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About this Lecture

@ Part I:

> Introduction to DataFrames
> Basic concepts of machine learning
(with focus on feedforward neural networks)
@ Part ll:
» Machine learning in (physics) data analysis
» Performance evaluation

Part IlI:

> Algorithm tuning
» Hyper parameter optimization

Part 1V:

» Custom neural networks with Tensorflow
> Transition to Deep Learning

The individual contents might be subject to change
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This Lecture will...

NOT turn you into a machine learning specialist
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. NOT cover all aspects of machine learning

. give a (very) brief overview only (i.e. further reading is definitely required)
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This Lecture will...

. NOT turn you into a machine learning specialist

. NOT cover all aspects of machine learning

. give a (very) brief overview only (i.e. further reading is definitely required)
. introduce a few machine learning algorithms

. utilize the scikit-learn library
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This Lecture will...

NOT turn you into a machine learning specialist

NOT cover all aspects of machine learning
. give a (very) brief overview only (i.e. further reading is definitely required)
. introduce a few machine learning algorithms
. utilize the scikit-learn library

. most likely contain several errors (— Please send a mail to dlersch@jlab.org)
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Homework and Literature

@ Machine learning can be learned best by simply doing it!
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning
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Homework and Literature

@ Machine learning can be learned best by simply doing it!

@ Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

@ Helpful literature:

» The scikit-learn documentation

» Talks from the deep learning for science school 20193

» "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by
Aurélien Géron

» The internet is full of good (but also very bad!) literature® — browse with
caution

» The slides of the lecture are available at:
http://hadron.physics.fsu.edu/ dlersch/ml_slides/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning
without any theory / math is considered as bad
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Al, ML and DL

Al D ML D DL

Computer Science

Artificial Intelligence

Machine Learning

Deep Learning

Artificial
Intelligence

Engineering of
king Intelligent

Machines and Programs

1950's 1960's 1970's

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Al, ML and DL

Al D ML D DL

Main focus of this lecture

Computer Science

Artificial Intelligence

Machine Learning

Engineering of
g Intelligent

Ma and Programs

Deep Learning 1950's 1960's 1970

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning

INPUT
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Introduced in part I: DataFrames —> handle and manipulate data
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Basic Components of Machine Learning

INPUT

Input Data:
- humbers
- pictures
- text

Daniel Lersch (FSU)

ML ALGORITHM

Discussed in part I:

- minimize error

- different learning startegies

- training of a multilayer perceptron

OUTPUT
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Learning a quadratic Function with Noise

10 = = N 10
---- without noise :

e with noise

f(x)
f(x)

original
prediction

-3 -2 -1 0 1 2 3

@ Like in part I: Try to learn a quadratic function, but you know your measured data will be

noisy — implement noise in your training data
@ Train again mlp, similar to the one used in part |
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Learning a quadratic Function with Noise

10 ° training data o 101 MSE =0.78 . ° o
ope measured data <
8 8
6 6
= o
X §
= =
4 4
2 2 .
R
0 0
-3 -2 -1 0 1 2 3 0 2 4 6 8 10
X Ynetwork

@ Like in part I: Try to learn a quadratic function, but you know your measured data will be
noisy — implement noise in your training data
@ Train again mlp, similar to the one used in part |

Feed in measured data which is slightly different to the training data
@ MSE = % Z(Ytrue,i - }/network,i)z
1
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Learning a quadratic Function with Noise

10 ° training data o 101 MSE =0.78 o
ope measured data 4
8 8
6 6
= =
4 4
2 2
". C. .
0 0
-3 -2 -1 0o 1 2 3 0 2 ! 6 8 10
X Ynetwork
@ Like in part I: Try to learn a quadratic function, but you know your measured data will be

noisy — implement noise in your training data
Train again mlp, similar to the one used in part |
Feed in measured data which is slightly different to the training data

MSE = % Z(Ytrue,i - ynetwork,i)2
i

Not surprising, because network only reflects what it has been trained on
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Validation Data

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

® Training examples
m New example

X X

Underfitting Good fit! Overfitting

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Validation Data

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters®, but used to determine when training is complete

5This data is "unseen" by the algorithm during the training stage
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Validation Data

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters®, but used to determine when training is complete

underfitting overfitting

]
| .

