynetwork(xdata,wk)]
2

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 / 27

https://www.guru99.com/backpropogation-neural-network.html

Backpropagation

Picture taken from here

Error = Desired Output - Current Network Output ↔ Want to minimize this!
Data is passed forward → Error is propagated backwards → update weights

wi+1 = wi − η · ∇L(xdata,wk) (2)

η is the learning rate, i the learning epoch and xdata a (sub-set) of the training data
L is the error, or loss function
Most prominent example: L = [ytrue − ynetwork(xdata,wk)]

2

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 21 / 27

https://www.guru99.com/backpropogation-neural-network.html

Finding the (local) Minimum

Learning rate η determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Cost Function J = 1
N

∑
entire training data

(Loss Function L) + Regularization

Different algorithms to find minimum of J: Steepest Gradient Descent (SGD),
ADAM, Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS),...

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 22 / 27

Finding the (local) Minimum
Learning rate η determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Picture taken form Jeremy Jordans Blog

Cost Function J = 1
N

∑
entire training data

(Loss Function L) + Regularization

Different algorithms to find minimum of J: Steepest Gradient Descent (SGD),
ADAM, Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS),...

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 22 / 27

https://www.jeremyjordan.me/nn-learning-rate/

Finding the (local) Minimum
Learning rate η determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Picture taken form Jeremy Jordans Blog

Cost Function J = 1
N

∑
entire training data

(Loss Function L) + Regularization7

Different algorithms to find minimum of J: Steepest Gradient Descent (SGD),
ADAM, Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS),...

7You can think of this as setting constraints to the weights
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 22 / 27

https://www.jeremyjordan.me/nn-learning-rate/

Finding the (local) Minimum
Learning rate η determines gradient step size, i.e. how fast (or if) model converges
to (a) minimum

Picture taken form Jeremy Jordans Blog

Cost Function J = 1
N

∑
entire training data

(Loss Function L) + Regularization7

Different algorithms to find minimum of J: Steepest Gradient Descent (SGD),
ADAM, Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS),...

7You can think of this as setting constraints to the weights
Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 22 / 27

https://www.jeremyjordan.me/nn-learning-rate/

Example: Learning the Quadratic Function
Setting up the Data Set

Create the data which shall be learned
#Generate 500 (random) x-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.

Plot the data

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 23 / 27

Example: Learning the Quadratic Function
Setting up the Data Set

Create the data which shall be learned
#Generate 500 (random) x-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.

Plot the data
#Visualize the results with the pyplot library:
plt.rcParams.update({’font.size’: 18}) #--> Set the fond size
plt.plot(x_values,y_values,’ko’) #--> Plot the data as points
plt.xlim((-3,3)) #--> Set limits on x-axis
plt.xlabel(’x’)
plt.ylabel(’f(x)’)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 23 / 27

Example: Learning the Quadratic Function
Setting up the Data Set

Create the data which shall be learned
Plot the data

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 23 / 27

Example: Learning the Quadratic Function
Setting up the Model

Want to use a neural network to learn the quadratic function

Setup the network with scikit

Train the network

Plot the training curve

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 / 27

Example: Learning the Quadratic Function
Setting up the Model

Want to use a neural network to learn the quadratic function

Setup the network with scikit
#Import the proper library from scikit:
from sklearn.neural_network import MLPRegressor
#Setup the network:
my_mlp = MLPRegressor(

hidden_layer_sizes=(10), #one hidden layer with 10 neurons
activation=’relu’, #rectified linear unit function
solver=’sgd’, #stochastic gradient descent optimizer
#--> to minimize the error
warm_start=True,
max_iter = 500, #maximum number of learning epochs
shuffle=True, #shuffle the data
random_state=0,
learning_rate_init = 0.05 #step size for the gradient

)

Train the network

Plot the training curve

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 / 27

Example: Learning the Quadratic Function
Setting up the Model

Want to use a neural network to learn the quadratic function

Setup the network with scikit

Train the network
#Start training of network, i.e. fit model to the data:
my_mlp.fit(x_values,y_values)
#And get the training curve:
training_curve = my_mlp.loss_curve_

Plot the training curve

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 / 27

Example: Learning the Quadratic Function
Setting up the Model

Want to use a neural network to learn the quadratic function

Setup the network with scikit

Train the network
#Start training of network, i.e. fit model to the data:
my_mlp.fit(x_values,y_values)
#And get the training curve:
training_curve = my_mlp.loss_curve_

Plot the training curve
#Plot the training curve:
plt.plot(training_curve,’-’,linewidth=2.0)
plt.xlabel(’Epoch’)
plt.ylabel(’Error’)
plt.show()

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 / 27

Example: Learning the Quadratic Function
Setting up the Model

Want to use a neural network to learn the quadratic function
Setup the network with scikit
Train the network
Plot the training curve

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 / 27

Example: Learning the Quadratic Function
Setting up the Model

Want to use a neural network to learn the quadratic function
Setup the network with scikit
Train the network
Plot the training curve

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 24 / 27

Example: Learning the Quadratic Function
Inspecting the Results

Model predictions look reasonable so far
Can do better → tune model
How well does model generalize, i.e. make reasonable predictions on data that has
not been used during training

Unknown Value Model Prediction
-4 14
6 24

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 25 / 27

Example: Learning the Quadratic Function
Residuals

A very helpful tool to monitor the performance of (any) fit are residuals

Residual = True Output - Predicted Output

Ideally, residual should be centered at zero

Our model requires some tuning

Note: Did NOT follow best-practice during this example → Will be discussed in part II

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function
Residuals

A very helpful tool to monitor the performance of (any) fit are residuals

Residual = True Output - Predicted Output
#Define residual function:
residual_func = lambda x,y: x-y
#Apply function on true / predicted values:
residuals = residual_func(y_values,predicted_values)
#And finally plot everything
plt.hist(residuals,bins=50)
plt.xlabel(r’$y_{true} - y_{network}$’) #---> Inlcude latex expressions
plt.ylabel(’Entries [a.u.]’)
plt.show()

Ideally, residual should be centered at zero

Our model requires some tuning

Note: Did NOT follow best-practice during this example → Will be discussed in part II

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function
Residuals

A very helpful tool to monitor the performance of (any) fit are residuals
Residual = True Output - Predicted Output

Ideally, residual should be centered at zero
Our model requires some tuning
Note: Did NOT follow best-practice during this example → Will be discussed in part II

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function
Residuals

A very helpful tool to monitor the performance of (any) fit are residuals
Residual = True Output - Predicted Output

Ideally, residual should be centered at zero

Our model requires some tuning
Note: Did NOT follow best-practice during this example → Will be discussed in part II

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function
Residuals

A very helpful tool to monitor the performance of (any) fit are residuals
Residual = True Output - Predicted Output

Ideally, residual should be centered at zero
Our model requires some tuning

Note: Did NOT follow best-practice during this example → Will be discussed in part II

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Example: Learning the Quadratic Function
Residuals

A very helpful tool to monitor the performance of (any) fit are residuals
Residual = True Output - Predicted Output

Ideally, residual should be centered at zero
Our model requires some tuning
Note: Did NOT follow best-practice during this example → Will be discussed in part II

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 26 / 27

Summary Part I

Introduced DataFrames into analysis
I Structure data
I Manipulate data
I Visualization

Basic concepts of training a machine learning algorithm
I Set internal parameters by minimizing error
I (un-) supervised and reinforcement learning

Discussed training of a multilayer perceptron in more detail
I Update weights by minimizing loss
I Example: Learning a quadratic function

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 27 / 27

