Introduction to Machine Learning: Part IV

Prof. Sean Dobbs¹ & Daniel Lersch²

April 23, 2020

^{1 (}sdobbs@fsu.edu)

² (dlersch@jlab.org)

About this Lecture

- Part I:
 - Introduction to DataFrames
 - Basic concepts of machine learning (with focus on feedforward neural networks)
- Part II:
 - Machine learning in (physics) data analysis
 - Performance evaluation
- Part III:
 - Algorithm tuning
 - Hyper parameter optimization
- Part IV:
 - Custom neural networks with Tensorflow
 - Transition to Deep Learning

The individual contents might be subject to change

This Lecture will...

... NOT turn you into a machine learning specialist

... NOT turn you into a machine learning specialist... NOT cover all aspects of machine learning

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms
- ... utilize the scikit-learn library

- ... NOT turn you into a machine learning specialist
- ... NOT cover all aspects of machine learning
- ... give a (very) brief overview only (i.e. further reading is definitely required)
- ... introduce a few machine learning algorithms
- ... utilize the scikit-learn library
- ... most likely contain several errors (\rightarrow Please send a mail to dlersch@jlab.org)

Homework and Literature

• Machine learning can be learned best by simply doing it!

Homework and Literature

- Machine learning can be learned best by simply doing it!
- Homework (most likely posted on Thursday) aims to perform a simple analysis and getting familiar with machine learning

Homework and Literature

- Machine learning can be learned best by simply doing it!
- Homework (most likely posted on Thursday) aims to perform a simple analysis and getting familiar with machine learning
- Helpful literature:
 - The scikit-learn documentation
 - Talks from the deep learning for science school 2019³
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron
 - \blacktriangleright The internet is full of good (but also very bad!) literature ^4 \rightarrow browse with caution
 - The slides of the lecture are available at: http://hadron.physics.fsu.edu/~dlersch/ml_slides/

³Very good and detailed explanation of (deep) neural networks

 4 Any document claiming that there is a quick way to understand machine learning without any theory / math is considered as bad

AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

AI, ML and DL

Slide taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

DataFrames

- structuring data
- data manipulation
- data visualization

• In part III: Introduced HPO

- In part III: Introduced HPO
- $\bullet~$ Tried grid parameter search $\rightarrow~$ fixed parameter ranges
 - Might have to try many parameter combinations
 - No guarantee that optimum is found

- In part III: Introduced HPO
- $\bullet~$ Tried grid parameter search $\rightarrow~$ fixed parameter ranges
 - Might have to try many parameter combinations
 - No guarantee that optimum is found
- (One) alternative: try a random walk search
 - Explore parameter space by random selection
 - Add selection rules, e.g. mlp shall grow in depth, rather than in width

• Found winning model (MCC = 0.73) after 50 parameter searches

- Found winning model (MCC = 0.73) after 50 parameter searches
- Performances are comparable to grid search results

- Found winning model (MCC = 0.73) after 50 parameter searches
- Performances are comparable to grid search results
- ROC curves looks slightly more reasonable

- Found winning model (MCC = 0.73) after 50 parameter searches
- Performances are comparable to grid search results
- ROC curves looks slightly more reasonable
- However, winning model ended up having 7 hidden layers \rightarrow Set the probability to grow in depth / width to 75% / 50% \rightarrow Seems to be an unreasonable setting

- Found winning model (MCC = 0.73) after 50 parameter searches
- Performances are comparable to grid search results
- ROC curves looks slightly more reasonable
- However, winning model ended up having 7 hidden layers \rightarrow Set the probability to grow in depth / width to 75% / 50% \rightarrow Seems to be an unreasonable setting
- BUT: One can easily include constraints into the random search, or simply change the initial settings

- Found winning model (MCC = 0.73) after 50 parameter searches
- Performances are comparable to grid search results
- ROC curves looks slightly more reasonable
- However, winning model ended up having 7 hidden layers \rightarrow Set the probability to grow in depth / width to 75% / 50% \rightarrow Seems to be an unreasonable setting
- BUT: One can easily include constraints into the random search, or simply change the initial settings
- This was just an example on how a HPO random search could look like \rightarrow There are many optimization algorithms, that are by far more sophisticated

