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About this Lecture

Part I:
I Introduction to DataFrames
I Basic concepts of machine learning

(with focus on feedforward neural networks)

Part II:
I Machine learning in (physics) data analysis
I Performance evaluation

Part III:
I Algorithm tuning
I Hyper parameter optimization

Part IV:
I Custom neural networks with Tensorflow
I Transition to Deep Learning

The individual contents might be subject to change
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This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)
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Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 2019
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I The slides of the lecture are available at:

http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 4 / 29

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/


Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 2019
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I The slides of the lecture are available at:

http://hadron.physics.fsu.edu/~dlersch/ml_slides/

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 4 / 29

https://scikit-learn.org/stable/
https://sites.google.com/lbl.gov/dl4sci2019/agenda
http://hadron.physics.fsu.edu/~dlersch/ml_slides/


Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 20193

I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by
Aurélien Géron

I The internet is full of good (but also very bad!) literature4 → browse with
caution

I The slides of the lecture are available at:
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning

without any theory / math is considered as bad
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AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 29



Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 29



Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 29



Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 29



Basic Components of Machine Learning

Daniel Lersch (FSU) Computational Physics Lab April 16, 2020 6 / 29



Learning a quadratic Function with Noise

Like in part I: Try to learn a quadratic function, but you know your measured data will be
noisy → implement noise in your training data
Train again mlp, similar to the one used in part I

Feed in measured data which is slightly different to the training data
MSE = 1

N

∑
i
(ytrue,i − ynetwork,i )

2

Not surprising, because network only reflects what it has been trained on
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Validation Data

Want to enable network to abstract / generalize on unknown data AND avoid
overfitting (i.e. avoid that network reproduces features from training data only)

Validation Data: Part of training data that is NOT used to update internal
parameters, but used to determine when training is complete

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Validation Data: Part of training data that is NOT used to update internal
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5This data is ”unseen“ by the algorithm during the training stage
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Implementing Early Stopping and Validation Data in the
scikit MLPRegressor

my_mlp = MLPRegressor(
hidden_layer_sizes=(10),
activation=’relu’,
solver=’sgd’,
warm_start=True,
max_iter = 1000,
shuffle=True,
tol=1e-6,
validation_fraction=0.5, #---> Define the percentage of
#training data that shall be kept aside
early_stopping=True, #---> Enable early stopping
random_state=0,
learning_rate_init = 0.05

)
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Learning a quadratic Function with Noise
Include Validation Data

Left: No validation data used

Right: Validation data + early stopping

∼ 9% difference in performance

Note: Probably not the best example to advertise validation data
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Gaussian Processors: Introduction
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Gaussian Processors: General Idea
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Gaussian Processors: Kernel Functions
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Gaussian Processors: K-Matrices
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Gaussian Processors: Parameter Estimation
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Gaussian Processors: Application on f (x) = x3
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Another noisy x2-Function

Given are a few noisy data points which seem to follow a x2-distribution
Would like to find the underlying distribution + prediction uncertainty
⇒ Gaussian Processor
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Setting up the Gaussian Processor

k(xi, xj) =
h
exp

n
� 1

2

⇣ xi � xj

length scale

⌘2oi

| {z }
RBF

+↵(xi, xj)�(xi, xj) + noise level · �(xi, xj)| {z }
WhiteKernel

#1.) Define the kernel:
#RBF: Radial Basis Function = exponential squared
kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e2))
#White kernel: Corresponds to sigma_n --> constant noise

+ WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-10, 1e+1))
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n_restarts_optimizer=10, #--> How many times to run the minimization
alpha=0.0 #--> similar to sigma_n if constant,
#can be set for each data point individually--> individual error

)
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+ WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-10, 1e+1))

#2.) Setup the processor:
my_gp = GaussianProcessRegressor(

kernel=kernel,
n_restarts_optimizer=10, #--> How many times to run the minimization
alpha=0.0 #--> similar to sigma_n if constant,
#can be set for each data point individually--> individual error

)

#3.) Set the parameters:
my_gp.fit(x_values,y_values)

#4.) Get the predictions:
predictions, covariances = my_gp.predict(x_values,return_cov=True)
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Applying the Gaussian Processor

Points far outside not matched properly
Could improve results by including a datapoint dependent α
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Gaussian Processors: Summary

Based on sampling from a multidimensional Gaussian distribution

Use Kernel-Function to handle correlation between data points

Determine covariance matrix from fit

Also available in scikit: GaussianProcessClassifier

Some hyper parameter optimizer make use of Gaussian processors
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Classification with Machine Learning

Most prominent application for machine learning algorithms

Consider three species (e.g. particles, customer groups, car engine states...)