1 validation error
i

error

training error

# Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

5This data is "unseen" by the algorithm during the training stage
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Validation Data

@ Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

@ Validation Data: Part of training data that is NOT used to update internal
parameters®, but used to determine when training is complete

underfitting overfitting

| 1 validation error
i Early
iStopping |

-

error

training error

# Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

5This data is "unseen" by the algorithm during the training stage
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Implementing Early Stopping and Validation Data in the
scikit MLPRegressor

my_mlp =  MLPRegressor(
hidden_layer_sizes=(10),
activation=’relu’,
solver=’sgd’,
warm_start=True,
max_iter = 1000,
shuffle=True,
tol=1le-6,
validation_fraction=0.5, #---> Define the percentage of
#training data that shall be kept aside
early_stopping=True, #---> Enable early stopping
random_state=0,
learning_rate_init = 0.05
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Learning a quadratic Function with Noise

Include Validation Data

include validation data and early stopping

original original
prediction prediction

f(x)

@ Left: No validation data used
@ Right: Validation data + early stopping
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Learning a quadratic Function with Noise

Include Validation Data

101 MSE =0.78

Ytrue

Ynetwork

@ Left: No validation data used
@ Right: Validation data + early stopping

@ ~ 9% difference in performance

Ytrue

™

include validation data and early stopping

MSE =0.71

Ynetwork
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Learning a quadratic Function with Noise
Include Validation Data

B without validation data

50 with validation data

40

w
o

Entries [a.u.]

N
o

10

12

-3 -2 -1 0 1
Ytrue = Ynetwork

Left: No validation data used

Right: Validation data + early stopping

~ 9% difference in performance

Note: Probably not the best example to advertise validation data
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Gaussian Processors: Introduction

)

—— Data

True Distribution

— f(x) = pol(3) 4

=)

IS

f(x)

|
)

[T T T[T T[T T [T [ TT [ TIT[TTT [T

IS

)

-8

@ Goal(s):
i) Describe data shown above, without knowledge of the true distribution
ii) ldentify missing points
iii) Make a prediction/extrapolation?
@ Put at least assumptions/information into fit as possible
= Use Gaussian processors
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Gaussian Processors: Introduction
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@ Goal(s):

i) Describe data shown above, without knowledge of the true distribution

i) Identify missing points
iii) Make a prediction/extrapolation?

@ Put at least assumptions/information into fit as possible

= Use Gaussian processors
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Gaussian Processors: General Idea

@ Two points y; and y; with correlation: pj;
@ Assumption: y;,y; can be sampled from:

_ 1 1 2 o 2 .
f(y,,yj) = %\/fip;‘; X exp{ — Z(Tpﬁ)[y’ — 2/’0}’1}’1 +yj ]}, with mean at 0
@ Generate data set: y = {y1,¥2, .., ¥n}, if pjj is known:

fly) = %Ipl x exp[—0.5yT p~ty]
@ ldea: Parameterize p and fit above equation to your data
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Gaussian Processors: Kernel Functions

@ One of the most common functions:

Exponential Squared: k(x;,x;) =Y. [a?,m exp{ 1 (X’ ) }] + 028(xi, x;)

@ Features of this function:

> lim  k(x;,x;) = > [02 ]+ 02
|xi—x;|—0 m
> lim  k(xi,x;)) =0

|xi—xj| =00

=pol(3)

8- | —— Data
1)
4

—_ 2

_.\_’ 0

X
T P [T T T T e

True Distribution
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Gaussian Processors: Kernel Functions

@ One of the most common functions:
x;—x;)?
Exponential Squared: k(xi,x;) = [a?,m exp{ - %(’T’)—}] + 026(xi, x;)

@ Features of this function:

» lim  k(xj,xj) = Y [02, ]+ 02 — Close points share similar features
|x; —xj|—0 m ’
> lim  k(xj,x;) =0

Ixi—x;| 00

=)

—— Data
— f(x) = pol(3)

=)

IS

f(x)

(ANRARNRRRS RN EE RN RRRRRRRD RARRRRY
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Gaussian Processors: Kernel Functions

@ One of the most common functions: R
Exponential Squared: k(xi,x)=>_ [0?7,,, exp{ - %(X’;:j) }] + 028(xi, x;)
- 2

@ Features of this function:
> lim  k(x;,x) = S[62 ]+ 02
m K %) > Sl ) + 03
> lim k(xj,x;) = 0 — Distant points do not "know" each other

|xj —xj| =00

—— Data
— f(x) = pol(3)

®
ARERAR

o

IS

f(x)

LARRASARARLERNRRRNRRRE RAR
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Gaussian Processors: K-Matrices

@ k(xi,x) = [a? exp{ - %(X’—:z(/)—‘}] + 028(x;, x})

