Introduction to Machine Learning: Part II

Prof. Sean Dobbs¹ & Daniel Lersch²

April 16, 2020

^{1 (}sdobbs@fsu.edu)

^{2 (}dlersch@jlab.org)

About this Lecture

- Part I:
 - Introduction to DataFrames
 - Basic concepts of machine learning (with focus on feedforward neural networks)
- Part II:
 - Machine learning in (physics) data analysis
 - Performance evaluation
- Part III:
 - Algorithm tuning
 - Hyper parameter optimization
- Part IV:
 - Custom neural networks with Tensorflow
 - Transition to Deep Learning

The individual contents might be subject to change

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT turn you into a machine learning specialist... NOT cover all aspects of machine learning

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms
- ... utilize the scikit-learn library

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms
- ... utilize the scikit-learn library
- ... most likely contain several errors (\rightarrow Please send a mail to dlersch@jlab.org)

Homework and Literature

• Machine learning can be learned best by simply doing it!

Homework and Literature

- Machine learning can be learned best by simply doing it!
- Homework (most likely posted on Thursday) aims to perform a simple analysis and getting familiar with machine learning

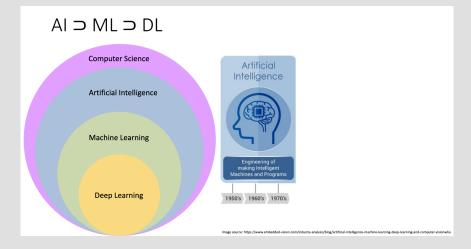
Homework and Literature

- Machine learning can be learned best by simply doing it!
- Homework (most likely posted on Thursday) aims to perform a simple analysis and getting familiar with machine learning
- Helpful literature:
 - The scikit-learn documentation
 - Talks from the deep learning for science school 2019³
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron
 - \blacktriangleright The internet is full of good (but also very bad!) literature ^4 \rightarrow browse with caution
 - The slides of the lecture are available at: http://hadron.physics.fsu.edu/~dlersch/ml_slides/

³Very good and detailed explanation of (deep) neural networks

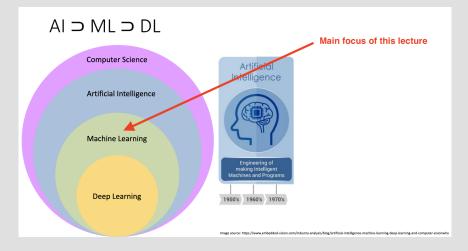
 4 Any document claiming that there is a quick way to understand machine learning without any theory / math is considered as bad

AI, ML and DL

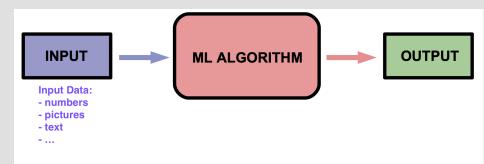


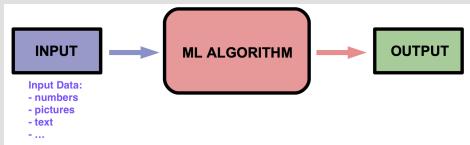
Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

AI, ML and DL

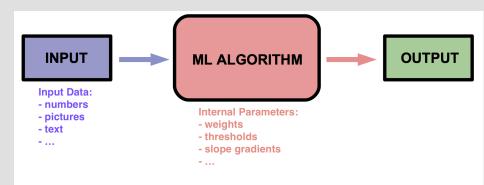


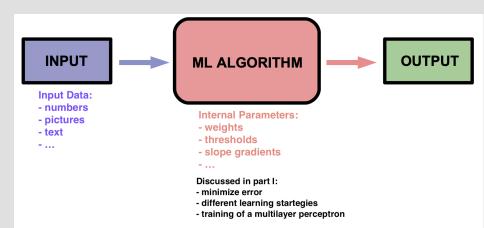
Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019



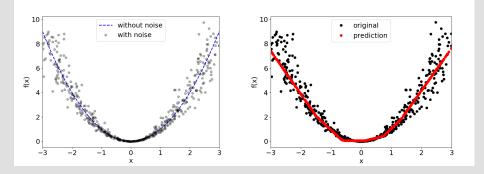


Introduced in part I: DataFrames -> handle and manipulate data



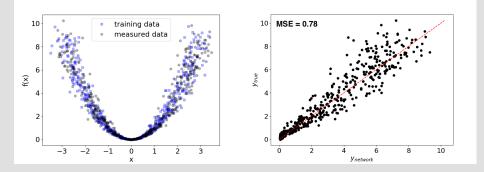


Learning a quadratic Function with Noise



- Like in part I: Try to learn a quadratic function, but you know your measured data will be noisy → implement noise in your training data
- Train again mlp, similar to the one used in part I

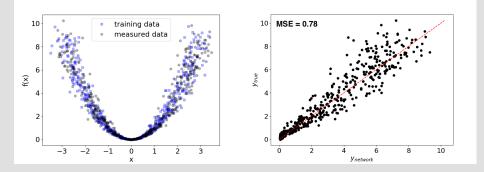
Learning a quadratic Function with Noise



- Like in part I: Try to learn a quadratic function, but you know your measured data will be noisy → implement noise in your training data
- Train again mlp, similar to the one used in part I
- Feed in measured data which is slightly different to the training data

• MSE =
$$\frac{1}{N} \sum_{i} (y_{true,i} - y_{network,i})^2$$

Learning a quadratic Function with Noise



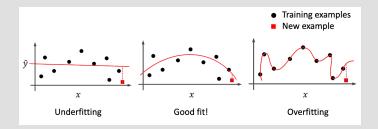
- Like in part I: Try to learn a quadratic function, but you know your measured data will be noisy → implement noise in your training data
- Train again mlp, similar to the one used in part I
- Feed in measured data which is slightly different to the training data

• MSE =
$$\frac{1}{N} \sum_{i} (y_{true,i} - y_{network,i})^2$$

• Not surprising, because network only reflects what it has been trained on

Computational Physics Lab

 Want to enable network to abstract / generalize on unknown data AND avoid overfitting (i.e. avoid that network reproduces features from training data only)