- Found winning model (MCC = 0.73) after 50 parameter searches
- Performances are comparable to grid search results
- ROC curves looks slightly more reasonable
- However, winning model ended up having 7 hidden layers \rightarrow Set the probability to grow in depth / width to 75% / 50% \rightarrow Seems to be an unreasonable setting
- BUT: One can easily include constraints into the random search, or simply change the initial settings
- This was just an example on how a HPO random search could look like \rightarrow There are many optimization algorithms, that are by far more sophisticated
- For example Spearmint Bayesian Optimization

• Remember our example from the beginning

- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)

- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)

• This data might come from a measurement after some preprocessing (e.g. calibration, noise supression,...) \rightarrow Information has already been provided

- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)

 This data might come from a measurement after some preprocessing (e.g. calibration, noise supression,...) → Information has already been provided

• What happens if we leave the preprocessing step out? \rightarrow Remove one level of information
- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)
- This data might come from a measurement after some preprocessing (e.g. calibration, noise supression,...) → Information has already been provided
- What happens if we leave the preprocessing step out? \rightarrow Remove one level of information
- Look at raw data and analyze it pixel by pixel

- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)
- This data might come from a measurement after some preprocessing (e.g. calibration, noise supression,...) → Information has already been provided
- What happens if we leave the preprocessing step out? \rightarrow Remove one level of information
- Look at raw data and analyze it pixel by pixel

- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)
- This data might come from a measurement after some preprocessing (e.g. calibration, noise supression,...) → Information has already been provided
- What happens if we leave the preprocessing step out? \rightarrow Remove one level of information
- Look at raw data and analyze it pixel by pixel

- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)
- This data might come from a measurement after some preprocessing (e.g. calibration, noise supression,...) → Information has already been provided
- What happens if we leave the preprocessing step out? \rightarrow Remove one level of information
- Look at raw data and let the machine figure everything out

Picture taken from Aphex34 @ wikipedia

- Remember our example from the beginning
- We have a set of measured points and try to determine the underlying function (e.g. via mlp, Gaussian processor,..)
- This data might come from a measurement after some preprocessing (e.g. calibration, noise supression,...) → Information has already been provided
- What happens if we leave the preprocessing step out? \rightarrow Remove one level of information
- Look at raw data and let the machine figure everything out

Picture taken from Aphex34 @ wikipedia

• Many parameters ($\sim 1000 \, \mathrm{k}$) to tune!

• In a very naive picture:

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data
 - $\rightarrow\,$ The model has to do the pre-processing (e.g. figure out correlations)

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data
 - $\rightarrow\,$ The model has to do the pre-processing (e.g. figure out correlations)
 - $\rightarrow\,$ Use a neural network and add more (data processing) hidden layers

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data
 - $\rightarrow\,$ The model has to do the pre-processing (e.g. figure out correlations)
 - $\rightarrow\,$ Use a neural network and add more (data processing) hidden layers
 - \rightarrow The model becomes deep

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - \rightarrow (Raw) Data is most likely larger than pre-analyzed data
 - \rightarrow The model has to do the pre-processing (e.g. figure out correlations)
 - \rightarrow Use a neural network and add more (data processing) hidden layers
 - \rightarrow The model becomes deep

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data
 - \rightarrow The model has to do the pre-processing (e.g. figure out correlations)
 - $\rightarrow\,$ Use a neural network and add more (data processing) hidden layers
 - ightarrow The model becomes deep
- Deeper model means more parameters which leads to extensive computing time

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data
 - \rightarrow The model has to do the pre-processing (e.g. figure out correlations)
 - ightarrow Use a neural network and add more (data processing) hidden layers
 - ightarrow The model becomes deep
- Deeper model means more parameters which leads to extensive computing time
- Need sophisticated algorithms / software to handle this challenge