@ Matrices needed for future calculation(s):

k(x1,x1) k(x1,x2) ... k(x1,%n)
k=| 5
k(xnyx1)  k(xn,x2) ... k(Xn,Xn)
k(xf,x1)  k(xg,x2) ... k(x§,xn)
K* = : .
k(xx,x1) k(xg,x2) ... k(xF,xn)
k(xf,xf) kO x3) o kO xy)
K** —
(XmX1) k(g x3) e kG, x7)

@ x;: x-Value from known data points: (x;, y;)

N
Xi

: x-Value from unknown data points: (x*,y;*)

@ K-matrices pick up the correlations

Daniel Lersch (FSU) Computational Physics Lab
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Gaussian Processors: Parameter Estimation

1.) Using Bayes theorem, minimize:

—log[P(x,y,0¢,A,05)] cc y" K™y + log | K| with respect to of, A, o
2.) Use parameters of, A, o, found during minimization and calculate

y = K*Kly

Ay* = K** — K*K1K*T

Note:

The expressions for: y7 K~y + log|K|, y* and Ay* correspond to a
multidimensional Gaussian distribution
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Gaussian Processors: Application on f(x) = x

2
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Gaussian Processors: Application on f(x) = x3

+ Data ¢

—I— Missing Data ‘4
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Gaussian Processors: Application on f(x) = x3

8:_ —f— Data '
sF | T Missing Data '
4: + Calculated Data ;W
C [}
C ¢
21— *H*
L . d
> 0~ +§++m*§*§é+#**§***w*
F 4
—2C m*
-4 . *i
C ¢
-6 *
C ¢
8 b
-3 -2 -1 0 1 2 3
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Gaussian Processors: Application on f(x) = x3

- | —#— Data

10|—| —F— Missing Data

- | —F— Calculated Data
L | —F— Calculated Data

I | —F— Regression g

- | —— True Function :

B s %

>— e, . ..,..,.;.v.v.-.v.v RN 2% 5
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Gaussian Processors: Application on f(x) = x3

—3%— Data

—JF— Missing Data
—3— Calculated Data
—3— Calculated Data
—F— Regression
True Function

@ Found Parameters: of = 3.15+0.07, A = 0.69 - 0.05 and o, = 0.53 - 0.08

@ A and o, roughly reflect the parameters that have been used to generate the
above data: Ax = 0.8 and Ayg.r =~ 0.3

@ Prediction/Extrapolation of the data outside the data limits fails, but:
> One can easily modify the kernel-function
> Leave points out during minimization = Access to systematic uncertainties
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Another noisy x-Function

L ]
10+
L]
L] L]
8 . .
L ] L ]
6 'Y ¢
’x“ .
[r=g %
44 o ."."ll
:.. oo
) [T} . L] .2 o®
.-.." ..“
L]
0 ‘e o oot J‘
-3 2 -1 0 1 2 3
X

@ Given are a few noisy data points which seem to follow a x3-distribution

@ Would like to find the underlying distribution + prediction uncertainty
= Gaussian Processor
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Setting up the Gaussian Processor

N
T % ) }] +aw;, x5)0(xi, x;) + noise_level - §(z;, ;)

‘WhiteKernel

k(xi,x;) = [exp{ - %(

length_scale

RBF

#1.) Define the kernel:
#RBF: Radtal Basis Function = exponential squared
kernel = RBF(length_scale=1.0, length_scale_bounds=(le-2, 1le2))
#White kernel: Corresponds to sigma_n --> constant noise
+ WhiteKernel (noise_level=1.0, noise_level_bounds=(le-10, le+1))
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Setting up the Gaussian Processor

c—as O
A | ) H +awi, x5)0(xi, x;) + noise_level - §(z;, ;)

‘WhiteKernel

ilaps, a05) = [exp{ - %(

length_scale

RBF

#1.) Define the kernel:
#RBF: Radtial Basis Function = exponential squared
kernel = RBF(length_scale=1.0, length_scale_bounds=(le-2, 1le2))
#White kernel: Corresponds to sigma_n --> constant noise
+ WhiteKernel (noise_level=1.0, noise_level_bounds=(le-10, le+1))

#2.) Setup the processor:
my_gp = GaussianProcessRegressor(
kernel=kernel,
n_restarts_optimizer=10, #--> How many times to rTun the minimization
alpha=0.0 #--> similar to sigma_n if constant,
#can be set for each data point individually--> individual error
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Setting up the Gaussian Processor

c—= s \2
R | ) H +a(xi, 25)0(xi, ;) + noise_level - §(z;, ;)

‘WhiteKernel

k(zi,2;) = [exp{ - %(

length_scale

RBF

#1.) Define the kernel:
#RBF: Radial Basis Function = ezponential squared
kernel = RBF(length_scale=1.0, length_scale_bounds=(le-2, 1le2))
#White kernel: Corresponds to sigma_n --> constant noise
+ WhiteKernel (noise_level=1.0, noise_level_bounds=(le-10, le+1))