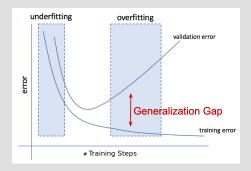


Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

- Want to enable network to abstract / generalize on unknown data AND avoid overfitting (i.e. avoid that network reproduces features from training data only)
- Validation Data: Part of training data that is NOT used to update internal parameters⁵, but used to determine when training is complete

⁵This data is "unseen" by the algorithm during the training stage

- Want to enable network to abstract / generalize on unknown data AND avoid overfitting (i.e. avoid that network reproduces features from training data only)
- Validation Data: Part of training data that is NOT used to update internal parameters⁵, but used to determine when training is complete



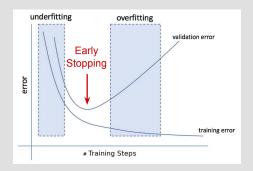
Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

⁵This data is "unseen" by the algorithm during the training stage

Daniel Lersch (FSU)

Computational Physics Lab

- Want to enable network to abstract / generalize on unknown data AND avoid overfitting (i.e. avoid that network reproduces features from training data only)
- Validation Data: Part of training data that is NOT used to update internal parameters⁵, but used to determine when training is complete



Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

⁵This data is "unseen" by the algorithm during the training stage

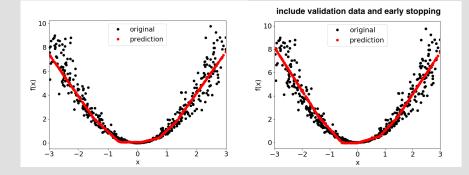
Daniel Lersch (FSU)

Computational Physics Lab

Implementing Early Stopping and Validation Data in the scikit MLPRegressor

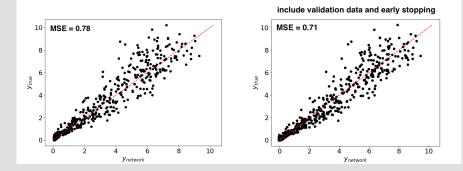
```
my_mlp = MLPRegressor(
    hidden_layer_sizes=(10),
    activation='relu',
    solver='sgd',
    warm_start=True,
    max_iter = 1000,
    shuffle=True,
    tol=1e-6,
    validation_fraction=0.5, #---> Define the percentage of
    #training data that shall be kept aside
    early_stopping=True, #---> Enable early stopping
    random_state=0,
    learning_rate_init = 0.05
)
```

Learning a quadratic Function with Noise Include Validation Data



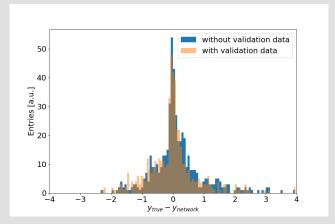
- Left: No validation data used
- Right: Validation data + early stopping

Learning a quadratic Function with Noise Include Validation Data



- Left: No validation data used
- Right: Validation data + early stopping
- $\sim 9\%$ difference in performance

Learning a quadratic Function with Noise Include Validation Data

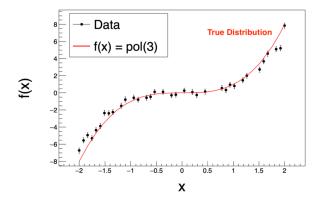


- Left: No validation data used
- Right: Validation data + early stopping
- $\sim 9\%$ difference in performance
- Note: Probably not the best example to advertise validation data

Daniel Lersch (FSU)

Computational Physics Lab

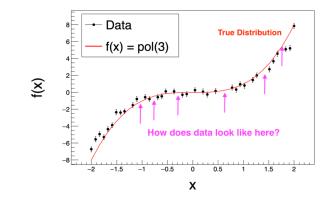
Gaussian Processors: Introduction



Goal(s):

- i) Describe data shown above, without knowledge of the true distribution
- ii) Identify missing points
- iii) Make a prediction/extrapolation?
- Put at least assumptions/information into fit as possible
- \Rightarrow Use Gaussian processors

Gaussian Processors: Introduction



Goal(s):

- i) Describe data shown above, without knowledge of the true distribution
- ii) Identify missing points
- iii) Make a prediction/extrapolation?
- Put at least assumptions/information into fit as possible
- ⇒ Use Gaussian processors

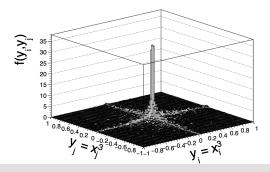
Gaussian Processors: General Idea

• Two points y_i and y_j with correlation: ρ_{ij}

• Assumption: y_i, y_j can be sampled from:

 $f(y_i, y_j) = \frac{1}{2\pi \sqrt{1 - \rho_{ij}^2}} \times \exp\left\{ - \frac{1}{2(1 - \rho_{ij}^2)} [y_i^2 - 2\rho_{ij}y_iy_j + y_j^2] \right\}, \text{ with mean at } 0$

- Generate data set: $\mathbf{y} = \{y_1, y_2, ..., y_n\}$, if ρ_{ij} is known: $f(\mathbf{y}) = \frac{1}{2\pi |\rho|} \times \exp[-0.5\mathbf{y}^T \rho^{-1}\mathbf{y}]$
- Idea: Parameterize ρ and fit above equation to your data

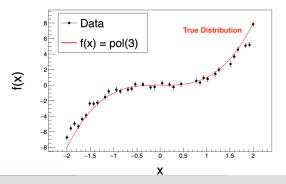


Gaussian Processors: Kernel Functions

- One of the most common functions: Exponential Squared: $k(x_i, x_j) = \sum_m \left[\sigma_{f,m}^2 \exp\left\{-\frac{1}{2} \frac{(x_i - x_j)^2}{\Delta_m^2}\right\}\right] + \sigma_n^2 \delta(x_i, x_j)$
- Features of this function:

