Introduction to Machine Learning: Part I

Prof. Sean Dobbs¹ & Daniel Lersch²

April 16, 2020

^{1 (}sdobbs@fsu.edu)

^{2 (}dlersch@jlab.org)

About this Lecture

- Part I:
 - Introduction to DataFrames
 - Basic concepts of machine learning (with focus on feedforward neural networks)
- Part II:
 - Machine learning in (physics) data analysis
 - Performance evaluation
- Part III:
 - Algorithm tuning
 - Hyper parameter optimization
- Part IV:
 - Custom neural networks with Tensorflow
 - Transition to Deep Learning

The individual contents might be subject to change

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT turn you into a machine learning specialist... NOT cover all aspects of machine learning

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms
- ... utilize the scikit-learn library

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms
- ... utilize the scikit-learn library
- ... most likely contain several errors (\rightarrow Please send a mail to dlersch@jlab.org)

Homework and Literature

• Machine learning can be learned best by simply doing it!

Homework and Literature

- Machine learning can be learned best by simply doing it!
- Homework (most likely posted on Thursday) aims to perform a simple analysis and getting familiar with machine learning

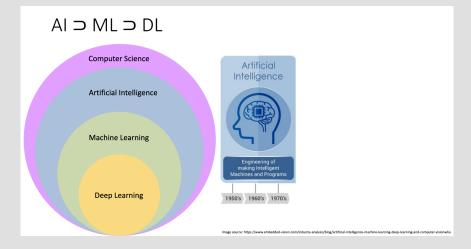
Homework and Literature

- Machine learning can be learned best by simply doing it!
- Homework (most likely posted on Thursday) aims to perform a simple analysis and getting familiar with machine learning
- Helpful literature:
 - The scikit-learn documentation
 - Talks from the deep learning for science school 2019³
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron
 - \blacktriangleright The internet is full of good (but also very bad!) literature ^4 \rightarrow browse with caution
 - The slides of the lecture are available at: http://hadron.physics.fsu.edu/~dlersch/ml_slides/

³Very good and detailed explanation of (deep) neural networks

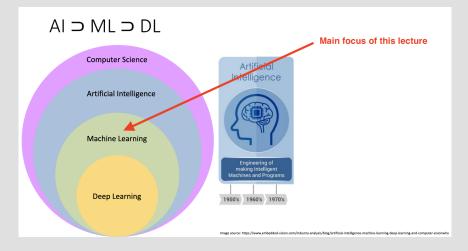
 4 Any document claiming that there is a quick way to understand machine learning without any theory / math is considered as bad

AI, ML and DL



Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

AI, ML and DL

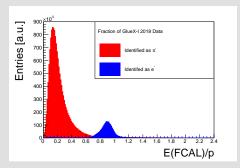


Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

• Modern experiments become more complex ($\gtrsim 10\,{\rm k}$ detection channels) \Rightarrow Large, correlated data sets

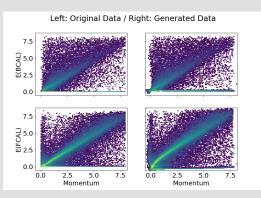
- Modern experiments become more complex ($\gtrsim 10\,k$ detection channels) \Rightarrow Large, correlated data sets
- Use machine learning to:
 - Analyze / sort data
 - Calibrate data
 - Simulate data

- Modern experiments become more complex (\gtrsim 10 k detection channels) \Rightarrow Large, correlated data sets
- Use machine learning to:
 - Analyze / sort data
 - Calibrate data
 - Simulate data



\Rightarrow Particle identification at GlueX

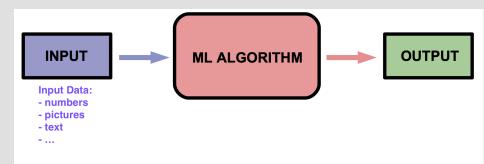
- Modern experiments become more complex ($\gtrsim 10\,k$ detection channels) \Rightarrow Large, correlated data sets
- Use machine learning to:
 - Analyze / sort data
 - Calibrate data
 - Simulate data



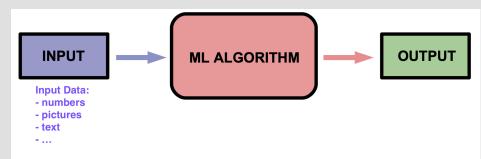
 \Rightarrow Simulate particles (leptons) at GlueX

Basic Components of Machine Learning

Basic Components of Machine Learning



Basic Components of Machine Learning



- Before passing any data to any algorithm, you might want to take a look at it first
- The data (sometimes) requires pre-processing
- -> Need an efficient way to handle (large) data sets -> DataFrames

• DataFrames are an elegant way to structure and manipulate (large) data sets

- DataFrames are an elegant way to structure and manipulate (large) data sets
- General layout of a DataFrame:

Index	Col1	Col2		Col N
0	value(col1,row1)	value(col2,row1)		value(colN,row1)
1	value(col1,row2)	value(col2,row2)	•••	value(colN,row2)
				•
•	•	•	•	•

