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About this Lecture

Part I:
I Introduction to DataFrames
I Basic concepts of machine learning

(with focus on feedforward neural networks)

Part II:
I Machine learning in (physics) data analysis
I Performance evaluation

Part III:
I Algorithm tuning
I Hyper parameter optimization

Part IV:
I Custom neural networks with Tensorflow
I Transition to Deep Learning

The individual contents might be subject to change

Daniel Lersch (FSU) Computational Physics Lab April 23, 2020 2 / 25



This Lecture will...

... NOT turn you into a machine learning specialist

... NOT cover all aspects of machine learning

... give a (very) brief overview only (i.e. further reading is definitely required)

... introduce a few machine learning algorithms

... utilize the scikit-learn library

... most likely contain several errors (→ Please send a mail to dlersch@jlab.org)
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Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 2019
I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by

Aurélien Géron
I The internet is full of good (but also very bad!) literature → browse with

caution
I The slides of the lecture are available at:

http://hadron.physics.fsu.edu/~dlersch/ml_slides/
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Homework and Literature

Machine learning can be learned best by simply doing it!

Homework (most likely posted on Thursday) aims to perform a simple analysis and
getting familiar with machine learning

Helpful literature:
I The scikit-learn documentation
I Talks from the deep learning for science school 20193

I ”Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow“, by
Aurélien Géron

I The internet is full of good (but also very bad!) literature4 → browse with
caution

I The slides of the lecture are available at:
http://hadron.physics.fsu.edu/~dlersch/ml_slides/

3Very good and detailed explanation of (deep) neural networks
4Any document claiming that there is a quick way to understand machine learning

without any theory / math is considered as bad
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AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Basic Components of Machine Learning
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Classification with Machine Learning II

In Part II: Discussed in detail a classification analysis, using a MLP

But sometimes a MLP is not the best choice for the underlying problem / data

Introduce X more classification algorithms which are an alternative to MLPs
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Random Forest Classifier: A very brief Introduction

As the name might suggest: A random forest is composed of several decision trees

Classifier ensemble↔ Collection of different classifier (all of same type in this case)

The thresholds in each tree are adjusted with respect to maximum separation /
purity on the corresponding (sub-) node → The splitting features are selected
randomly in random forest classifier

In a random forest, each tree is trained on a individual data set, generated5 from
the provided training data ⇒ allows for parallelization during training

The detailed implementation of a random forest will not be discussed here ↔
Already done in the homework

5e.g. via bootstrapping
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(Linear) Support Vector Machine - (Linear) SVM

Data is represented as n-dimensional vectors (n ≡ feature dimension)

Goal of the SVM: Find a hyperplane that separates the data best (according to the
provided labels)

Data points closest (dashed lines) to separation hyperplane (red solid line) → support
vectors (they ”support“ the decision)

Depending on whether then data is linearly separable or not, one has to allow margins

If data is highly non-linear, one might have to include a kernel → increase feature
dimensionality

Linear SVM → Assume linearly separable data, no specific kernel needed
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Include Linear SVM in Analysis

Setup linear SVM in scikit
from sklearn.svm import LinearSVC

my_linsvm = LinearSVC(
max_iter = 1000, #-->Set the max. number of iterations
C=1.0, #--> Steer performance, large / low margin
tol=1e-6

)

Fit the data and obtain predicted labels

Check performance

Compare performance with other algorithms

Linear SVM is not best choice for classification → indicates that data might not
be linearly separable → include kernel

Is there another way to compare classifier (performances) → Evaluation metrics
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Evaluation Metrics

Introduced the ROC-curve and confusion matrix as performance monitoring tools

It can be sometimes helpful to summarize the performance within one single
number

Already introduced:

i) True Positive Rate ↔ How many signal events are identified correctly?
ii) False Positive Rate ↔ How many background events are wrongly identified as

signal?
I Ideally, those quantities are universal, i.e. independent of the relative abundance

between signal / background events → They purely depend on the underlying
algorithm

There are many other metrics that can be directly derived from i) and ii)

Scikit provides a huge metrics library
https://scikit-learn.org/stable/modules/classes.html

On the following slides: introduce a few of the most common metrics
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The Purity

A common definition of the purity with respect to a species i is:

Purity i =
#Events with species i & identified as species i

#Events identified as species i
(1)

Purity describes ”cleanliness“ of data set after classification

Using the basic definitions of true positive rate and false positive rate, one might
rewrite the equation above to:

Purity i =
TPR(i)

TPR(i) +
(

1−R(i)
R(i)

)
· FPR(i)

(2)

with: TPR(i) / FPR(i) being the true / false positive rate for species i and:

R(i) =
∑
i

#Events with species i
#Events , the relative abundance of species i within the given

data set
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Using the basic definitions of true positive rate and false positive rate, one might
rewrite the equation above to:

Purity i =
TPR(i)