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data
 - $\rightarrow\,$ The model has to do the pre-processing (e.g. figure out correlations)
 - $\rightarrow\,$ Use a neural network and add more (data processing) hidden layers
 - ightarrow The model becomes deep
- Deeper model means more parameters which leads to extensive computing time
- Need sophisticated algorithms / software to handle this challenge
- Tensorflow / Keras are such tools to handle the building and training of deep network models

- In a very naive picture:
 - $\rightarrow\,$ No prior information (e.g. calibration, event selection, variable selection) is folded into the data
 - ightarrow (Raw) Data is most likely larger than pre-analyzed data
 - $\rightarrow\,$ The model has to do the pre-processing (e.g. figure out correlations)
 - ightarrow Use a neural network and add more (data processing) hidden layers
 - ightarrow The model becomes deep
- Deeper model means more parameters which leads to extensive computing time
- Need sophisticated algorithms / software to handle this challenge
- Tensorflow / Keras are such tools to handle the building and training of deep network models
- The following slides will show a simple example on how to setup a mlp in Tensorflow

 In Keras, a model is defined as a sequence of layers through which you pass the data

• In Keras, a model is defined as a sequence of layers through which you pass the data

```
import tensorflow as tf
```

mlp_model = tf.keras.Sequential()

- In Keras, a model is defined as a sequence of layers through which you pass the data
- The flexibility of Keras comes into play when setting up the individual layers

• In Keras, a model is defined as a sequence of layers through which you pass the data

```
• The flexibility of Keras comes into play when setting up the individual layers
#First hidden layer:
first_hidden_layer = tf.keras.layers.Dense(
    units=(5),
    input_shape=(3,), #---> we have three input variables
    #no need to define shape for following layers
    activation='tanh',
    kernel_initializer='glorot_normal', #--> Very important!
    bias_initializer='glorot_normal'
```

```
another_hidden_layer = tf.keras.layers.Dense(...)
```

```
final_layer = tf.keras.layers.Dense(
    units=(3), #---> We have three outputs
    activation='softmax', #---> Same function as used in scikit
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros'
)
```

- In Keras, a model is defined as a sequence of layers through which you pass the data
- The flexibility of Keras comes into play when setting up the individual layers
- Add layers to the sequence and define optimizer

- In Keras, a model is defined as a sequence of layers through which you pass the data
- The flexibility of Keras comes into play when setting up the individual layers
- Add layers to the sequence and define optimizer

```
mlp_model.add(first_hidden_layer)
mlp_model.add(another_hidden_layer)
mlp_model.add(final_layer)
```

```
#Define loss minimization technique
my_optimizer = tf.keras.optimizers.SGD(learning_rate=0.05)
```

```
#Compile the model:
mlp_model.compile(
    optimizer=my_optimizer,
    loss="categorical_crossentropy",
    metrics=['accuracy']
)
```

```
mlp_model.summary() #--> Print model setup
```

- In Keras, a model is defined as a sequence of layers through which you pass the data
- The flexibility of Keras comes into play when setting up the individual layers
- Add layers to the sequence and define optimizer

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 5)	20
dense_3 (Dense)	(None, 3)	18
Total params: 38 Trainable params: 38 Non-trainable params: ()	

- In scikit
 - Number of outputs set according to number of species
 - Translation of network response to label done internally

- In scikit
 - Number of outputs set according to number of species
 - Translation of network response to label done internally
- Need to do this manually in Keras

In scikit

- Number of outputs set according to number of species
- Translation of network response to label done internally
- Need to do this manually in Keras

```
def get_label_vec(label):
    vec = [0,0,0]
    vec[int(label)] = 1 #--> label 1 = (0,1,0), label 2 = (0,01),..
    return vec
    data_df['label_vec'] = data_df['label'].apply(
        lambda x: get_label_vec(x)
    )
```