- DataFrames are an elegant way to structure and manipulate (large) data sets
- General layout of a DataFrame:

Index	Col1	Col2		Col N
0	value(col1,row1)	value(col2,row1)		value(colN,row1)
1	value(col1,row2)	value(col2,row2)		value(colN,row2)
:	:	:	:	:
•	•	•		•

• They may contain multiple data types

 $\rightarrow \, \mathsf{Numbers}$

0 1 2	value a	value b
0	0.3	-11.0
1	-1,2	0.8
2	5.0	12.0

- DataFrames are an elegant way to structure and manipulate (large) data sets
- General layout of a DataFrame:

Index	Col1	Col2		Col N
0	value(col1,row1)	value(col2,row1)		value(colN,row1)
1	value(col1,row2)	value(col2,row2)	•••	value(colN,row2)
:			•	· ·
:	:	:		:

• They may contain multiple data types

 $\rightarrow {\sf Text}$

l	Language	Hello	My name is	I am hungry
ŀ	Language) French 1 German	Bonjour		
ŀ	1 German	Hallo	Ich heisse	Ich habe hunger

- DataFrames are an elegant way to structure and manipulate (large) data sets
- General layout of a DataFrame:

Index	Col1	Col2		Col N
0	value(col1,row1)	value(col2,row1)	•••	value(colN,row1)
1	value(col1,row2)	value(col2,row2)	•••	value(colN,row2)
:	:	:	÷	:

- They may contain multiple data types
 - \rightarrow Text and Numbers

	Student	Points	Comment
0	Ĥ	9.9	Dedicated
0 1 2	В	10.0	Brilliant
2	С	-100.0	Makes me cry

- DataFrames are an elegant way to structure and manipulate (large) data sets
- General layout of a DataFrame:

Index	Col1	Col2		Col N
0	value(col1,row1)	value(col2,row1)		value(colN,row1)
1	value(col1,row2)	value(col2,row2)		value(colN,row2)
-			•	
:	:	:	÷	:

• They may contain multiple data types

 $\rightarrow \text{Vectors}$

	State	Vector	- Score
0		[0, 1]] 0.5
1		[1, 0]] 0.5
1 2 3		[1, 1]] 1.0
3		[0, 0]] 0.3

Creating, Loading and Saving DataFrames

```
• Create a DataFrame from scratch
    import pandas as pd
    #Define the data:
    data = {
        'Col1': [1,2,3],
        'Col2': ['a','b','c'],
        'Col3': [True,False,True]
    }
    #Create the dataframe:
    df = pd.DataFrame(data)
    #And print it:
    print(df)
```

	Col1	Col2	Col3
) 1	a	True
1	. 2	Ь	False
2	23	С	True

Creating, Loading and Saving DataFrames

• Create a DataFrame from scratch

```
    Or load it from a .json, .csv, .... file

    import pandas as pd

    df_1 = pd.read_csv(...)

    df_2 = pd.read_json(...)

    df_3 = pd.read_pickle(...)

    df_4 = pd.read_excel(...)
```

Creating, Loading and Saving DataFrames

- Create a DataFrame from scratch
- Or load it from a .json, .csv, file
- After working with your DataFrame, you might want to save it import pandas as pd df_1.to_csv(...) df_2.to_json(...) df_3.to_pickle(...) df 4.to excel(...)

• Create a DataFrame from numpy arrays

```
import numpy as np
import pandas as pd
#Create 20 data points, having 2 values between -10 and 10 each:
data = np.random.uniform(low=-10,high=10,size=(20,2))
#Turn this 20x2 array into a DataFrame:
df = pd.DataFrame(data)
#And name the two columns:
df.columns = ['Values_1','Value_2']
```

```
    Create a DataFrame from numpy arrays

import numpy as np

import pandas as pd

#Create 20 data points, having 2 values between -10 and 10 each:

data = np.random.uniform(low=-10,high=10,size=(20,2))

#Turn this 20x2 array into a DataFrame:

df = pd.DataFrame(data)

#And name the two columns:

df.columns = ['Values_1', 'Value_2']
```

0 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 7 8 9 10 11 2 3 4 5 6 7 7 8 9 10 11 10 11 10 10 10 10 10 10 10 10 10	Value 1 -4,433853 -2,473114 -3,052877 6,370931 3,368881 -1,700772 -3,45366 -0,831402 6,937076 -8,738068 4,450625 -3,531955 6,313612 1,438309 -0,451029 4,185787 -3,157358 2,243423	Value_2 5.134270 6.353864 1.804706 6.353864 -1.781364 -2.075033 0.982987 -5.401645 3.541155 -9.000622 -9.841198 -5.901079 -3.088243 4.286357 5.880397 4.349020 6.036617 2.286626 -3.431162 -3.431162
17	2,243423	-3,431162
18	-1,778005	6,958256
19	6,502947	-9,102705

Computational Physics Lab

- Create a DataFrame from numpy arrays
- Create a third column which is equal to the second column multiplied by 2 df['Value_3'] = df['Value_2']*2