#2.) Setup the processor:
my_gp = GaussianProcessRegressor (
kernel=kernel,
n_restarts_optimizer=10, #--> How many times to run the minimization
alpha=0.0 #--> similar to sigma_n if constant,
#can be set for each data point individually--> individual error

)

#3.) Set the parameters:
my_gp.fit(x_values,y_values)
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Setting up the Gaussian Processor

1 T; — X 2 .
k(zi,z5) = [GXP{ - i(m) H +a(wi, 25)0(x;, x;) + noise_level - §(z;, ;)

‘WhiteKernel
RBF

#1.) Define the kernel:
#RBF: Radial Basis Function = exponential squared
kernel = RBF(length_scale=1.0, length_scale_bounds=(le-2, 1le2))
#White kernel: Corresponds to sigma_n --> constant noise
+ WhiteKernel (noise_level=1.0, noise_level_bounds=(le-10, le+1))

#2.) Setup the processor:
my_gp = GaussianProcessRegressor(

kernel=kernel,
n_restarts_optimizer=10, #--> How many times to run the minimization

alpha=0.0 #--> similar to sigma_n if constant,
#can be set for each data point individually--> individual error

)

#3.) Set the parameters:
my_gp.fit(x_values,y_values)

#4.) Get the predictions:
predictions, covariances = my_gp.predict(x_values,return_cov=True)
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Applying the Gaussian Processor

10

f(x)

e original data
—— predicted data
I uncertainty

-2 -1 0 1 3

X

@ Points far outside not matched properly
April 16, 2020

@ Could improve results by including a datapoint dependent «
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Gaussian Processors: Summary

Based on sampling from a multidimensional Gaussian distribution
Use Kernel-Function to handle correlation between data points
Determine covariance matrix from fit

Also available in scikit: GaussianProcessClassifier

Some hyper parameter optimizer make use of Gaussian processors
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Classification with Machine Learning

@ Most prominent application for machine learning algorithms
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Classification with Machine Learning

@ Most prominent application for machine learning algorithms
@ Consider three species (e.g. particles, customer groups, car engine states...)

Variable 2
Variable 3

1.0

0}
. 5 . . -1.0 -05 00 05 1.0 15 20 25 3.0
Variable 1 Variable 2
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Classification with Machine Learning

@ Most prominent application for machine learning algorithms

@ Consider three species (e.g. particles, customer groups, car engine states...)
@ Each species is defined by a set of three variables / features

Variable 2
Variable 3

o ol
. 1.0 . 8 . . -1.0 -05 00 05 1.0 15 20 25 3.0
Variable 1 Variable 2
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Classification with Machine Learning

@ Most prominent application for machine learning algorithms
@ Consider three species (e.g. particles, customer groups, car engine states...)
@ Each species is defined by a set of three variables / features

@ All species are measured / represented within one data set

> Relative abundance between species is unequal (e.g. N(species 1) > N(species 2))
> Noise contributions

Variable 2
Variable 3
Variable 3

=10 -05 00 05 5 20

10 1
Variable 1 Variable 1

1
Variable 2
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Classification with Machine Learning

Most prominent application for machine learning algorithms

]
@ Consider three species (e.g. particles, customer groups, car engine states...)
@ Each species is defined by a set of three variables / features

o

All species are measured / represented within one data set

> Relative abundance between species is unequal (e.g. N(species 1) > N(species 2))
> Noise contributions

Goal: Filter each species according to its features

Variable 2
Variable 3
Variable 3

=10 -05 00 05 5 20

10 1
Variable 1 Variable 1

1
Variable 2
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Classification with Machine Learning

Most prominent application for machine learning algorithms
Consider three species (e.g. particles, customer groups, car engine states...)
Each species is defined by a set of three variables / features

All species are measured / represented within one data set

> Relative abundance between species is unequal (e.g. N(species 1) > N(species 2))
> Noise contributions

@ Goal: Filter each species according to its features

= Use a classification algorithm, aka classifier

Variable 2
Variable 3
Variable 3

=10 -05 00 05 5 20

10 1
Variable 1 Variable 1

1
Variable 2
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The Training Data

@ Assumptions:

a) We possess a training data set

b) The training set is a realistic representation of the measured/"real” data we
want to analyze later

c) Each species within the training set is labeled®: species 1 <+ 0, species 2 <+ 1
and species 3 <> 2

5We want to train the classifier in such a way that it will be able to map:
Features — Label
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The Training Data