- In scikit
 - Number of outputs set according to number of species
 - Translation of network response to label done internally
- Need to do this manually in Keras

	var1	var2	var3	label	label_vec
0	2,140464	0.871710	1,634352	2.0	[0, 0, 1]
1	1,788192	1,992385	2,423125	1.0	[0, 1, 0]
2	0,602616	-0,480471	4,399315	0.0	[1, 0, 0]
3	1,354940	1,914728	2,849413	1.0	[0, 1, 0]
4	3,008098	0.649694	1,575176	2.0	[0, 0, 1]
5	1,241234	0,621577	2,915842	0.0	[1, 0, 0]
6	1,013267	-0,695762	4,493476	0.0	[1, 0, 0]
7	1,576466	2,001228	6,066541	0.0	[1, 0, 0]
8	0,920714	2,119301	2,783376	1.0	[0, 1, 0]
9	0,128073	1,348074	3,360470	0.0	[1, 0, 0]

Training the Model

• Like in scikit, call the fit-function

Training the Model

```
Like in scikit, call the fit-function
         #Train model:
        history = mlp_model.fit(
              X, \#---> The three features
              Y. \#---> The label vectors
              epochs=100, #--> number of epochs
              batch_size=200,
              validation_split=0.25
          )
         #history summarizes the training history:
        plt.plot(history.history['loss'])
        plt.plot(history.history['val_loss'])
        plt.title('Model loss')
        plt.ylabel('Loss')
```

```
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
```

plt.show()

Training the Model

- Like in scikit, call the fit-function
- Check the training curve

Daniel Lersch (FSU)

• Like in scikit, we label the event according to the largest mlp output value

• Like in scikit, we label the event according to the largest mlp output value

```
def get_predicted_label(x):
    max_val = max(x) #---> Get the maximum output
    max_i = x.index(max_val) #--> Get the node index
    #which corresponds to the label
```

return max_i

```
data_df['predicted_label'] = ...
```

- Like in scikit, we label the event according to the largest mlp output value
- Quickly check whether we did everything properly

- Like in scikit, we label the event according to the largest mlp output value
- Quickly check whether we did everything properly

	var1	var2	var3	label	label_vec	predicted_label_vector	predicted_label
0	2,140464	0,871710	1,634352	2.0	[0, 0, 1]	[0.027873897925019264, 0.011295211501419544, 0	2
1	1,788192	1,992385	2,423125	1.0	[0, 1, 0]	[0,04109284281730652, 0,9282639622688293, 0,03,	1
2	0,602616	-0,480471	4,399315	0.0	[1, 0, 0]	[0,9697380065917969, 0,01355725061148405, 0,01	0
3	1,354940	1,914728	2.849413	1.0	[0, 1, 0]	[0.0637781098484993, 0.8770929574966431, 0.059	1
4	3,008098	0,649694	1,575176	2.0	[0, 0, 1]	[0.033749695867300034, 0.01577608287334442, 0	2
5	1,241234	0.621577	2,915842	0.0	[1, 0, 0]	[0,9168961048126221, 0,037820685654878616, 0,0,	0
6	1,013267	-0,695762	4.493476	0.0	[1, 0, 0]	[0,9510762095451355, 0,01643962785601616, 0,03,	0
7	1,576466	2,001228	6.066541	0.0	[1, 0, 0]	[0.3349720239639282, 0.3658454418182373, 0.299	1
8	0,920714	2,119301	2,783376	1.0	[0, 1, 0]	[0,09435451775789261, 0,8197078108787537, 0,08,	1
9	0,128073	1,348074	3,360470	0.0	[1, 0, 0]	[0.6537267565727234, 0.259109765291214, 0.0871	0