Each species is defined by a set of three variables / features

All species are measured / represented within one data set
I Relative abundance between species is unequal (e.g. N(species 1) > N(species 2))
I Noise contributions

Goal: Filter each species according to its features

⇒ Use a classification algorithm, aka classifier
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The Training Data

Assumptions:

a) We possess a training data set
b) The training set is a realistic representation of the measured/”real“ data we

want to analyze later
c) Each species within the training set is labeled6: species 1 ↔ 0, species 2 ↔ 1

and species 3 ↔ 2

First, load the data and have a look at it

Second prepare the data for the classifier

6We want to train the classifier in such a way that it will be able to map:
Features 7→ Label
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want to analyze later
c) Each species within the training set is labeled6: species 1 ↔ 0, species 2 ↔ 1

and species 3 ↔ 2

First, load the data and have a look at it

Second prepare the data for the classifier
from sklearn.utils import shuffle

#Get the features / three variables for each species from the DataFrame
X = data_df[[’var1’,’var2’,’var3’]].values
#Get the labels / target values
Y = data_df[’label’].values

#Shuffle the data
x_train, y_train = shuffle(X,Y,random_state=0)

6We want to train the classifier in such a way that it will be able to map:
Features 7→ Label
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Setup and train a MLP

Prepare the MLP for training
from sklearn.neural_network import MLPClassifier

my_mlp = MLPClassifier(
hidden_layer_sizes=(5),
activation=’tanh’,
solver=’sgd’,
shuffle=True,
validation_fraction=0.25,
early_stopping=True,
max_iter = 100,
learning_rate_init=0.01,
warm_start=True,
tol=1e-6

)

Train the MLP on the given data

Note: This network has NOT been tuned for the upcoming analysis → Just
”best-guess“ settings

The error / loss-function for the mlp is given by the cross-entropy
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Setup and train a MLP

Prepare the MLP for training

Train the MLP on the given data
#Do the mapping: Features |--> Label
my_mlp.fit(x_train,y_train)

#And get the learning / validation curve:
training_curve = my_mlp.loss_curve_
validation_curve = my_mlp.validation_scores_

plt.rcParams.update({’font.size’: 18})
plt.plot(training_curve,label=’training data’)
plt.plot(validation_curve,label=’validation data’)
plt.legend()
plt.xlabel(’Epoch’)
plt.ylabel(’Error’)
plt.show()
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Setup and train a MLP
Prepare the MLP for training
Train the MLP on the given data
Note: This network has NOT been tuned for the upcoming analysis → Just
”best-guess“ settings
The error / loss-function for the mlp is given by the cross-entropy
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Inspecting / Understanding the Network Output

We have three species to identify / label ⇒ MLP has three outputs, one for each
species

The activation function for the output layer is the softmax-function

softmax (output i) = exp(xi )/(
∑
i

exp(xi )) (1)

with: xi =
∑
j

wjioj + bi , oj = output from neuron j in the last hidden layer

By definition, all outputs of the mlp are normalized between 0 and 1

How to transfer this to a label?

In most cases7:
label i = max{softmax(output 1), softmax(output 2), softmax (output3)}
Example: Suppose softmax(output 2) shows the largest response → This event
would be labeled with 1

7In some frameworks you are able to set a threshold, i.e. suppress certain outputs
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wjioj + bi , oj = output from neuron j in the last hidden layer

By definition, all outputs of the mlp are normalized between 0 and 1

How to transfer this to a label?

In most cases7:
label i = max{softmax(output 1), softmax(output 2), softmax (output3)}
Example: Suppose softmax(output 2) shows the largest response → This event
would be labeled with 1

7In some frameworks you are able to set a threshold, i.e. suppress certain outputs
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Accessing the MLP Output and Predictions

Scikit allows to access both, the labeled and raw prediction
#Get predicted labels:

predictions = my_mlp.predict(X) #---> X is the entire training data set
#Get the mlp outputs:
probabilities = my_mlp.predict_proba(X)

#Add them to the data frame:
data_df[’prediction’] = predictions #--> 3D vector, because we have 3 species
data_df[’probability1’] = probabilities[:,0]
data_df[’probability2’] = probabilities[:,1]
data_df[’probability3’] = probabilities[:,2]
#Have another look at the DataFrame:
print(data_df.head(10))

Always look at the network output

Note: The network / classifier output is often called ”probabilty“, which is
technically not correct

⇒ Depending on how the algorithm has been trained, the output is not well defined
between 0 and 1