TPR(i) +
(

1−R(i)
R(i)

)
· FPR(i)

(2)

with: TPR(i) / FPR(i) being the true / false positive rate for species i and:

R(i) =
∑
i

#Events with species i
#Events , the relative abundance of species i within the given

data set
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The Purity: Example

Lets take a look at the data set we have analyzed in this lecture:

Species 3 covers about 36% of the entire data

In part II we trained a mlp classifier, from its ROC-curve we can extract for example:

TPR(species 3) ≈ 0.92 and FPR(species 3) ≈ 0.2

Using the equation from the previous slide yields:

Purity(sepcies 3) = TPR(3) / (TPR(3) + FPR(3) · [1-R(3)]/R(3))
= 0.92 / (0.92 + [1-0.36]/0.36 · 0.2) ≈ 72%

However, one has to be careful when using the purity, because it depends on the relative
abundances, summarized in R(i)
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The F1-Score

Deduced from F-measure

The F1-Score basically folds in the true positive rate (or efficiency) and the purity

F1-Score (species i) = 2 · TPR(i) · Purity(i)
TPR(i)+ Purity(i)

(3)

By definition, the F1-Score also depends on the relative abundances R(i)
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The Accuracy

The accuracy is given by:

Accuracy =
1

#Events

#Species∑
i

#Events with species i & identified as i (4)

=
1

#Events

#Species∑
i

TPR(i) · N(i) (5)

=

#Species∑
i

TPR(i) · R(i) (6)

Or: Accuracy ∝ Tr(confusion matrix)

Again, the relative abundance is folded in

The accuracy is less reliable on highly imbalanced data, i.e. R(j) >> R(i)
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Accuracy for the MLP

Look again at the MLP from lecture part II

The unnormalized confusion matrix is:

The trace of this matrix is: TR = 102,503 + 33,344 + 74,599 = 210,446

The total number of events in the given data set is: #Events = 255,000

Using Eq. 4 from slide 14 yields: Accuracy = TR / #Events ≈ 82%
→ consistent with the value reported by scikit
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Accuracy for the Linear SVM

Now look at linear SVM with a normalized confusion matrix

In this case we need to compute the weighted trace (Eq. 6 on slide 14)

The relative abundances are: R(1) = 0.46, R(2) = 0.18 and R(3) = 0.36

Which leads to the Accuracy = 0.46·0.86 + 0.18·0.42 + 0.36·0.83 ≈ 77%

Note that contribution for species 2 is suppressed due to R(2)
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The Matthews Correlation Coefficient (MCC)

Like the accuracy, the MCC can be computed from entries within the
(unnormalized) confusion matrix:8

MCC =

∑
k

∑
l

∑
m

(CkkClm − CklCmk)√∑
k

(
∑
l

Ckl)(
∑
k′ 6=k

∑
l′
Ck′ l′) ·

√∑
k

(
∑
l

Clk)(
∑
k′ 6=k

∑
l′
Ck′ l′)

(7)

In a very simplified picture, the MCC combines the true positive rate, false positive
rate and purity9

The MCC is a common / preferable choice for imbalanced data

8Formula taken from wikipedia
9This is exact true for binary classification
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Example

Compare performance metrics of mlp and linear svm on the given data set

Model F1-Score Accuracy MCC

MLP 0.8 0.82 0.72

Linear SVM 0.71 0.77 0.62

Note the relative difference between the individual accuracy values / mcc values

So, which metric to use?

Well, it depends...

... on the data set you are looking at
(imbalanced, balanced, specifically looking at one species,...)

... on which information you would like to retrieve
(e.g. care more about purity, or efficiency, or overall classification
performance?)
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Hyper Parameter Optimization (HPO)

Hyper parameters: Parameters that determine the architecture of your model and
its performance during / after training

Examples:

Main goal of HPO:

I Find the set of model parameters which minimizes the loss / error
I Fulfill given constraints (i.e. avoid overfitting or demand minimal computing time)

Manual tuning your model

I is considered to be HPO
I Painful

There are many algorithms / frameworks on the market:

I Parameter grid search: Simple, but ineffective (helpful when you know the
parameter ranges)

I Random parameter search
I Bayesian optimization: More sophisticated
I ...

No matter which method you decide to use → Always include a validation data set
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Parameter Grid Search for a MLP

Look again at the classification data (three species, defined by three features each)

Goal: Try to find the mlp parameter setting which maximizes10 the classification
performance on the given data set

Approach: Use grid search → Vary a given set of hyper parameters within
specified ranges → Test ALL possible combinations of hyper parameter settings

⇒ 4 hyper parameters with 3 settings each → 34 = 81 settings to test
→ This might take a while...