@ Assumptions:

a) We possess a training data set
b) The training set is a realistic representation of the measured/"real” data we
want to analyze later
c) Each species within the training set is labeled®: species 1 <+ 0, species 2 <+ 1
and species 3 <> 2
@ First, load the data and have a look at it
import pandas as pd
data = ’/Volumes/BunchOfStuff/classifier_testData/fsu_ml_data3.csv’
data_df = pd.read_csv(data)

print(data_df .head(10)) #---> Look at the first 10 entries:

5We want to train the classifier in such a way that it will be able to map:
Features — Label
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The Training Data

@ Assumptions:
a) We possess a training data set
b) The training set is a realistic representation of the measured/"'real” data we
want to analyze later
c) Each species within the training set is labeled®: species 1 <+ 0, species 2 <+ 1
and species 3 <> 2
@ First, load the data and have a look at it

varl WAk vard  label
2.140464  0,871710 1634352
1.788192 1,992380  2.423125
0,B02616 -0,480471  4,399315
1.354940 1,914723 2.849413
2.008098 0,649694 1,57517E
1.241234 0621577 2,915342
1.013267 -0,695762 4,493476
1.676466 2,001228 B.066041
0,920714  2,119301 2,.733576
0,128073  1,348074  3,.360470

o+ o+

+

o+ o+ o+

L0000 =] O 5 e Gkl O

+
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6We want to train the classifier in such a way that it will be able to map:
Features —> Label
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The Training Data

@ Assumptions:

a) We possess a training data set
b) The training set is a realistic representation of the measured/"real” data we
want to analyze later

c) Each species within the training set is labeled®: species 1 <+ 0, species 2 <+ 1
and species 3 <> 2

@ First, load the data and have a look at it

@ Second prepare the data for the classifier
from sklearn.utils import shuffle

#Get the features / three variables for each species from the DataFrame
X = data_df[[’varl’,’var2’,’var3’]].values

#Get the labels / target values

Y = data_df[’label’].values

#Shuffle the data
x_train, y_train = shuffle(X,Y,random_state=0)

5We want to train the classifier in such a way that it will be able to map:
Features — Label
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Setup and train a MLP

@ Prepare the MLP for training
from sklearn.neural_network import MLPClassifier

my_mlp = MLPClassifier(
hidden_layer_sizes=(5),
activation=’tanh’,
solver=’sgd’,
shuffle=True,
validation_fraction=0.25,
early_stopping=True,
max_iter = 100,
learning_rate_init=0.01,
warm_start=True,
tol=1le-6
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Setup and train a MLP

@ Prepare the MLP for training

@ Train the MLP on the given data
#Do the mapping: Features [--> Label
my_mlp.fit(x_train,y_train)

#And get the learning / wvalidation curve:
training_curve = my_mlp.loss_curve_
validation_curve = my_mlp.validation_scores_

plt.rcParams.update({’font.size’: 18})
plt.plot(training_curve,label=’training data’)
plt.plot(validation_curve,label=’validation data’)
plt.legend()

plt.xlabel (’Epoch?)

plt.ylabel (’Error’)

plt.show()
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Setup and train a MLP

@ Prepare the MLP for training

@ Train the MLP on the given data
#Do the mapping: Features [--> Label
my_mlp.fit(x_train,y_train)

#4nd get the learning / validation curve:
training_curve = my_mlp.loss_curve_
validation_curve = my_mlp.validation_scores_

plt.rcParams.update({’font.size’: 18})
plt.plot(training_curve,label=’training data’)
plt.plot(validation_curve,label=’validation data’)
plt.legend()

plt.xlabel (’Epoch?’)

plt.ylabel (’Error’)

plt.show()

@ Note: This network has NOT been tuned for the upcoming analysis — Just
"best-guess” settings
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Setup and train a MLP

@ Prepare the MLP for training
@ Train the MLP on the given data

@ Note: This network has NOT been tuned for the upcoming analysis — Just
"best-guess” settings

@ The error / loss-function for the mlp is given by the cross-entropy

5 0.65 —— training data
= —— validation data

0 5 10 15 20 25 30
Epoch
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Inspecting / Understanding the Network Output

@ We have three species to identify / label = MLP has three outputs, one for each
species

"In some frameworks you are able to set a threshold, i.e. suppress certain outputs
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Inspecting / Understanding the Network Output

@ We have three species to identify / label = MLP has three outputs, one for each
species

@ The activation function for the output layer is the softmax-function

softmax (output i) = exp(X;)/(Z exp(x;)) (1)

I

"In some frameworks you are able to set a threshold, i.e. suppress certain outputs
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Inspecting / Understanding the Network Output