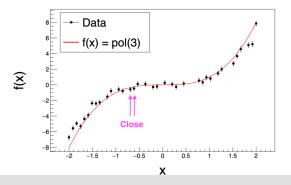
$$\lim_{|x_i - x_j| \to 0} k(x_i, x_j) \to \sum_m [\sigma_{f,m}^2] + \sigma_n^2$$

$$\lim_{|x_i - x_j| \to \infty} k(x_i, x_j) \to 0$$



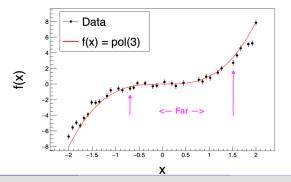
Gaussian Processors: Kernel Functions

- One of the most common functions: Exponential Squared: $k(x_i, x_j) = \sum_m \left[\sigma_{f,m}^2 \exp\left\{-\frac{1}{2} \frac{(x_i - x_j)^2}{\Delta_m^2}\right\}\right] + \sigma_n^2 \delta(x_i, x_j)$
- Features of this function:
 - $\lim_{|x_i x_j| \to 0} k(x_i, x_j) \to \sum_m [\sigma_{f,m}^2] + \sigma_n^2 \to \text{Close points share similar features}$ $\lim_{|x_i x_j| \to \infty} k(x_i, x_j) \to 0$



Gaussian Processors: Kernel Functions

- One of the most common functions: Exponential Squared: $k(x_i, x_j) = \sum_m \left[\sigma_{f,m}^2 \exp\left\{-\frac{1}{2} \frac{(x_i - x_j)^2}{\Delta_m^2}\right\}\right] + \sigma_n^2 \delta(x_i, x_j)$
- Features of this function:
 - $\lim_{|x_i-x_j|\to 0} k(x_i,x_j) \to \sum_m [\sigma_{f,m}^2] + \sigma_n^2$
 - $\lim_{|x_i-x_j|\to\infty} k(x_i,x_j) o 0$ o Distant points do not "know" each other



Gaussian Processors: K-Matrices

•
$$k(x_i, x_j) = \left[\sigma_f^2 \exp\left\{-\frac{1}{2}\frac{(x_i-x_j)^2}{\Delta^2}\right\}\right] + \sigma_n^2 \delta(x_i, x_j)$$

Matrices needed for future calculation(s):

$$\begin{split} & \mathcal{K} = \begin{pmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_n) \\ \vdots & & \vdots \\ k(x_n, x_1) & k(x_n, x_2) & \dots & k(x_n, x_n) \end{pmatrix} \\ & \mathcal{K}^* = \begin{pmatrix} k(x_1^*, x_1) & k(x_1^*, x_2) & \dots & k(x_1^*, x_n) \\ \vdots & & \vdots \\ k(x_n^*, x_1) & k(x_n^*, x_2) & \dots & k(x_n^*, x_n) \end{pmatrix} \\ & \mathcal{K}^{**} = \begin{pmatrix} k(x_1^*, x_1^*) & k(x_1^*, x_2^*) & \dots & k(x_n^*, x_n) \\ \vdots & & \vdots \\ k(x_n^*, x_1^*) & k(x_n^*, x_2^*) & \dots & k(x_n^*, x_n^*) \end{pmatrix} \end{split}$$

- x_i : x-Value from known data points: (x_i, y_i)
- x_i^* : x-Value from unknown data points: (x_i^*, y_i^*)
- K-matrices pick up the correlations

Gaussian Processors: Parameter Estimation

1.) Using Bayes theorem, minimize:

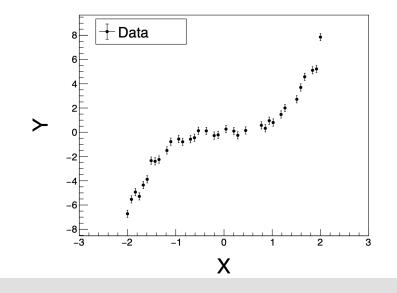
 $-\log[P(\mathbf{x}, \mathbf{y}, \sigma_f, \Delta, \sigma_n)] \propto \mathbf{y}^T \mathbf{K}^{-1} \mathbf{y} + \log |\mathbf{K}| \text{ with respect to } \sigma_f, \Delta, \sigma_n$

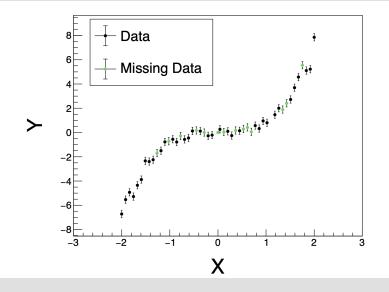
2.) Use parameters $\sigma_f, \Delta, \sigma_n$ found during minimization and calculate

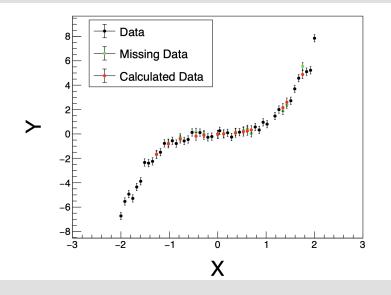
 $\mathbf{y}^* = \mathbf{K}^* \mathbf{K}^{-1} \mathbf{y}$ $\mathbf{\Delta} \mathbf{y}^* = \mathbf{K}^{**} - \mathbf{K}^* \mathbf{K}^{-1} \mathbf{K}^{*T}$

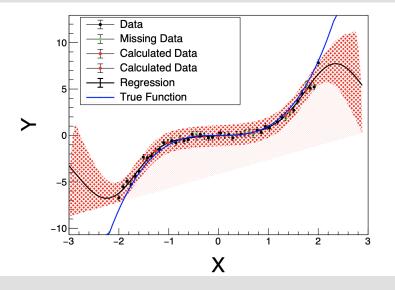
Note:

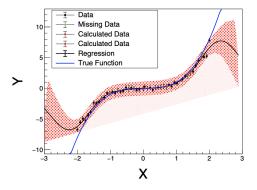
The expressions for: $y^T K^{-1} y + \log |K|$, y^* and Δy^* correspond to a multidimensional Gaussian distribution