- Create a DataFrame from numpy arrays
- Create a third column which is equal to the second column multiplied by 2 df['Value_3'] = df['Value_2']*2

	Value_1	Value_2	Value_3
0	-4,433853	5,134270	10,268539
1	-2,473114	6.353864	12,707728
2	-3,052877	1.804706	3,609412
3	6.370931	-1.781364	-3,562728
4	3,368881	-2.075033	-4.150066
5	-1.700772	0.982987	1,965973
6	-3,453366	-5,401645	-10,803290
7	-0.891402	3.541155	7.082311
8	6,937076	-9,000622	-18,001244
9	-8,738868	-9.841198	-19,682396
10	4,450625	-5,901079	-11.802157
11	-3.531955	-3.088243	-6.176486
12	6.313612	4.286357	8.572715
13	1,438309	5,890397	11.780794
14	-0.451029	4.349020	8,698039
15	4.185787	6.036617	12.073234
16	-3.157958	2,286626	4.573253
17	2.243423	-3,431162	-6.862324
18	-1.778005	6,958256	13,916511
19	6.502947	-9.102705	-18,205410

- Create a DataFrame from numpy arrays
- Create a third column which is equal to the second column multiplied by 2

```
• Create a fourth column, based on the first column + a user-defined function
#Define your function:
def lin_func(x,m,b):
    return m*x+b
#Use the lambda function to create a fourth column,
#based on the values from the first column:
df['Value_4'] = df['Value_1'].apply(lambda x: lin_func(x,-0.5,3.3))
#Value_4 = -0.5*Value_1 + 3.3
```

- Create a DataFrame from numpy arrays
- Create a third column which is equal to the second column multiplied by 2

```
Output: Create a fourth column, based on the first column + a user-defined function
    #Define your function:
    def lin_func(x,m,b):
        return m*x+b
    #Use the lambda function to create a fourth column,
    #based on the values from the first column:
    df['Value_4'] = df['Value_1'].apply(lambda x: lin_func(x,-0.5,3.3))
    #Value_4 = -0.5*Value_1 + 3.3
```

0 1 2 3 4 5 6 7 8 9 10 11 12 13	-3,531955 2 6,313612	Value_2 5.134270 6.353864 1.804706 -1.781364 -2.075033 0.982987 -5.401645 3.541155 -9.000622 -9.841198 -5.901079 -3.088243 4.286357 5.890397	Value_3 10.268539 12.707728 3.609412 -3.562728 -4.150066 4.150066 7.082311 -18.001244 -19.682396 -11.802157 -6.176486 8.572715 11.780794	Value_4 5.516927 4.826438 0.114535 1.615560 4.150386 5.026683 3.745701 -0.168538 7.669434 1.074687 5.065978 0.143194
12 13 14 15 16 17 18	6,313612 1,438309 -0,451029 4,185787 6 -3,157958			

Analyzing DataFrames

• Python provides many tools to analyze a DataFrame or its columns

Analyzing DataFrames

- Python provides many tools to analyze a DataFrame or its columns
- Example: Get mean and std. dev. from the second column mean_col2 = df['Value_2'].mean() sigma_col2 = df['Value_2'].std()

Analyzing DataFrames

- Python provides many tools to analyze a DataFrame or its columns
- Example: Get mean and std. dev. from the second column mean col2 = df['Value 2'].mean()

```
sigma_col2 = df['Value_2'].std()
```

• Since the second column follows a uniform distribution between -10 and 10, expect:

	Expected Values Col2	Observed Values Col2
mean	0.0	-0.1
sigma	$20/\sqrt{12} pprox 5.77$	5.61

Analyzing DataFrames

- Python provides many tools to analyze a DataFrame or its columns
- Example: Get mean and std. dev. from the second column
 mean_col2 = df['Value_2'].mean()
 sigma_col2 = df['Value_2'].std()
- Since the second column follows a uniform distribution between -10 and 10, expect:

	Expected Values Col2	Observed Values Col2
mean	0.0	-0.1
sigma	$20/\sqrt{12}pprox 5.77$	5.61

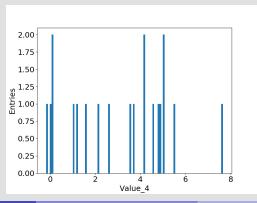
You can also access the mean / std. dev. for all DataFrame columns mean_all = df.mean() sigma_all = df.std()

- Want to plot different columns from the DataFrame
- Histogram the fourth column

```
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 18}) #--> Set the font size
plt.hist(df['Value_4'],bins=100) #--> Plot fourth column in 100 bins
plt.xlabel('Value_4')
plt.ylabel('Entries')
plt.show()
```

• Want to plot different columns from the DataFrame

```
● Histogram the fourth column
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 18}) #--> Set the font size
plt.hist(df['Value_4'],bins=100) #--> Plot fourth column in 100 bins
plt.xlabel('Value_4')
plt.ylabel('Entries')
plt.show()
```



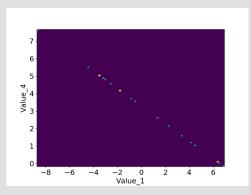
Daniel Lersch (FSU)