⇒ Need to calibrate the output: On Calibration of Modern Neural Networks
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Accessing the MLP Output and Predictions
Scikit allows to access both, the labeled and raw prediction
Always look at the network output
#Plot the probabilities:
n_bins = 100
plt.hist(

data_df[data_df[’label’]==0][’probability1’],
bins=n_bins,
facecolor=’k’,
label=’Output 1 for Species 1’,
alpha=0.5,
log=True)

plt.hist(
data_df[data_df[’label’]==1][’probability2’],
...)

plt.hist(
data_df[data_df[’label’]==2][’probability3’],
...)

plt.xlabel(’Network Output’)
plt.ylabel(’Entries [a.u.]’)
plt.legend()
plt.show()

Note: The network / classifier output is often called ”probabilty“, which is
technically not correct

⇒ Depending on how the algorithm has been trained, the output is not well defined
between 0 and 1

⇒ Need to calibrate the output: On Calibration of Modern Neural Networks
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Monitoring the Classifier Performance

First thing to do: Look at the features before / after classification

Top row: true species 1 / Center row: true species2 / Bottom row: true species3
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Monitoring the Classifier Performance

First thing to do: Look at the features before / after classification

Top row: identified species 1 / Center row: identified species2 / Bottom row:
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The ROC-Curve

ROC - Receiving Operator Characteristics

This is one of the most important tools to monitor the performance of your classifier

Access ROC-curve in scikit

Plot the ROC-Curve
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False Positive Rate (species i) =
#Events identified as species i

#Events which do NOT contain species i
(2)

True Positive Rate (species i) =
#Events with species i & identified as species i

#Events only contain species i
(3)
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The ROC-Curve
ROC - Receiving Operator Characteristics
This is one of the most important tools to monitor the performance of your classifier

False Positive Rate (species i) =
#Events identified as species i

#Events which do NOT contain species i
(2)

True Positive Rate (species i) =
#Events with species i & identified as species i

#Events only contain species i
(3)

Access ROC-curve in scikit
from sklearn.metrics import roc_curve

#Get the ROC-curve for each species:
fpr_s1, tpr_s1, th_s1 = roc_curve(

data_df[’label’].values,
data_df[’probability1’].values,
pos_label=0)

fpr_s2, tpr_s2, th_s2 = roc_curve(
data_df[’label’].values,
data_df[’probability2’].values,
pos_label=1)

...

Plot the ROC-Curve
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The ROC-Curve

ROC - Receiving Operator Characteristics

This is one of the most important tools to monitor the performance of your classifier

False Positive Rate (species i) =
#Events identified as species i

#Events which do NOT contain species i
(2)

True Positive Rate (species i) =
#Events with species i & identified as species i

#Events only contain species i
(3)

Access ROC-curve in scikit

Plot the ROC-Curve
#Plot roc-curves:
plt.plot(fpr_s1,tpr_s1,’ko’,label=’ROC: Species 1’)
plt.plot(fpr_s2,tpr_s2,’rd’,label=’ROC: Species 2’)
...
plt.show()
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The Confusion Matrix

Right after the ROC, the second most important monitoring tool

Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

Scikit handles the confusion matrix for you
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The Confusion Matrix

Right after the ROC, the second most important monitoring tool

Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

The elements in the confusion matrix Ĉ are defined:

cij ≡
N−1∑
k=0

δ(Ltrue,k − `i )× δ(Lpred,k − `j) (2)

δ(x) =

{
1, if x = 0,
0 else

(3)

With Ltrue / Lpred being the true / predicted label of event k and ` being the label
you are interested in

NOTE: The definition of the above equation depends on which axis holds the true
/ predicted label

Scikit handles the confusion matrix for you
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The Confusion Matrix

Right after the ROC, the second most important monitoring tool

Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

Scikit handles the confusion matrix for you
from sklearn.metrics import plot_confusion_matrix

plot_confusion_matrix(my_mlp, #---> Your classifier
X, #---> Your features
Y, #---> Your labels
display_labels=[’Species1’,’Species2’,’Species3’],
values_format=’.2f’,
normalize=’true’) #---> Normalize with respect to true-axis

plt.show()
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Summary Part II

Include validation data into training of a neural network
I Avoid overfitting
I Enable generalization

Gaussian processors for data regression
I Sample from multidimensional Gaussian distribution via kernel function
I Provide covariance matrix

Classification with machine learning
I Data set with three species, each defined by three features
I Introduced important performance monitoring tools
i) ROC-curve
ii) Confusion matrix
I Scikit nicely provides these tools ⇒ Saves time in coding!

Next part:
I Introduce other machine learning algorithms
I Performance metrics
I Hyper parameter optimization
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