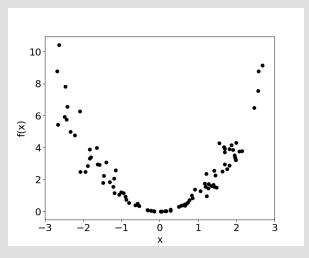






- Found Parameters: $\sigma_f = 3.15 \pm 0.07$, $\Delta = 0.69 \pm 0.05$ and $\sigma_n = 0.53 \pm 0.08$
- Δ and σ_n roughly reflect the parameters that have been used to generate the above data: $\Delta x = 0.8$ and $\Delta y_{stat} \approx 0.3$
- Prediction/Extrapolation of the data outside the data limits fails, but:
 - One can easily modify the kernel-function
 - ▶ Leave points out during minimization ⇒ Access to systematic uncertainties

Another noisy x^2 -Function



• Given are a few noisy data points which seem to follow a x^2 -distribution

• Would like to find the underlying distribution + prediction uncertainty \Rightarrow Gaussian Processor

Daniel Lersch (FSU)

Computational Physics Lab

$$k(x_i, x_j) = \underbrace{\left[\exp\left\{-\frac{1}{2}\left(\frac{x_i - x_j}{\text{length_scale}}\right)^2\right\}\right]}_{\text{RBF}} + \alpha(x_i, x_j)\delta(x_i, x_j) + \underbrace{\frac{\text{noise_level} \cdot \delta(x_i, x_j)}{\text{WhiteKernel}}}_{\text{WhiteKernel}}$$

$$k(x_i, x_j) = \underbrace{\left[\exp\left\{-\frac{1}{2}\left(\frac{x_i - x_j}{\text{length_scale}}\right)^2\right\}\right]}_{\text{RBF}} + \alpha(x_i, x_j)\delta(x_i, x_j) + \underbrace{\text{noise_level} \cdot \delta(x_i, x_j)}_{\text{WhiteKernel}}$$

)

$$k(x_i, x_j) = \underbrace{\left[\exp\left\{-\frac{1}{2}\left(\frac{x_i - x_j}{\text{length_scale}}\right)^2\right\}\right]}_{\text{RBF}} + \alpha(x_i, x_j)\delta(x_i, x_j) + \underbrace{\text{noise_level} \cdot \delta(x_i, x_j)}_{\text{WhiteKernel}}$$

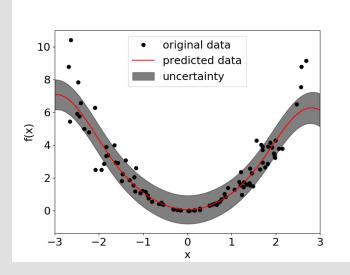
```
)
```

```
#3.) Set the parameters:
my_gp.fit(x_values,y_values)
```

$$k(x_i, x_j) = \underbrace{\left[\exp\left\{-\frac{1}{2}\left(\frac{x_i - x_j}{\text{length_scale}}\right)^2\right\}\right]}_{\text{RBF}} + \alpha(x_i, x_j)\delta(x_i, x_j) + \underbrace{\text{noise_level} \cdot \delta(x_i, x_j)}_{\text{WhiteKernel}}$$

```
#1.) Define the kernel:
#RBF: Radial Basis Function = exponential squared
kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e2))
#White kernel: Corresponds to sigma_n --> constant noise
   + WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-10, 1e+1))
#2.) Setup the processor:
my_gp = GaussianProcessRegressor(
       kernel=kernel.
       n_restarts_optimizer=10, #--> How many times to run the minimization
       alpha=0.0 #--> similar to sigma_n if constant,
       #can be set for each data point individually--> individual error
 )
 #3.) Set the parameters:
 my_gp.fit(x_values,y_values)
 #4.) Get the predictions:
 predictions, covariances = my_gp.predict(x_values,return_cov=True)
```

Applying the Gaussian Processor



- Points far outside not matched properly
- $\bullet\,$ Could improve results by including a datapoint dependent $\alpha\,$

Daniel Lersch (FSU)

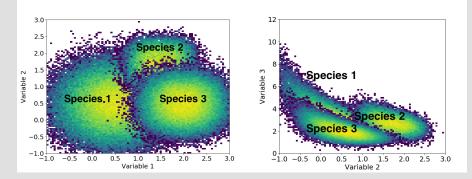
Computational Physics Lab

Gaussian Processors: Summary

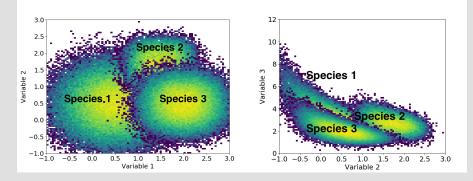
- Based on sampling from a multidimensional Gaussian distribution
- Use Kernel-Function to handle correlation between data points
- Determine covariance matrix from fit
- Also available in scikit: GaussianProcessClassifier
- Some hyper parameter optimizer make use of Gaussian processors

• Most prominent application for machine learning algorithms

- Most prominent application for machine learning algorithms
- Consider three species (e.g. particles, customer groups, car engine states...)

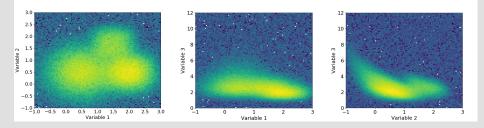


- Most prominent application for machine learning algorithms
- Consider three species (e.g. particles, customer groups, car engine states...)
- Each species is defined by a set of three variables / features

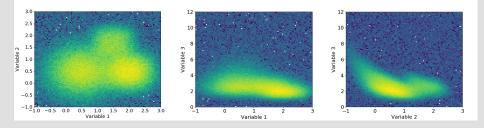


Daniel Lersch (FSU)

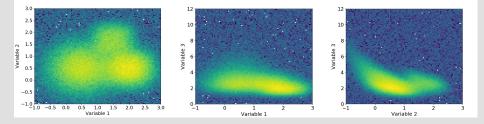
- Most prominent application for machine learning algorithms
- Consider three species (e.g. particles, customer groups, car engine states...)
- Each species is defined by a set of three variables / features
- All species are measured / represented within one data set
 - Relative abundance between species is unequal (e.g. N(species 1) > N(species 2))
 - Noise contributions