- Like in scikit, we label the event according to the largest mlp output value
- Quickly check whether we did everything properly

	var1	var2	var3	lahel	lahel vec	predicted label vector	predicted label
0	2,140464	0,871710	1,634352	2.0	[0, 0, 1]	[0,027873897925019264, 0,011295211501419544, 0	2
1	1,788192	1,992385	2,423125	1.0	[0, 1, 0]	[U.U4103284281730652, U.9282639622688293, U.U3	1
2	0,602616	-0,480471	4.399315	0.0	[1, 0, 0]	[0,9697380065917969, 0,01355725061148405, 0,01	0
3	1,354940	1,914728	2,849413	1.0	[0, 1, 0]	[0,0637781098484993, 0,8770929574966431, 0,059,	1
4	3,008098	0,649694	1,575176	2.0	[0, 0, 1]	[0,033749695867300034, 0,01577608287334442, 0,	2
5	1,241234	0,621577	2,915842	0.0	[1, 0, 0]	[0,9168961048126221, 0,037820685654878616, 0,0,	0
6	1,013267	-0,695762	4,493476	0.0	[1, 0, 0]	[0,9510762095451355, 0,01643962785601616, 0,03,	0
7	1,576466	2,001228	6.066541	0.0	[1, 0, 0]	[0,3349720239639282, 0,3658454418182373, 0,299,	1
8	0,920714	2,119301	2,783376	1.0	[0, 1, 0]	[0,09435451775789261, 0,8197078108787537, 0,08	1
9	0,128073	1,348074	3,360470	0.0	[1, 0, 0]	[0,6537267565727234, 0,259109765291214, 0,0871	0

- Like in scikit, we label the event according to the largest mlp output value
- Quickly check whether we did everything properly

	var1	var2	var3	label	label_vec	predicted_label_vector	predicted_label
0	2,140464	0,871710	1,634352	2.0	[0, 0, 1]	[0,027873897925019264, 0,011295211501419544, 0,	. 2
1	1,788192	1,992385	2,423125	1.0	[0, 1, 0]	[0,04109284281730652, 0,9282639622688293, 0,03	1
2	0,602616	-0,480471	4,399315	0.0	[1 0 0]	0 9697380065917969 0 01355725061148405 0 01	0
3	1,354940	1,914728	2,849413	1.0	[0, 1, 0]	[0,0637781098484993, 0,8770929574966431, 0,059	1
4	3,008098	0.649694	1,575176	2,0	[0, 0, 1]	[0,033749695867300034, 0,01577608287334442, 0,	2
5	1,241234	0,621577	2,915842	0.0	[1.0.0]	0.9168961048126221.0.037820685654878616.0.0	0
6	1,013267	-0,695762	4.493476	0.0	[1, 0, 0]	[0,9510762095451355, 0,01643962785601616, 0,03,	0
7	1,576466	2,001228	6.066541	0.0	[1, 0, 0]	[0,3349720239639282, 0,3658454418182373, 0,299	1
8	0,920714	2,119301	2,783376	1.0	[0, 1, 0]	[0,09435451775789261, 0,8197078108787537, 0,08	1
9	0,128073	1,348074	3,360470	0.0	[1, 0, 0]	[0,6537267565727234, 0,259109765291214, 0,0871	0
• Inspect usual plots: ROC, network output, confusion matrix,...

- Inspect usual plots: ROC, network output, confusion matrix,...
- And compare them to the Scikit mlp

- Inspect usual plots: ROC, network output, confusion matrix,...
- And compare them to the Scikit mlp

- Inspect usual plots: ROC, network output, confusion matrix,...
- And compare them to the Scikit mlp

- Inspect usual plots: ROC, network output, confusion matrix,...
- And compare them to the Scikit mlp

- Inspect usual plots: ROC, network output, confusion matrix,...
- And compare them to the Scikit mlp

Model	F1-Score	Accuracy	MCC
Scikit MLP	0.8	0.82	0.72
Keras MLP	0.81	0.82	0.72

- Inspect usual plots: ROC, network output, confusion matrix,...
- And compare them to the Scikit mlp

Model	F1-Score	Accuracy	MCC
Scikit MLP	0.8	0.82	0.72
Keras MLP	0.81	0.82	0.72

 $\bullet~$ Both models show similar performance $\rightarrow~$ Not surprising, as they have nearly identical settings

- Inspect usual plots: ROC, network output, confusion matrix,...
- And compare them to the Scikit mlp