10Or minimizes the corresponding loss
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Approach: Use grid search → Vary a given set of hyper parameters within
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Hyper Parameter Settings

Activation Function linear, tanh, relu

Epochs 100, 200, 700

Learning Rate 0.005, 0.01, 0.02

Architecture (5), (10), (5,3)
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Setting up and performing the Grid Search

Split data into training and validation sets

Define metric to judge the performance of your algorithm
⇒ Accuracy, Purity, log-loss, Matthews Correlation Coefficient,...

Setup algorithm that shall be optimized

Loop over all 81 hyper parameter settings and

a) Train the mlp on the training data

b) Determine performance of mlp on validation data

Finally, pick algorithm that shows highest performance
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Setting up and performing the Grid Search
Split data into training and validation sets
from sklearn.model_selection import train_test_split

#Load the DataFrame:
data = ’/Volumes/BunchOfStuff/classifier_testData/fsu_ml_data3.csv’
data_df = pd.read_csv(data)

#Get features and labels:
X = data_df[[’var1’,’var2’,’var3’]].values
Y = data_df[’label’].values

#Divide data into training and validation sets
x_train, x_val, y_train, y_val = train_test_split(

X, #--> features
Y, #--> targets
test_size=0.25, #--> Percentage of data that is used for validation
random_state=0)

Define metric to judge the performance of your algorithm
⇒ Accuracy, Purity, log-loss, Matthews Correlation Coefficient,...
Setup algorithm that shall be optimized
Loop over all 81 hyper parameter settings and

a) Train the mlp on the training data
b) Determine performance of mlp on validation data

Finally, pick algorithm that shows highest performance
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Setting up and performing the Grid Search
Split data into training and validation sets
Define metric to judge the performance of your algorithm
⇒ Accuracy, Purity, log-loss, Matthews Correlation Coefficient,...
Setup algorithm that shall be optimized
def setup_mlp(architecture,n_epochs,act_func,l_rate):

my_mlp = MLPClassifier(
hidden_layer_sizes=architecture, #--> Updated for each param. setting
activation=act_func, #--> Updated for each param. setting
solver=’sgd’,
shuffle=True,
validation_fraction=0.1, #--> part of the training data
#is used for early stopping
early_stopping=True,
max_iter = n_epochs, #--> Updated for each param. setting
learning_rate_init=l_rate, #--> Updated for each param. setting
learning_rate=’invscaling’, #--> Decreasing learning rate
#will be discussed later
warm_start=True,
tol=1e-6

)

return my_mlp
#--> In our example, this function will be called 81 times...

Loop over all 81 hyper parameter settings and
a) Train the mlp on the training data
b) Determine performance of mlp on validation data

Finally, pick algorithm that shows highest performance
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Setting up and performing the Grid Search
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Define metric to judge the performance of your algorithm
⇒ Accuracy, Purity, log-loss, Matthews Correlation Coefficient,...

Setup algorithm that shall be optimized

Loop over all 81 hyper parameter settings and

a) Train the mlp on the training data

b) Determine performance of mlp on validation data

Finally, pick algorithm that shows highest11 performance

11In some cases not the best choice
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Results of MLP Parameter Grid Search
Check performance12 vs. parameter setting
↔ Understand model behavior with respect to parameter settings / ranges

Look at performance for specific hyper parameter settings
Compare individual models
Compare ROC-curves
And ALWAYS check the model response

12Use the Matthews Correlation Coefficient (MCC) here
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Results of MLP Parameter Grid Search

Check performance12 vs. parameter setting

Look at performance for specific hyper parameter settings

Compare individual models

↔ Look for striking differences

Architecture Max. # Epochs Learning rate Act. Func. MCC

(5,3) 100 0.005 relu 0.56

(5,3) 100 0.05 tanh 0.73

Compare ROC-curves

And ALWAYS check the model response

12Use the Matthews Correlation Coefficient (MCC) here
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Summary Parameter Grid Search

Performed parameter grid search on mlp

Checked 81 different configurations → took ∼ 10min on my laptop

Found ”winning“ model with MCC = 0 .73, but response function shows weird
structures

Grid search is simple and easy to implement, but:

I Number of parameter tests =
#Hyper Params∏

hp=1
(#Settings for hp)

I (Computing) time consuming, depending on the number of searches
I No guarantee that optimal model is found within the specified limits

⇒ It might happen that you search for a long time, without finding the proper settings

Grid search is helpful, if you now your model pretty well and / or have somewhat
narrowed down the individual parameter limits ⇒ Fine tuning
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Summary Part III

Briefly discussed two more classification algorithms
I Random Forest classifier
I Linear support vector machine

Discussed performance evaluation metrics
I Purity, F1-Score, accuracy and MCC
I These are NOT all available metrics → There are many more which are

frequently used (i.e. AUC)

Hyper Parameter Optimization (HPO)
I Tune model on given data set
I Different approaches available
I Discussed simple grid search

Next part:
I A few more words on HPO
I Transition to deep learning
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