- Most prominent application for machine learning algorithms
- Consider three species (e.g. particles, customer groups, car engine states...)
- Each species is defined by a set of three variables / features
- All species are measured / represented within one data set
 - Relative abundance between species is unequal (e.g. N(species 1) > N(species 2))
 - Noise contributions
- Goal: Filter each species according to its features



- Most prominent application for machine learning algorithms
- Consider three species (e.g. particles, customer groups, car engine states...)
- Each species is defined by a set of three variables / features
- All species are measured / represented within one data set
 - Relative abundance between species is unequal (e.g. N(species 1) > N(species 2))
 - Noise contributions
- Goal: Filter each species according to its features
- \Rightarrow Use a classification algorithm, aka classifier



Assumptions:

- a) We possess a training data set
- b) The training set is a realistic representation of the measured/"real" data we want to analyze later
- c) Each species within the training set is labeled $^6:$ species 1 \leftrightarrow 0, species 2 \leftrightarrow 1 and species 3 \leftrightarrow 2

Daniel Lersch (FSU)

 $^{^{6}\}text{We}$ want to train the classifier in such a way that it will be able to map: Features \mapsto Label

Assumptions:

- a) We possess a training data set
- b) The training set is a realistic representation of the measured/"real" data we want to analyze later
- c) Each species within the training set is labeled $^6:$ species 1 \leftrightarrow 0, species 2 \leftrightarrow 1 and species 3 \leftrightarrow 2
- First, load the data and have a look at it

```
import pandas as pd
data = '/Volumes/BunchOfStuff/classifier_testData/fsu_ml_data3.csv'
data_df = pd.read_csv(data)
```

```
print(data_df.head(10)) #---> Look at the first 10 entries:
```

Daniel Lersch (FSU)

 $^{^{6}\}text{We}$ want to train the classifier in such a way that it will be able to map: Features \mapsto Label

Assumptions:

- a) We possess a training data set
- b) The training set is a realistic representation of the measured/"real" data we want to analyze later
- c) Each species within the training set is labeled 6 : species 1 \leftrightarrow 0, species 2 \leftrightarrow 1 and species 3 \leftrightarrow 2
- First, load the data and have a look at it

	var1	var2	var3	label
0	2,140464	0,871710	1,634352	2.0
1	1,788192	1,992385	2,423125	1.0
2	0,602616	-0,480471	4.399315	0.0
3	1,354940	1,914728	2,849413	1.0
4	3,008098	0.649694	1,575176	2.0
5	1,241234	0.621577	2,915842	0.0
6	1,013267	-0,695762	4,493476	0.0
7	1,576466	2,001228	6.066541	0.0
8	0,920714	2,119301	2,783376	1.0
9	0,128073	1.348074	3,36047 <u>0</u>	0.0

⁶We want to train the classifier in such a way that it will be able to map: Features → Label Daniel Lersch (FSU) Computational Physics Lab April 16, 2

Assumptions:

- a) We possess a training data set
- b) The training set is a realistic representation of the measured/"real" data we want to analyze later
- c) Each species within the training set is labeled 6 : species 1 \leftrightarrow 0, species 2 \leftrightarrow 1 and species 3 \leftrightarrow 2
- First, load the data and have a look at it
- Second prepare the data for the classifier from sklearn.utils import shuffle

```
#Get the features / three variables for each species from the DataFrame
X = data_df[['var1', 'var2', 'var3']].values
#Get the labels / target values
Y = data_df['label'].values
#Shuffle the data
```

```
x_train, y_train = shuffle(X,Y,random_state=0)
```

 ^{6}We want to train the classifier in such a way that it will be able to map: Features \mapsto Label

Daniel Lersch (FSU)

Computational Physics Lab

```
• Prepare the MLP for training
```

from sklearn.neural_network import MLPClassifier

```
my_mlp = MLPClassifier(
    hidden_layer_sizes=(5),
    activation='tanh',
    solver='sgd',
    shuffle=True,
    validation_fraction=0.25,
    early_stopping=True,
    max_iter = 100,
    learning_rate_init=0.01,
    warm_start=True,
    tol=1e-6
```

Daniel Lersch (FSU)

)

Prepare the MLP for training

```
• Train the MLP on the given data

#Do the mapping: Features /--> Label

my_mlp.fit(x_train,y_train)
```

```
#And get the learning / validation curve:
training_curve = my_mlp.loss_curve_
validation_curve = my_mlp.validation_scores_
```

```
plt.rcParams.update({'font.size': 18})
plt.plot(training_curve,label='training data')
plt.plot(validation_curve,label='validation data')
plt.legend()
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.show()
```

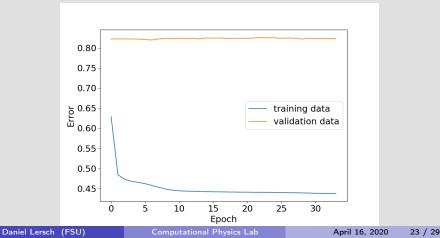
Prepare the MLP for training

```
● Train the MLP on the given data
#Do the mapping: Features /--> Label
my_mlp.fit(x_train,y_train)
#And get the learning / validation curve:
training_curve = my_mlp.loss_curve_
validation_curve = my_mlp.validation_scores_
plt.rcParams.update({'font.size': 18})
plt.plot(training_curve,label='training data')
plt.plot(validation_curve,label='validation data')
plt.legend()
plt.xlabel('Epoch')
plt.ylabel('Error')
```

• Note: This network has NOT been tuned for the upcoming analysis \rightarrow Just "best-guess" settings

plt.show()

- Prepare the MLP for training
- Train the MLP on the given data
- \bullet Note: This network has NOT been tuned for the upcoming analysis \rightarrow Just "best-guess" settings
- The error / loss-function for the mlp is given by the cross-entropy