Model	F1-Score	Accuracy	MCC
Scikit MLP	0.8	0.82	0.72
Keras MLP	0.81	0.82	0.72

- $\bullet~$ Both models show similar performance $\rightarrow~$ Not surprising, as they have nearly identical settings
- $\bullet\,$ It is sometimes worth to compare different frameworks on the same problem $\rightarrow\,$ Check for consistency

A few Words on Tensors

- As the name suggests, Tensorflow uses tensors which are multidimensional objects with rank and shape
- The following examples are taken from the Tensorflow web-page

Rank	Shape	Dimension number	Example	
0	0	0-D	A 0-D tensor. A scalar.	a single number
1	[D0]	1-D	A 1-D tensor with shape [5].	a 5-dim vector
2	[D0, D1]	2-D	A 2-D tensor with shape [3, 4].	a 3x4 matrix
3	[D0, D1, D2]	3-D	A 3-D tensor with shape [1, 4, 3].	a cube
n	[D0, D1, Dn-1]	n-D	A tensor with shape [D0, D1, Dn-1].	I am lost

- This allows for a high flexibility regarding data input and mathematical operations (i.e. weight multiplication in a deep dense neural net)
- BUT: You have to ensure that the shape of your data and your input layers match!!!

Deep Learning in GlueX Physics

- Use autoencoder for electron / pion identification
- Features: p, θ , dE/dx(CDC), E(BCAL) and E(FCAL)
- Number of input nodes = 5 = Number of output nodes
- $\bullet~$ Use tied weights during training \rightarrow Reduce number of trainable parameters

	ML / DL	Fit Function (e.g Gauss, pol(N),)
Parameters	weights, nodes,	mean, width, $p_i \cdot x^i$,
Hyper Parameters	learning rate, architecture, learning epochs, tolerance,	order of pol., include tails, fit iterations, tolerance,
Optimizer	Adam, SGD, L-BFGS,	χ^2 , Log-Likelihood
Data Sets	training, validation, bootstrapping	same here
Performance Evaluation	Mean squared error,	$\chi^2/{ m ndf},$
Basic question	Which model?	Which fit function?

• At its heart, using machine (deep) learning is not much different to fitting a function

- At its heart, using machine (deep) learning is not much different to fitting a function
- Machine / Deep learning algorithms are successful, because they consist of many ($\sim 100 \sim 10^9$) parameters \Rightarrow (Many) hyper parameters to tune \Rightarrow There is no free lunch

- At its heart, using machine (deep) learning is not much different to fitting a function
- Machine / Deep learning algorithms are successful, because they consist of many ($\sim 100 10^9$) parameters \Rightarrow (Many) hyper parameters to tune \Rightarrow There is no free lunch
- Provocative statement: Machine / Deep learning is: Reduction of N adjustable parameters to M << N adjustable hyper parameters

- At its heart, using machine (deep) learning is not much different to fitting a function
- Machine / Deep learning algorithms are successful, because they consist of many ($\sim 100 10^9$) parameters \Rightarrow (Many) hyper parameters to tune \Rightarrow There is no free lunch
- Provocative statement: Machine / Deep learning is: Reduction of N adjustable parameters to M << N adjustable hyper parameters
- Depending on the data set (complexity / size) \Rightarrow Training of ML / DL is far more challenging than a pol. fit

- At its heart, using machine (deep) learning is not much different to fitting a function
- Machine / Deep learning algorithms are successful, because they consist of many ($\sim 100 10^9$) parameters \Rightarrow (Many) hyper parameters to tune \Rightarrow There is no free lunch
- Provocative statement: Machine / Deep learning is: Reduction of N adjustable parameters to M << N adjustable hyper parameters
- Depending on the data set (complexity / size) \Rightarrow Training of ML / DL is far more challenging than a pol. fit
- Do not be afraid to use ML / DL

• I want to use machine learning in my analysis. Do I have to switch to DataFrames now?