- Want to plot different columns from the DataFrame
- Histogram the fourth column

```
Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each axis
plt.hist2d(df['Value_1'],df['Value_4'],bins=100)
plt.xlabel('Value_1')
plt.ylabel('Value_4')
plt.show()
```

- Want to plot different columns from the DataFrame
- Histogram the fourth column

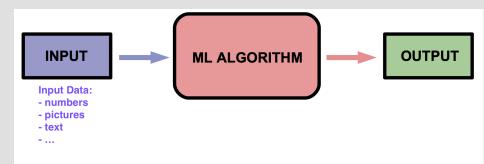
```
Plot correlation between first and fourth column
#Define a 2d histogram with 100 bins on each axis
plt.hist2d(df['Value_1'],df['Value_4'],bins=100)
plt.xlabel('Value_1')
plt.ylabel('Value_4')
plt.show()
```

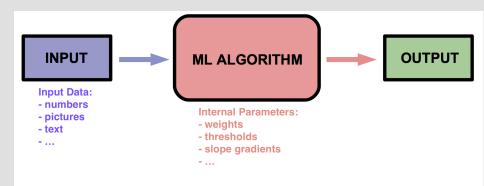


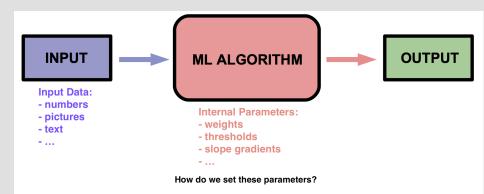
Daniel Lersch (FSU)

DataFrames: Summary and Outlook

- Introduced DataFrames for convenient data analysis / visualization
- Did NOT show all functionalities
 - Concatenating / stacking DataFrames
 - Shuffling DataFrames
 - ► ...
- Python provides a detailed documentation about DataFrames and related functions

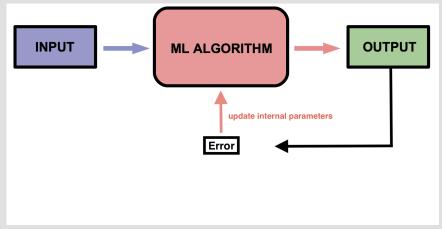




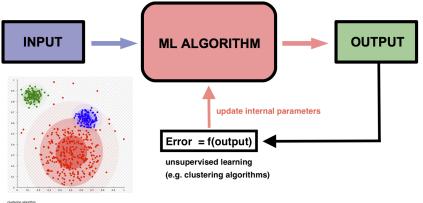


- Any algorithm "learns" patterns / actions from a given data set by setting its internal parameters appropriately
- Those parameters are set during training

- Any algorithm "learns" patterns / actions from a given data set by setting its internal parameters appropriately
- Those parameters are set during training

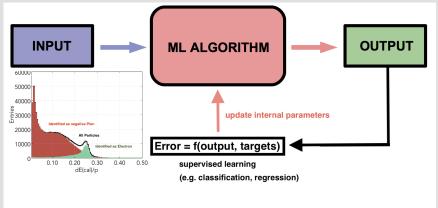


- Any algorithm "learns" patterns / actions from a given data set by setting its internal parameters appropriately
- Those parameters are set during training

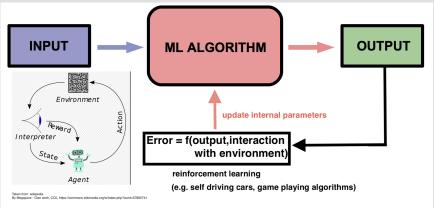


cuisening algorithm taken from: wikipedia By Chire - Own work, CC BY-SA 3.0, https://oormnons.wikimedia.org/w/index.php?ourid=17087089

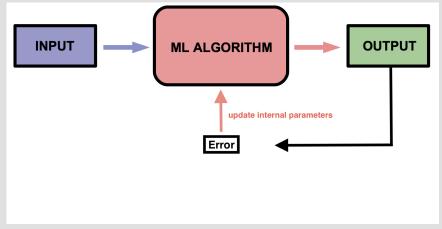
- Any algorithm 'learns' patterns / actions from a given data set by setting its internal parameters appropriately
- Those parameters are set during training



- Any algorithm "learns" patterns / actions from a given data set by setting its internal parameters appropriately
- Those parameters are set during training



- Any algorithm "learns" patterns / actions from a given data set by setting its internal parameters appropriately
- Those parameters are set during training



• Goal: Minimize error

Daniel Lersch (FSU)

- The algorithm training is (depending on the data and the problem itself) an iterative process
 - Algorithms internal parameters are updated several times
 - Ideally: Error should get smaller with every update

- The algorithm training is (depending on the data and the problem itself) an iterative process
 - Algorithms internal parameters are updated several times
 - Ideally: Error should get smaller with every update
- Most important tool to check whether training was successful: Training Curve