 $\bullet\,$ We have three species to identify / label $\Rightarrow\,$ MLP has three outputs, one for each species

- $\bullet\,$ We have three species to identify / label $\Rightarrow\,$ MLP has three outputs, one for each species
- The activation function for the output layer is the softmax-function

softmax (output i) =
$$\exp(x_i)/(\sum_i \exp(x_i))$$
 (1)

- $\bullet\,$ We have three species to identify / label $\Rightarrow\,$ MLP has three outputs, one for each species
- The activation function for the output layer is the softmax-function

$$softmax (output i) = exp(x_i) / (\sum_i exp(x_i))$$
(1)

• with: $x_i = \sum_j w_{ji}o_j + b_i$, $o_j =$ output from neuron j in the last hidden layer

- $\bullet\,$ We have three species to identify / label $\Rightarrow\,$ MLP has three outputs, one for each species
- The activation function for the output layer is the softmax-function

softmax (output i) =
$$\exp(x_i)/(\sum_i \exp(x_i))$$
 (1)

- with: $x_i = \sum_j w_{ji}o_j + b_i$, $o_j =$ output from neuron j in the last hidden layer
- By definition, all outputs of the mlp are normalized between 0 and 1

- $\bullet\,$ We have three species to identify / label $\Rightarrow\,$ MLP has three outputs, one for each species
- The activation function for the output layer is the softmax-function

softmax (output i) =
$$\exp(x_i)/(\sum_i \exp(x_i))$$
 (1)

• with: $x_i = \sum_j w_{ji}o_j + b_i$, $o_j =$ output from neuron j in the last hidden layer

- By definition, all outputs of the mlp are normalized between 0 and 1
- How to transfer this to a label?

- $\bullet\,$ We have three species to identify / label $\Rightarrow\,$ MLP has three outputs, one for each species
- The activation function for the output layer is the softmax-function

softmax (output i) =
$$\exp(x_i)/(\sum_i \exp(x_i))$$
 (1)

• with: $x_i = \sum_j w_{ji}o_j + b_i$, $o_j =$ output from neuron j in the last hidden layer

- ullet By definition, all outputs of the mlp are normalized between 0 and 1
- How to transfer this to a label?
- In most cases⁷: label i = max{softmax(output 1), softmax(output 2), softmax (output3)}

- $\bullet\,$ We have three species to identify / label $\Rightarrow\,$ MLP has three outputs, one for each species
- The activation function for the output layer is the softmax-function

softmax (output i) =
$$\exp(x_i)/(\sum_i \exp(x_i))$$
 (1)

• with: $x_i = \sum_j w_{ji}o_j + b_i$, $o_j =$ output from neuron j in the last hidden layer

- $\bullet\,$ By definition, all outputs of the mlp are normalized between 0 and 1
- How to transfer this to a label?
- In most cases⁷: label i = max{softmax(output 1), softmax(output 2), softmax (output3)}
- Example: Suppose softmax(output 2) shows the largest response \rightarrow This event would be labeled with 1

⁷In some frameworks you are able to set a threshold, i.e. suppress certain outputs

Daniel Lersch (FSU)

Accessing the MLP Output and Predictions

```
• Scikit allows to access both, the labeled and raw prediction
```

```
#Get predicted labels:
predictions = my_mlp.predict(X) #---> X is the entire training data set
#Get the mlp outputs:
probabilities = my_mlp.predict_proba(X)
```

```
#Add them to the data frame:
data_df['prediction'] = predictions #--> 3D vector, because we have 3 species
data_df['probability1'] = probabilities[:,0]
data_df['probability2'] = probabilities[:,1]
data_df['probability3'] = probabilities[:,2]
#Have another look at the DataFrame:
print(data_df.head(10))
```

Accessing the MLP Output and Predictions

• Scikit allows to access both, the labeled and raw prediction

	var1	var2	var3	label	prediction	probability1	probability2	probability3
0		0.871710	1,634352	2.0	2.0	0.016688	0,006019	0,977293
1	1,788192	1,992385	2,423125	1.0	1.0	0,033223	0,947372	0.019406
2	0,602616 -	-0,480471	4,399315	0.0	0.0	0,991312	0,002963	0,005725
3	1,354940	1,914728	2,849413	1.0	1.0	0.070873	0,891176	0.037950
4	3.008098	0.649694	1,575176	2.0	2.0	0.011981	0,005719	0,982301
5	1.241234	0.621577	2,915842	0.0	0.0	0,876290	0.058686	0.065025
6	1.013267 -	-0,695762	4.493476	0.0	0.0	0,985066	0,005237	0.009697
7	1.576466	2,001228	6.066541	0.0	1.0	0,307625	0,418755	0,273619
8	0.920714	2,119301	2,783376	1.0	1.0	0,108732	0,829198	0.062070
9	0,128073	1,348074	3,360470	0.0	0.0	0.632649	0,212343	0,155009

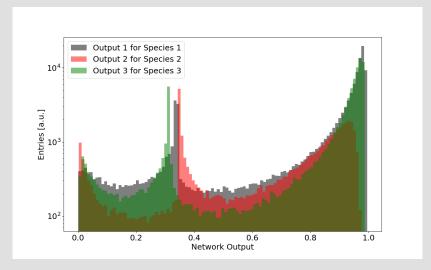
0	var1 2.140464	var2 0.871710	var3 1.634352	label 2 0	prediction 2 0	probability1 0.016688	probability2 0.006019	probability3 0.977293
1	1,788192	1,992385	2,423125	1.0	1.0	0,033223	0,947372	0.019406
2	0,602616 .	-0,480471	4,399315	0.0	0.0	0,991312	0,002963	0,005725
3	1,354940	1,914728	2,849413	1.0	1.0	0,070873	0,891176	0,037950
4	3,008098	0.649694	1,575176	2.0	2.0	0,011981	0,005719	0,982301
5	1,241234	0.621577	2,915842	0.0	0.0	0,876290	0,058686	0,065025
6	1.013267 .	-0,695762	4,493476	0.0	0.0	0,985066	0,005237	0,009697
7	1,576466	2,001228	6,066541	0.0	1.0	0,307625	0,418755	0,273619
8	0,920714	2,119301	2,783376	1.0	1.0	0,108732	0,829198	0,062070
9	0,128073	1,348074	3,360470	0.0	0.0	0,632649	0,212343	0,155009