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - Efficient and quick filtering of large data sets without tuning too much \rightarrow Apache Spark (not discussed in this lecture)

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit
 - $\blacktriangleright\,$ R & D on analyzing large and complex data sets, various options to customize own model \rightarrow Tensorflow

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit
 - $\blacktriangleright\,$ R & D on analyzing large and complex data sets, various options to customize own model $\rightarrow\,$ Tensorflow
 - Of course, there is some overlap between the different frameworks

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit
 - $\blacktriangleright\,$ R & D on analyzing large and complex data sets, various options to customize own model $\rightarrow\,$ Tensorflow
 - Of course, there is some overlap between the different frameworks
 - Good documentation for each of them

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit
 - $\blacktriangleright\,$ R & D on analyzing large and complex data sets, various options to customize own model $\rightarrow\,$ Tensorflow
 - Of course, there is some overlap between the different frameworks
 - Good documentation for each of them
- Which model shall I use for my analysis?

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit
 - ▶ R & D on analyzing large and complex data sets, various options to customize own model → Tensorflow
 - Of course, there is some overlap between the different frameworks
 - Good documentation for each of them
- Which model shall I use for my analysis?
 - Again, it depends on what you want to do? (classify small data set with few features vs. customized model on individual problem)

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit
 - $\blacktriangleright\,$ R & D on analyzing large and complex data sets, various options to customize own model $\rightarrow\,$ Tensorflow
 - Of course, there is some overlap between the different frameworks
 - Good documentation for each of them
- Which model shall I use for my analysis?
 - Again, it depends on what you want to do? (classify small data set with few features vs. customized model on individual problem)
 - ▶ There is no need to use a deep model with 10⁹ parameters, if a random forest classifier shows (after a careful analysis) a close to perfect performance

- I want to use machine learning in my analysis. Do I have to switch to DataFrames now?
 - No. You can, but you do not have to.
 - Use DataFrames to prepare the training data and train/evaluate your algorithm(s)
 - Once the algorithm(s) are trained you can deploy them to your (ROOT / Java / python / ...) analysis
- Which framework is the best for me? Or which is the best to start with?
 - Well, it depends on what you want to do
 - ► Efficient and quick filtering of large data sets without tuning too much → Apache Spark (not discussed in this lecture)
 - R & D on many different algorithms with flexibility on parameter tuning \rightarrow Scikit
 - $\blacktriangleright\,$ R & D on analyzing large and complex data sets, various options to customize own model $\rightarrow\,$ Tensorflow
 - Of course, there is some overlap between the different frameworks
 - Good documentation for each of them
- Which model shall I use for my analysis?
 - Again, it depends on what you want to do? (classify small data set with few features vs. customized model on individual problem)
 - ▶ There is no need to use a deep model with 10⁹ parameters, if a random forest classifier shows (after a careful analysis) a close to perfect performance
 - ▶ Do not try to fine tune a random forest classifier on a complex data set (e.g. ~ 100 different correlated variables), if you can not achieve a reasonable performance

- Most of the information / code pieces have been taken from / inspired by the following web-sites: (the blue items are clickable links)
 - Apache Spark
 - Apache Spark ML
 - Pyspark documentation
 - Python scikit-learn
 - Tensorflow
 - Tensorflow Keras Models
 - Keras
 - stackoverflow
 - distill.pub: Current problems and issues in machine/deep learning
 - A Recipe for Training Neural Networks (Andrej Karpathy)
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron → Really good book!
 - Talks from the deep learning for science school 2019

- Most of the information / code pieces have been taken from / inspired by the following web-sites: (the blue items are clickable links)
 - Apache Spark
 - Apache Spark ML
 - Pyspark documentation
 - Python scikit-learn
 - Tensorflow
 - Tensorflow Keras Models
 - Keras
 - stackoverflow
 - distill.pub: Current problems and issues in machine/deep learning
 - A Recipe for Training Neural Networks (Andrej Karpathy)
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron → Really good book!
 - Talks from the deep learning for science school 2019
- If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it up (stackoverflow, google, yahoo,...), most likely someone has a similar problem