- The algorithm training is (depending on the data and the problem itself) an iterative process
 - Algorithms internal parameters are updated several times
 - Ideally: Error should get smaller with every update
- Most important tool to check whether training was successful: Training Curve
- The training itself is not difficult, as many frameworks already support the training procedures for a variety of machine learning algorithms
 You do not need to take goes of undeting the algorithms
 - ightarrow You do not need to take care of updating the algorithms parameters 5

⁵There are exceptions of course which will be discussed in a later part of this lecture

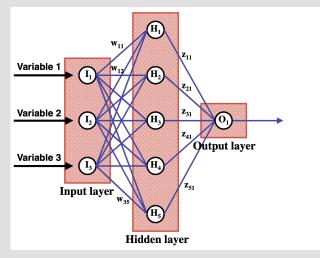
- The algorithm training is (depending on the data and the problem itself) an iterative process
 - Algorithms internal parameters are updated several times
 - Ideally: Error should get smaller with every update
- Most important tool to check whether training was successful: Training Curve
- The training itself is not difficult, as many frameworks already support the training procedures for a variety of machine learning algorithms
 → You do not need to take care of updating the algorithms parameters ⁵
- Tricky: How to set up and evaluate the training properly (will be discussed soon)

⁵There are exceptions of course which will be discussed in a later part of this lecture

- The algorithm training is (depending on the data and the problem itself) an iterative process
 - Algorithms internal parameters are updated several times
 - Ideally: Error should get smaller with every update
- Most important tool to check whether training was successful: Training Curve
- The training itself is not difficult, as many frameworks already support the training procedures for a variety of machine learning algorithms
 → You do not need to take care of updating the algorithms parameters ⁵
- Tricky: How to set up and evaluate the training properly (will be discussed soon)
- Next: Discuss training of a feedforward neural network

⁵There are exceptions of course which will be discussed in a later part of this lecture

The Multilayer Perceptron

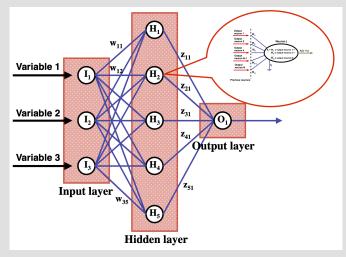


- Most popular example for machine learning algorithms
- Belongs to the class of feedforward neural networks
- Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU)

Computational Physics Lab

The Multilayer Perceptron

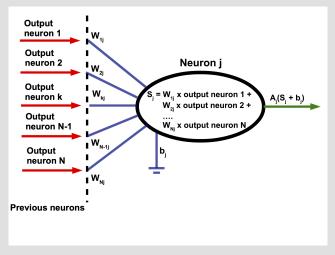


- Most popular example for machine learning algorithms
- Belongs to the class of feedforward neural networks
- Architecture: Hidden layers with a set of neurons

Daniel Lersch (FSU)

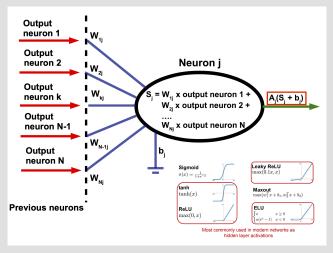
Computational Physics Lab

A single Neuron



• Basic ingredients: Information from previous neurons, weights, bias and activation function

A single Neuron

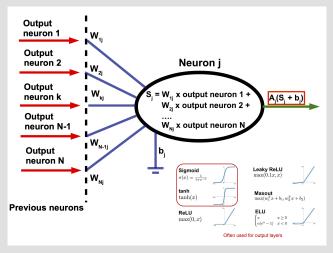


- Basic ingredients: Information from previous neurons, weights, bias and activation function
- Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

Daniel Lersch (FSU)

Computational Physics Lab

A single Neuron



- Basic ingredients: Information from previous neurons, weights, bias and activation function
- Activation function plots taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

Daniel Lersch (FSU)

Computational Physics Lab

The Universal Approximation Theorem for Neural Networks

"a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units" -- Hornik, 1991, http://zmiones.com/static/statistical-learning/hornik-nn-1991.pdf

This, of course, does not imply that we have an optimization algorithm that can find such a function. The layer could also be too large to be practical.

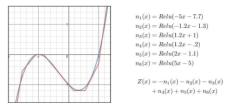


Fig. credit towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

 \Rightarrow Similarly formulated in 1990 by the **Stone-Weierstrass-Theorem**

"[...] there are no nemesis functions that cannot be modeled by neural networks"

The Universal Approximation Theorem for Neural Networks

"a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units" -- Hornik, 1991, http://zmiones.com/static/statistical-learning/hornik-nn-1991.pdf

This, of course, does not imply that we have an optimization algorithm that can find such a function. The layer could also be too large to be practical.

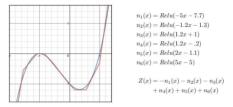


Fig. credit towardsdatascience.com/can-neural-networks-really-learn-any-function-65e106617fc6

Screenshot taken from Mustafa Mustafas lecture at the: deep learning for science school 2019

- \Rightarrow Similarly formulated in 1990 by the **Stone-Weierstrass-Theorem**
- "[...] there are no nemesis functions that cannot be modeled by neural networks"
- \Rightarrow Neural networks are powerful tools! But,...