@ We have three species to identify / label = MLP has three outputs, one for each
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@ The activation function for the output layer is the softmax-function

softmax (output i) = exp(X;)/(Z exp(x;)) (1)

I

@ with: x; = Y wjioj + bj, oj = output from neuron j in the last hidden layer
J

@ By definition, all outputs of the mlp are normalized between 0 and 1
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Inspecting / Understanding the Network Output

@ We have three species to identify / label = MLP has three outputs, one for each
species

@ The activation function for the output layer is the softmax-function

softmax (output i) = exp(X;)/(Z exp(x;)) (1)

I

@ with: x; = Y wjioj + bj, oj = output from neuron j in the last hidden layer
J
@ By definition, all outputs of the mlp are normalized between 0 and 1

@ How to transfer this to a label?

"In some frameworks you are able to set a threshold, i.e. suppress certain outputs
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Inspecting / Understanding the Network Output

@ We have three species to identify / label = MLP has three outputs, one for each
species

@ The activation function for the output layer is the softmax-function

softmax (output i) = exp(X;)/(Z exp(x;)) (1)

1
@ with: x; = Y wjioj + bj, oj = output from neuron j in the last hidden layer
J
@ By definition, all outputs of the mlp are normalized between 0 and 1
@ How to transfer this to a label?
@ In most cases”:
label i = max{softmax(output 1), softmax(output 2), softmax (output3)}

"In some frameworks you are able to set a threshold, i.e. suppress certain outputs
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Inspecting / Understanding the Network Output

@ We have three species to identify / label = MLP has three outputs, one for each
species

@ The activation function for the output layer is the softmax-function

softmax (output i) = exp(X;)/(Z exp(x;)) (1)

I

@ with: x; = Y wjioj + bj, oj = output from neuron j in the last hidden layer
J
@ By definition, all outputs of the mlp are normalized between 0 and 1
@ How to transfer this to a label?
@ In most cases”:
label i = max{softmax(output 1), softmax(output 2), softmax (output3)}

@ Example: Suppose softmax(output 2) shows the largest response — This event
would be labeled with 1

"In some frameworks you are able to set a threshold, i.e. suppress certain outputs
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction
#Get predicted labels:
predictions = my_mlp.predict(X) #---> X <s the entire training data set
#Get the mlp outputs:
probabilities = my_mlp.predict_proba(X)

#4dd them to the data frame:

data_df [’prediction’] = predictions #--> 3D wector, because we have 3 species
data_df [’probabilityl’] = probabilities[:,0]

data_df [’probability2’] = probabilities[:,1]

data_df [’probability3’] = probabilities[:,2]

#Have another look at the DataFrame:

print(data_df.head(10))
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction

varl var? vard label prediction probabilityl probability? probability3
2,140464 0871710 1,634362 0, 01688 0,006013 0977293
1.788192 1,992385 2,423125 0,033223 0,947372 0,019406
0,B0Z61E —0,480471 4,2399215 0,991312 0002962 0,005725
1.354940  1,914728  2,849413 0,070873 0,831176 0,037950
3,008098 0,B43634 1,579176 0,011921 0005719 0,982201
1.241234  0,621577  2,915842 0,876290 0,058686 0, 05025
1,012267 —0,B95762 4,493476 0, 985068 0005237 0,003697
1.576466 2,001228 E,0BER41 0,207625 0,418755 0,273619
0,920714  2,119301 2,793376 0,108732 0823138 0, 062070
0,128073  1,348074 Z,360470 0,632643 0,212343 0,155003
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction

varl
2,140464
1.788192
0,B0ZE1E
1.354940
3,008038
1.241234
1,012267
1.576466
0,920714
0,128073

L0000 ] O R e G D T

var?
0,871710
1.992385
-0, 480471
1.914728
0,E43634
0.621577
-}, 695762
2,001228
2,113301
1.348074

vars
1,634352
2,423125
4,299315
2,849412
1575176
2.915842
4,492476
£.0BES41
2, 783376
2,360470

Daniel Lersch (FSU)

label prediction probabilityl probability? probability3
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1.0 1,0 (), (33223 01,94 7372 0, (0113405
1.0 1.0 0,070873 0,831176 0,037350
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0.0 0,0 0,876290 0, 053636 0, 065025
0,0 0.0 0,995066 0008237 0,003697
0.0 1.0 0, 207625 0,418755 0,273613
1.0 L0 0,108732 0,823133 0,062070
0.0 0.0 0,632643 0,212343 0, 155003
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction

varl
2,140464
1.788192
0,B0ZE1E
1.354940
3,008038
1.241234
1,012267
1.576466
0,920714
0,128073