- Most of the information / code pieces have been taken from / inspired by the following web-sites: (the blue items are clickable links)
 - Apache Spark
 - Apache Spark ML
 - Pyspark documentation
 - Python scikit-learn
 - Tensorflow
 - Tensorflow Keras Models
 - Keras
 - stackoverflow
 - distill.pub: Current problems and issues in machine/deep learning
 - A Recipe for Training Neural Networks (Andrej Karpathy)
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron → Really good book!
 - Talks from the deep learning for science school 2019⁵
- If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it up (stackoverflow, google, yahoo,...), most likely someone has a similar problem
- Try not to start from scratch (sometimes not avoidable)

- Most of the information / code pieces have been taken from / inspired by the following web-sites: (the blue items are clickable links)
 - Apache Spark
 - Apache Spark ML
 - Pyspark documentation
 - Python scikit-learn
 - Tensorflow
 - Tensorflow Keras Models
 - Keras
 - stackoverflow
 - distill.pub: Current problems and issues in machine/deep learning
 - A Recipe for Training Neural Networks (Andrej Karpathy)
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron → Really good book!
 - Talks from the deep learning for science school 2019
- If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it up (stackoverflow, google, yahoo,...), most likely someone has a similar problem
- Try not to start from scratch (sometimes not avoidable)
- Again, there is no easy / quick way to learn all the aspects of machine learning

- Most of the information / code pieces have been taken from / inspired by the following web-sites: (the blue items are clickable links)
 - Apache Spark
 - Apache Spark ML
 - Pyspark documentation
 - Python scikit-learn
 - Tensorflow
 - Tensorflow Keras Models
 - Keras
 - stackoverflow
 - distill.pub: Current problems and issues in machine/deep learning
 - A Recipe for Training Neural Networks (Andrej Karpathy)
 - "Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow", by Aurélien Géron → Really good book!
 - Talks from the deep learning for science school 2019
- If you are stuck with a problem / framework ⇒ Do not spend weeks to solve it ⇒ Look it up (stackoverflow, google, yahoo,...), most likely someone has a similar problem
- Try not to start from scratch (sometimes not avoidable)
- Again, there is no easy / quick way to learn all the aspects of machine learning
- My personal recommendation: Try it out yourself! (i.e. pick an example data set and start playing around)

Daniel Lersch (FSU)
• Tried to give a rough impression on machine learning in physics data analysis

- Tried to give a rough impression on machine learning in physics data analysis
- Did not cover all aspects in machine learning

- Tried to give a rough impression on machine learning in physics data analysis
- Did not cover all aspects in machine learning
- Not all shown code snippets are best programming practice \rightarrow They shall simply give you an idea on how to implement various functions

- Tried to give a rough impression on machine learning in physics data analysis
- Did not cover all aspects in machine learning
- Not all shown code snippets are best programming practice \rightarrow They shall simply give you an idea on how to implement various functions
- Tensorflow / Keras provides a much larger functionality than shown in this lecture (i.e. convolutional networks, regularized training, time dependent learning,...)

- Tried to give a rough impression on machine learning in physics data analysis
- Did not cover all aspects in machine learning
- Not all shown code snippets are best programming practice → They shall simply give you an idea on how to implement various functions
- Tensorflow / Keras provides a much larger functionality than shown in this lecture (i.e. convolutional networks, regularized training, time dependent learning,...)
- Many approaches shown here are based on my own experience, i.e. NOT the ultimate truth \rightarrow Someone else might have tackled the problems differently

- Tried to give a rough impression on machine learning in physics data analysis
- Did not cover all aspects in machine learning
- Not all shown code snippets are best programming practice → They shall simply give you an idea on how to implement various functions
- Tensorflow / Keras provides a much larger functionality than shown in this lecture (i.e. convolutional networks, regularized training, time dependent learning,...)
- Many approaches shown here are based on my own experience, i.e. NOT the ultimate truth \rightarrow Someone else might have tackled the problems differently
- I hope you had fun!