• Suppose a multilayer perceptron with N_h hidden layers, N_{in} inputs and N_{out} outputs

- Suppose a multilayer perceptron with N_h hidden layers, N_{in} inputs and N_{out} outputs
- The total number of trainable parameters is:

$$N_{pars} = \sum_{i=1}^{N_h+1} \left[n_{i-1} + 1 \right] \cdot n_i$$
 (1)

- Suppose a multilayer perceptron with N_h hidden layers, N_{in} inputs and N_{out} outputs
- The total number of trainable parameters is:

$$N_{pars} = \sum_{i=1}^{N_h+1} \left[n_{i-1} + 1 \right] \cdot n_i$$
 (1)

• Where: n_i is the number of neurons in the current layer and n_{i-1} the number of neurons in the previous layer

- Suppose a multilayer perceptron with N_h hidden layers, N_{in} inputs and N_{out} outputs
- The total number of trainable parameters is:

$$N_{pars} = \sum_{i=1}^{N_{h}+1} \left[n_{i-1} + 1 \right] \cdot n_{i}$$
 (1)

- Where: n_i is the number of neurons in the current layer and n_{i-1} the number of neurons in the previous layer
- $n_0 = N_{in}$ and $n_{N_h+1} = N_{out}$

- Suppose a multilayer perceptron with N_h hidden layers, N_{in} inputs and N_{out} outputs
- The total number of trainable parameters is:

$$N_{pars} = \sum_{i=1}^{N_{b}+1} \left[n_{i-1} + 1 \right] \cdot n_{i}$$
 (1)

- Where: n_i is the number of neurons in the current layer and n_{i-1} the number of neurons in the previous layer
- $n_0 = N_{in}$ and $n_{N_h+1} = N_{out}$
- The example network on slide 11 has: $N_{in} = 3$ inputs, $N_h = 1$ hidden layer with 5 neurons and $N_{out} = 1$ output

- Suppose a multilayer perceptron with N_h hidden layers, N_{in} inputs and N_{out} outputs
- The total number of trainable parameters is:

$$N_{pars} = \sum_{i=1}^{N_h+1} \left[n_{i-1} + 1 \right] \cdot n_i$$
 (1)

- Where: n_i is the number of neurons in the current layer and n_{i-1} the number of neurons in the previous layer
- $n_0 = N_{in}$ and $n_{N_h+1} = N_{out}$
- The example network on slide 11 has: N_{in} = 3 inputs, N_h = 1 hidden layer with 5 neurons and N_{out} = 1 output
- Therefore: $N_{pars} = (3+1) \cdot 5 + (5+1) \cdot 1 = 26^{-6}$

 6 Now imagine a deep network with \gg 10 hidden layers and 10 neurons each

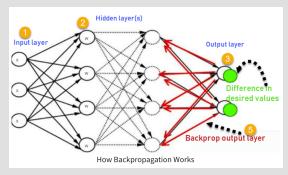
...Where is the Catch?

- Suppose a multilayer perceptron with N_h hidden layers, N_{in} inputs and N_{out} outputs
- The total number of trainable parameters is:

$$N_{pars} = \sum_{i=1}^{N_h+1} \left[n_{i-1} + 1 \right] \cdot n_i$$
 (1)

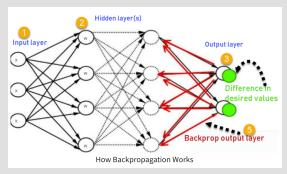
- Where: n_i is the number of neurons in the current layer and n_{i-1} the number of neurons in the previous layer
- $n_0 = N_{in}$ and $n_{N_h+1} = N_{out}$
- The example network on slide 11 has: N_{in} = 3 inputs, N_h = 1 hidden layer with 5 neurons and N_{out} = 1 output
- Therefore: $N_{pars} = (3+1) \cdot 5 + (5+1) \cdot 1 = 26^{-6}$
- How do we set 26 parameters???

 ^{6}Now imagine a deep network with \gg 10 hidden layers and 10 neurons each



Picture taken from here

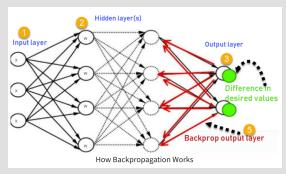
• Error = Desired Output - Current Network Output \leftrightarrow Want to minimize this!