L0000 ] O R e G D T

var?
0,871710
1.992385
-0, 480471
1.914728
0,E43634
0.621577
-}, 695762
2,001228
2,113301
1.348074

vars
1,634352
2,423125
4,299315
2,849412
1575176
2.915842
4,492476
£.0BES41
2, 783376
2,360470
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction

varl
2,140464
1.788192
0,B0ZE1E
1.354940
3,008038
1.241234
1,012267
1.576466
0,920714
0,128073
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var?
0,871710
1.992385
-0, 480471
1.914728
0,E43634
0.621577
-}, 695762
2,001228
2,113301
1.348074

vars
1,634352
2,423125
4,299315
2,849412
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2.915842
4,492476
£.0BES41
2, 783376
2,360470
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction

@ Always look at the network output
#Plot the probabilities:

n_bins = 100

plt.

plt

plt

plt.
plt.
plt.
.show ()

plt

.hist(

hist(
data_df [data_df [’label’]==0] [’probability1’],
bins=n_bins,
facecolor="k’,
label=’0Output 1 for Species 17,
alpha=0.5,
log=True)

“hist(

data_df [data_df [’label’]==1] [’probability2’],
)

data_df [data_df [’label’]==2] [’probability3°’],
)
xlabel (’Network Output’)
ylabel (’Entries [a.u.]’)
legend ()
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction
@ Always look at the network output

B Output 1 for Species 1
[ Output 2 for Species 2
4

107 Output 3 for Species 3

Entries [a.u.]

0.0 0.2 0.4 0.6 0.8 1.0
Network Output
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction
@ Always look at the network output

Bmm Output 1 for Species 1 This is not good in general

,| ™= Output2forSpecies 2| _ classifier has can not make a
10%1 m=m output 3 for Species 3 ¢lear determination

Entries [a.u.]

0.0 0.2 0.4 0.6 0.8 1.0
Network Output
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction
@ Always look at the network output
the shape of output2(species 2)

already indicates that the classifier
has trouble in identifying species Z properly

B Output 1 for Species 1
[ Output 2 for Species 2
4

107 Output 3 for Species 3

103

Entries [a.u.]

102

0.0 0.2 0.4 0.6 0.8 1.0
Network Output
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Accessing the MLP Output and Predictions

@ Scikit allows to access both, the labeled and raw prediction
@ Always look at the network output

@ Note: The network / classifier output is often called "probabilty”, which is
technically not correct

= Depending on how the algorithm has been trained, the output is not well defined
between 0 and 1

= Need to calibrate the output: On Calibration of Modern Neural Networks
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Monitoring the Classifier Performance

true distributions

Variable 2 Variable 2

Variable 2
Variable 3

2 1
Variable 1 i Variable 2

@ First thing to do: Look at the features before / after classification

@ Top row: true species 1 / Center row: true species2 / Bottom row: true species3
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Monitoring the Classifier Performance

reconstructed distributions

Variable 2
Variable 3
Variable 3

Variable 2
Variable 3
Variable 3

w

Variable 2
Variable 3
Variable 3

1 1 1
Variable 1 Variable 1 Variable 2

@ First thing to do: Look at the features before / after classification

@ Top row: identified species 1 / Center row: identified species2 / Bottom row:
identified species3
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The ROC-Curve

@ ROC - Receiving Operator Characteristics
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The ROC-Curve

@ ROC - Receiving Operator Characteristics

@ This is one of the most important tools to monitor the performance of your classifier

#Events identified as species i

False Positive Rate (species i) 2)

#Events which do NOT contain species i

Events with species i & identified as species i
True Positive Rate (species i) # 2 2

(3
#Events only contain species i 3)
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The ROC-Curve

@ ROC - Receiving Operator Characteristics

@ This is one of the most important tools to monitor the performance of your classifier

False Positive Rate (species i)

True Positive Rate (species i)

@ Access ROC-curve in scikit
from sklearn.metrics import

#Events identified as species i

(2

#Events which do NOT contain species i
#Events with species i & identified as species i

3
#Events only contain species i 3)

roc_curve

#Get the ROC-curve for each species:

fpr_si, tpr_sl, th_sl = roc_curve(
data_df[’label’].values,
data_df [’probabilityl’].values,

pos_label=0)
fpr_s2, tpr_s2, th_s2

roc_curve (

data_df[’label’] .values,
data_df [’probability2’].values,

pos_label=1)
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The ROC-Curve

@ ROC - Receiving Operator Characteristics

@ This is one of the most important tools to monitor the performance of your classifier