1	var1	var2	var3	label	prediction	probability1	probability2	probability3
0	2,140464	0.871710	1.634352	2.0	2.0	0.016688	0,006019	0,977293
1	1,788192	1,992385	2,423125	1.0	1.0	0.033223	0,947372	0.019406
2	0,602616 -	0.480471	4,399315	0.0	0.0	0,991312	0,002963	0,005725
3	1,354940	1,914728	2.849413	10	1.0	0.070873	0.891176	0.037950
4	3,008098	0.649694	1,575176	2.0	2,0	0.011981	0,005719	0,982301
5	1,241234	0.621577	2,915842	0.0	0.0	0,876290	0.058686	0,065025
6	1.013267 -	0,695762	4,493476	0.0	0.0	0,985066	0.005237	0.009697
7	1,576466	2,001228	6.066541	0.0	1.0	0,307625	0.418755	0,273619
8	0,920714	2,119301	2,783376	1.0	1.0	0,108732	0,829198	0,062070
9	0,128073	1.348074	3,360470	0.0	0.0	0.632649	0,212343	0,155009

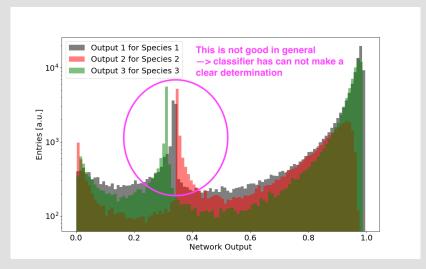
1	var1	var2	var3	label	prediction	probability1	probability2	probability3
0	2.140464	0,871710	1,634352	2.0	2.0	0,016688	0,006019	0,977293
1	1,788192	1,992385	2,423125	1.0	1.0	0.033223	0,947372	0.019406
2	0,602616	-0,480471	4,399315	0.0	0.0	0,991312	0,002963	0.005725
3	1.354940	1,914728	2,849413	1.0	1.0	0.070873	0.891176	0.037950
4	3.008098	0.649694	1,575176	2.0	2.0	0.011981	0.005719	0,982301
5	1.241234	0,621577	2,915842	0.0	0.0	0.876290	0.058686	0.065025
6	1.013267	-0,695762	4.493476	0.0	0.0	0,985066	0,005237	0,009697
7	1.576466	2,001228	6.066541	0.0	1.0	0,307625	0,418/55	0,273619
8	0.920714	2,119301	2,783376	1.0	1.0	0,108732	0.829198	0.062070
9	0,128073	1,348074	3,360470	0.0	0.0	0.632649	0,212343	0,155009

```
Always look at the network output
    #Plot the probabilities:
    n bins = 100
    plt.hist(
          data_df[data_df['label']==0]['probability1'],
          bins=n_bins,
          facecolor='k',
          label='Output 1 for Species 1',
          alpha=0.5,
          log=True)
    plt.hist(
         data_df[data_df['label']==1]['probability2'],
         ...)
    plt.hist(
         data_df[data_df['label']==2]['probability3'],
         ...)
    plt.xlabel('Network Output')
    plt.ylabel('Entries [a.u.]')
    plt.legend()
    plt.show()
```

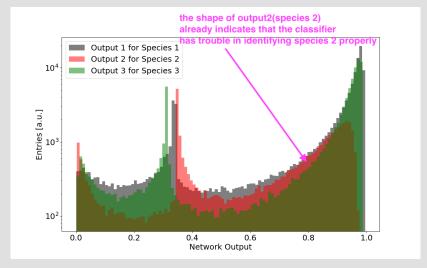
- Scikit allows to access both, the labeled and raw prediction
- Always look at the network output



- Scikit allows to access both, the labeled and raw prediction
- Always look at the network output

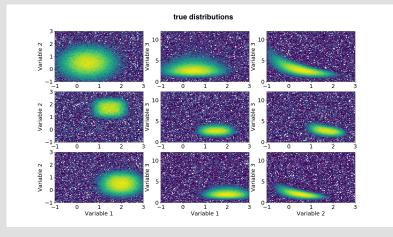


- Scikit allows to access both, the labeled and raw prediction
- Always look at the network output



- Scikit allows to access both, the labeled and raw prediction
- Always look at the network output
- Note: The network / classifier output is often called "probabilty", which is technically not correct
- $\Rightarrow\,$ Depending on how the algorithm has been trained, the output is not well defined between 0 and 1
- \Rightarrow Need to calibrate the output: On Calibration of Modern Neural Networks

Monitoring the Classifier Performance



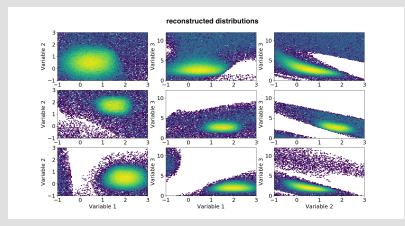
• First thing to do: Look at the features before / after classification

• Top row: true species 1 / Center row: true species2 / Bottom row: true species3

Daniel Lersch (FSU)

Computational Physics Lab

Monitoring the Classifier Performance



- First thing to do: Look at the features before / after classification
- Top row: identified species 1 / Center row: identified species2 / Bottom row: identified species3

Daniel Lersch (FSU)

Computational Physics Lab

• ROC - Receiving Operator Characteristics

- ROC Receiving Operator Characteristics
- This is one of the most important tools to monitor the performance of your classifier

False Positive Rate (species i)	_	#Events identified as species i	(2)	
Faise Fositive Rate (species I)		#Events which do NOT contain species i	(2)	
True Positive Rate (species i)	=	#Events with species i & identified as species	ed as species $i_{(3)}$	
The Fositive Nate (species I)		#Events only contain species i	-(3)	

- ROC Receiving Operator Characteristics
- This is one of the most important tools to monitor the performance of your classifier

False Positive Rate (species i)	=	#Events identified as species i	(2)	
False Fositive Rate (species I)		#Events which do NOT contain species i	(2)	
True Positive Rate (species i)	=	#Events with species i & identified as species	i(3)	
The Positive Nate (species I)		#Events only contain species i	رى	

 Access ROC-curve in scikit from sklearn.metrics import roc_curve

. . .