Picture taken from here

- Error = Desired Output Current Network Output ↔ Want to minimize this!
- $\bullet\,$ Data is passed forward $\rightarrow\,$ Error is propagated backwards $\rightarrow\,$ update weights

$$w_{i+1} = w_i - \eta \cdot \nabla L(x_{data}, w_k)$$
⁽²⁾

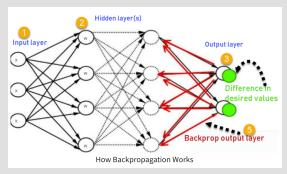


Picture taken from here

- Error = Desired Output Current Network Output ↔ Want to minimize this!
- Data is passed forward \rightarrow Error is propagated backwards \rightarrow update weights

$$w_{i+1} = w_i - \eta \cdot \nabla L(x_{data}, w_k)$$
(2)

• η is the learning rate, *i* the learning epoch and x_{data} a (sub-set) of the training data

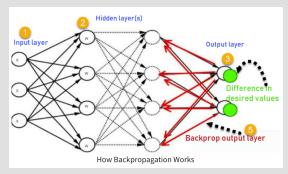


Picture taken from here

- Error = Desired Output Current Network Output ↔ Want to minimize this!
- $\bullet\,$ Data is passed forward $\rightarrow\,$ Error is propagated backwards $\rightarrow\,$ update weights

$$w_{i+1} = w_i - \eta \cdot \nabla L(x_{data}, w_k)$$
⁽²⁾

- η is the learning rate, *i* the learning epoch and x_{data} a (sub-set) of the training data
- L is the error, or loss function



Picture taken from here

- Error = Desired Output Current Network Output ↔ Want to minimize this!
- $\bullet\,$ Data is passed forward $\rightarrow\,$ Error is propagated backwards $\rightarrow\,$ update weights

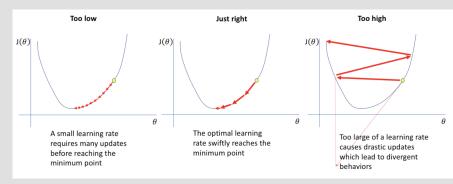
$$w_{i+1} = w_i - \eta \cdot \nabla L(x_{data}, w_k)$$
⁽²⁾

- η is the learning rate, *i* the learning epoch and x_{data} a (sub-set) of the training data
- L is the error, or loss function
- Most prominent example: $L = [y_{true} y_{network}(x_{data}, w_k)]^2$

Daniel Lersch (FSU)

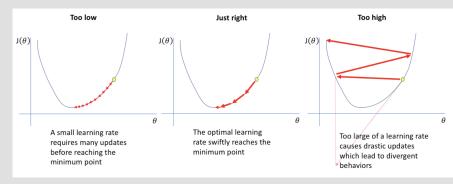
• Learning rate η determines gradient step size, i.e. how fast (or if) model converges to (a) minimum

• Learning rate η determines gradient step size, i.e. how fast (or if) model converges to (a) minimum



Picture taken form Jeremy Jordans Blog

• Learning rate η determines gradient step size, i.e. how fast (or if) model converges to (a) minimum



Picture taken form Jeremy Jordans Blog

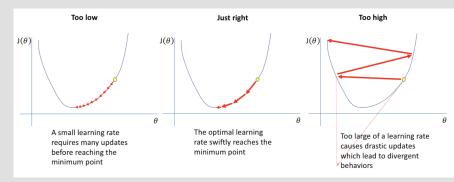
• Cost Function
$$J = \frac{1}{N} \sum_{\text{entire training data}} (\text{Loss Function L}) + \text{Regularization}^7$$

⁷You can think of this as setting constraints to the weights

Daniel Lersch (FSU)

Computational Physics Lab

• Learning rate η determines gradient step size, i.e. how fast (or if) model converges to (a) minimum



Picture taken form Jeremy Jordans Blog

- Cost Function $J = \frac{1}{N} \sum_{\text{entire training data}} (\text{Loss Function L}) + \text{Regularization}^7$
- Different algorithms to find minimum of J: Steepest Gradient Descent (SGD), ADAM, Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS),...

⁷You can think of this as setting constraints to the weights Daniel Lersch (FSU) Computational Physics Lab

Create the data which shall be learned

```
#Generate 500 (random) x-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.
```

```
Create the data which shall be learned
#Generate 500 (random) x-values between -3 and 3:
x_values = np.random.uniform(low=-3.0,high=3.0,size=(500,1))
#size=(500,1)--> This format is needed for the ml algorithm
#Use the lambda function to get the y-values:
quadratic_func = lambda x: x*x
y_values = quadratic_func(x_values).flatten() #--> needed for ml alg.
```

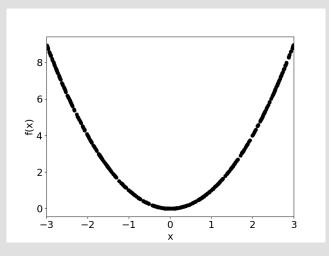
```
Plot the data
```

```
#Visualize the results with the pyplot library:
plt.rcParams.update({'font.size': 18}) #--> Set the fond size
plt.plot(x_values,y_values,'ko') #--> Plot the data as points
plt.xlim((-3,3)) #--> Set limits on x-axis
plt.xlabel('x')
plt.ylabel('f(x)')
plt.show()
```

Example: Learning the Quadratic Function

Setting up the Data Set

- Create the data which shall be learned
- Plot the data



Daniel Lersch (FSU)