Events identified ies i
False Positive Rate (species i) = #Events identified as species i (2)

#Events which do NOT contain species i

. L. Events with species i & identified as species i
True Positive Rate (species i) = # P - — P (3)
#Events only contain species i

@ Access ROC-curve in scikit

@ Plot the ROC-Curve
#Plot roc-curves:
plt.plot(fpr_si,tpr_si1,’ko’,label="ROC: Species 1°)
plt.plot(fpr_s2,tpr_s2,’rd’,label="ROC: Species 2’)

plt.show()
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The ROC-Curve

@ ROC - Receiving Operator Characteristics

@ This is one of the most important tools to monitor the performance of your classifier
@ Access ROC-curve in scikit

@ Plot the ROC-Curve

1.0
0.8
2
&
v 0.6
=
F=
@
&
o 0.4
2
= )
// e ROC: Species 1
02 L + ROC: Species 2
L = ROC: Species 3
0.0 - ---- ROC: Random Classifier
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
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The ROC-Curve

@ ROC - Receiving Operator Characteristics

@ This is one of the most important tools to monitor the performance of your classifier
@ Access ROC-curve in scikit

@ Plot the ROC-Curve

optimum
1.0
0.8
2
&
0 0.6
=
.‘ﬁ
&
o 0.4
2
= ]
’,/ e ROC: Species 1
02 L + ROC: Species 2
L = ROC: Species 3
0.0 7 ---- ROC: Random Classifier
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
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The ROC-Curve

@ ROC - Receiving Operator Characteristics

@ This is one of the most important tools to monitor the performance of your classifier

@ Access ROC-curve in scikit
@ Plot the ROC-Curve

True Positive Rate

1.0

0.8

0.6

0.4

0.2

0.0

-

L

lowest performance o/r)»'rdentifying

species 2 —> consistent with previgqus

observations _.~”
.

-

e ROC: Species 1
¢+ ROC: Species 2
= ROC: Species 3
---- ROC: Random Classifier

0.2

0.4 0.6 0.8 1.0
False Positive Rate
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The ROC-Curve

@ ROC - Receiving Operator Characteristics

@ This is one of the most important tools to monitor the performance of your classifier

@ Access ROC-curve in scikit
@ Plot the ROC-Curve

1.0

0.8

0.6

0.4

True Positive Rate

0.2

0.0

.
performance of a classifier .-
that randomly guesses the species
-
.
-

e ROC: Species 1
¢+ ROC: Species 2
= ROC: Species 3
---- ROC: Random Classifier

0.0 0.2 0.4

0.6 0.8 1.0

False Positive Rate
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool

@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool

@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

@ The elements in the confusion matrix C are defined:

N—1
G = D 8(Luek i) X 6(Lorea i — ) (2)
k=0
1, if x=0,
5(x) = (3)
0 else

With Liwe / Lpred being the true / predicted label of event k and £ being the label
you are interested in

@ NOTE: The definition of the above equation depends on which axis holds the true
/ predicted label
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool

@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

@ Scikit handles the confusion matrix for you
from sklearn.metrics import plot_confusion_matrix

plot_confusion_matrix(my_mlp, #---> Your classifier
X, #---> Your features
Y, #---> Your labels
display_labels=[’Speciesl’,’Species2’,’Species3’],
values_format=’.2f",
normalize=’true’) #---> Normalize with rTespect to true-azis
plt.show()
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool

@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

@ Scikit handles the confusion matrix for you

0.8
Speciesl 0.7
0.6
& 0.5
© .
° Species2
2 0.4
=

0.3
Species3 ; 0.13 0.81 0.2
0.1

Speciesl Species2 Species3
Predicted label
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool

@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

@ Scikit handles the confusion matrix for you

Speciesl

True label

Speciesl Species2 Species3
Predicted label
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool

@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are

directly derived from this matrix
0.8
ge 0.7
0.6
0.5
0.05
0.4
03
0.81 0.2
0.1

Speciesl Species2 Species3
Predicted label

@ Scikit handles the confusion matrix for you

True label
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Summary Part |l

@ Include validation data into training of a neural network

> Avoid overfitting
> Enable generalization
@ Gaussian processors for data regression
» Sample from multidimensional Gaussian distribution via kernel function
> Provide covariance matrix
@ C(lassification with machine learning

> Data set with three species, each defined by three features
> Introduced important performance monitoring tools

i) ROC-curve

ii) Confusion matrix

> Scikit nicely provides these tools = Saves time in coding!

@ Next part:

> Introduce other machine learning algorithms
> Performance metrics
> Hyper parameter optimization
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