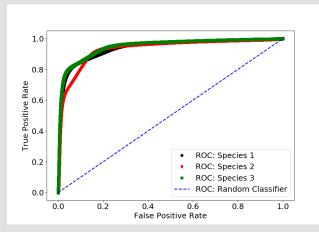
- ROC Receiving Operator Characteristics
- This is one of the most important tools to monitor the performance of your classifier

False Positive Rate (species i	=	#Events identified as species i (2)
Faise Fositive Rate (species I)		#Events which do NOT contain species i (2)
True Positive Rate (species i)	=	#Events with species i & identified as species $i_{(3)}$
The Fositive Nate (species I)		#Events only contain species i

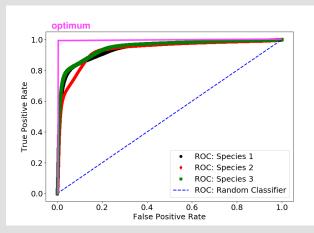
Access ROC-curve in scikit

```
• Plot the ROC-Curve
#Plot roc-curves:
plt.plot(fpr_s1,tpr_s1,'ko',label='ROC: Species 1')
plt.plot(fpr_s2,tpr_s2,'rd',label='ROC: Species 2')
...
plt.show()
```

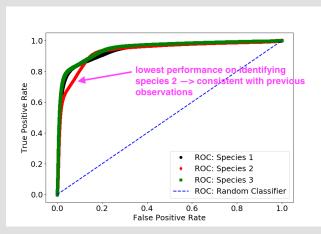
- ROC Receiving Operator Characteristics
- This is one of the most important tools to monitor the performance of your classifier
- Access ROC-curve in scikit
- Plot the ROC-Curve



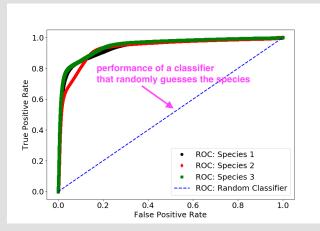
- ROC Receiving Operator Characteristics
- This is one of the most important tools to monitor the performance of your classifier
- Access ROC-curve in scikit
- Plot the ROC-Curve



- ROC Receiving Operator Characteristics
- This is one of the most important tools to monitor the performance of your classifier
- Access ROC-curve in scikit
- Plot the ROC-Curve



- ROC Receiving Operator Characteristics
- This is one of the most important tools to monitor the performance of your classifier
- Access ROC-curve in scikit
- Plot the ROC-Curve



• Right after the ROC, the second most important monitoring tool

- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix

- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix
- The elements in the confusion matrix \hat{C} are defined:

$$c_{ij} \equiv \sum_{k=0}^{N-1} \delta(L_{true,k} - \ell_i) \times \delta(L_{pred,k} - \ell_j)$$
(2)
$$\delta(x) = \begin{cases} 1, \text{ if } x = 0, \\ 0 \text{ else} \end{cases}$$
(3)

With L_{true} / L_{pred} being the true / predicted label of event k and ℓ being the label you are interested in

• NOTE: The definition of the above equation depends on which axis holds the true / predicted label

- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix
- The elements in the confusion matrix \hat{C} are defined:

$$c_{ij} \equiv \sum_{k=0}^{N-1} \delta(L_{true,k} - \ell_i) \times \delta(L_{pred,k} - \ell_j)$$
(2)
$$\delta(x) = \begin{cases} 1, \text{ if } x = 0, \\ 0 \text{ else} \end{cases}$$
(3)

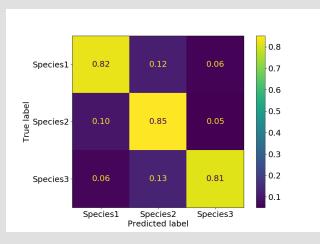
With L_{true} / L_{pred} being the true / predicted label of event k and ℓ being the label you are interested in

• NOTE: The definition of the above equation depends on which axis holds the true / predicted label

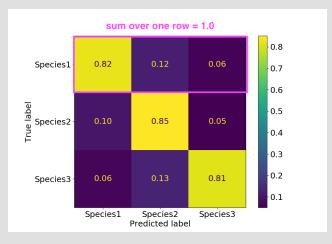
- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix
- Scikit handles the confusion matrix for you from sklearn.metrics import plot_confusion_matrix

```
plot_confusion_matrix(my_mlp, #---> Your classifier
    X, #---> Your features
    Y, #---> Your labels
    display_labels=['Species1', 'Species2', 'Species3'],
    values_format='.2f',
    normalize='true') #---> Normalize with respect to true-axis
plt.show()
```

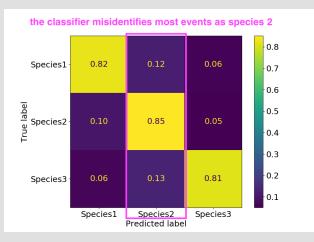
- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix
- Scikit handles the confusion matrix for you



- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix
- Scikit handles the confusion matrix for you



- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix
- Scikit handles the confusion matrix for you



Summary Part II

- Include validation data into training of a neural network
 - Avoid overfitting
 - Enable generalization
- Gaussian processors for data regression
 - Sample from multidimensional Gaussian distribution via kernel function
 - Provide covariance matrix
- Classification with machine learning
 - Data set with three species, each defined by three features
 - Introduced important performance monitoring tools
 - i) ROC-curve
 - ii) Confusion matrix
 - Scikit nicely provides these tools \Rightarrow Saves time in coding!
- Next part:
 - Introduce other machine learning algorithms
 - Performance metrics
 - Hyper parameter optimization