• Want to use a neural network to learn the quadratic function

• Want to use a neural network to learn the quadratic function

```
Setup the network with scikit
 #Import the proper library from scikit:
 from sklearn.neural_network import MLPRegressor
 #Setup the network:
 my_mlp = MLPRegressor(
            hidden_layer_sizes=(10), #one hidden layer with 10 neurons
            activation='relu', #rectified linear unit function
            solver='sgd', #stochastic gradient descent optimizer
            \#--> to minimize the error
            warm_start=True,
            max_iter = 500, #maximum number of learning epochs
            shuffle=True, #shuffle the data
            random_state=0,
            learning_rate_init = 0.05 #step size for the gradient
        )
```

- Want to use a neural network to learn the quadratic function
- Setup the network with scikit

```
• Train the network
#Start training of network, i.e. fit model to the data:
my_mlp.fit(x_values,y_values)
#And get the training curve:
training_curve = my_mlp.loss_curve_
```

- Want to use a neural network to learn the quadratic function
- Setup the network with scikit

```
• Train the network
#Start training of network, i.e. fit model to the data:
my_mlp.fit(x_values,y_values)
#And get the training curve:
training_curve = my_mlp.loss_curve_
```

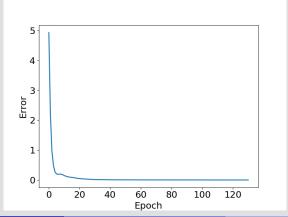
• Plot the training curve

```
#Plot the training curve:
plt.plot(training_curve,'-',linewidth=2.0)
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.show()
```

Example: Learning the Quadratic Function

Setting up the Model

- Want to use a neural network to learn the quadratic function
- Setup the network with scikit
- Train the network
- Plot the training curve

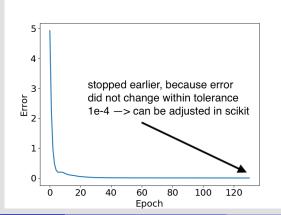


Daniel Lersch (FSU)

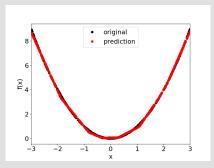
Example: Learning the Quadratic Function

Setting up the Model

- Want to use a neural network to learn the quadratic function
- Setup the network with scikit
- Train the network
- Plot the training curve



Example: Learning the Quadratic Function Inspecting the Results



- Model predictions look reasonable so far
- Can do better \rightarrow tune model

Da

• How well does model generalize, i.e. make reasonable predictions on data that has not been used during training

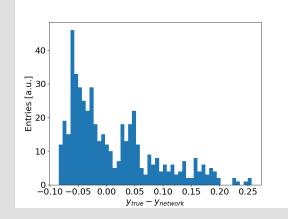
_	Unknown Value	Model Prediction	_	
-	-4	14	-	
	6	24		
aniel Lersch (FSU)	Computational Physics Lab		April 16, 2020	25 / 27

- A very helpful tool to monitor the performance of (any) fit are residuals
- Residual = True Output Predicted Output

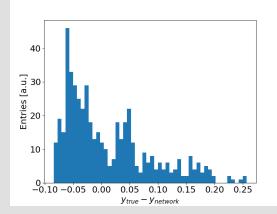
• A very helpful tool to monitor the performance of (any) fit are residuals

```
• Residual = True Output - Predicted Output
#Define residual function:
residual_func = lambda x,y: x-y
#Apply function on true / predicted values:
residuals = residual_func(y_values,predicted_values)
#And finally plot everything
plt.hist(residuals,bins=50)
plt.xlabel(r'$y_{true} - y_{network}$') #---> Inlcude latex expressions
plt.ylabel('Entries [a.u.]')
plt.show()
```

- A very helpful tool to monitor the performance of (any) fit are residuals
- Residual = True Output Predicted Output

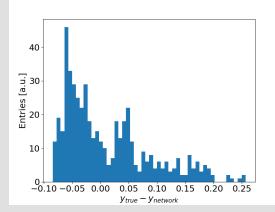


- A very helpful tool to monitor the performance of (any) fit are residuals
- Residual = True Output Predicted Output



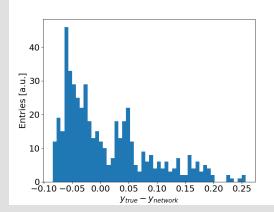
Ideally, residual should be centered at zero

- A very helpful tool to monitor the performance of (any) fit are residuals
- Residual = True Output Predicted Output



- Ideally, residual should be centered at zero
- Our model requires some tuning

- A very helpful tool to monitor the performance of (any) fit are residuals
- Residual = True Output Predicted Output



- Ideally, residual should be centered at zero
- Our model requires some tuning
- Note: Did NOT follow best-practice during this example \rightarrow Will be discussed in part II

Daniel Lersch (FSU)

Summary Part I

Introduced DataFrames into analysis

- Structure data
- Manipulate data
- Visualization
- Basic concepts of training a machine learning algorithm
 - Set internal parameters by minimizing error
 - (un-) supervised and reinforcement learning
- Discussed training of a multilayer perceptron in more detail
 - Update weights by minimizing loss
 - Example: Learning a quadratic function