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Details of the analysis of thegzm~ system studied in the reactiom p— »7 p at 18 GeVt are given.
Separate analyses for thes and =" 7~ #° decay modes of the are presented. An amplitude analysis of the
data indicates the presence of interference betweerajlj&320) and al”°=1"" wave between 1.2 and
1.6 GeVk2. The phase difference between these waves shows a phase motion not attributable solely to the
a, (1320). The data can be fitted by interference betweeraji{e320) and an exotic 1" resonance with
M =(1370+ 16" 3) MeV/c? and I'=(385x 40" %) MeV/c2. Our results are compared with those of other
experiments[S0556-282(199)06119-9

PACS numbgs): 13.85.Fb, 12.39.Mk, 14.40.Cs

[. INTRODUCTION additional analyses of those data, and to give a detailed com-

parison of our results with those of other experiments. We

also compare those results with data from our experiment on

Reaction(1) but with the — 7" 7~ 7° decay.

T p—nmT P (1) The n system is particularly interesting in searching for
exotic (or nongq) mesons because the system has $pin

at 18 GeVE, with the decay mode;— yy. The purpose of -/ Py and charge-coniugati in the sequenca®C
this paper is to provide details of that analysis, to discusgol(lzl ot + 3- +g fér?:gf; 3 (Hcclarel is the

In a previous publicatiofil], evidence was presented for
an exotic meson produced in the reaction

orbital angular momentum of ther system) Hence a reso-
*Present address: Thomas Jefferson National Accelerator Facilityam.:elwnh.an.nw dgcay mode with odd is manifestly
exotic:” Having isospinl =1, such a resonance could not be

Newport News, VA 23606. . g
TPresent address: Department of Physics, Carnegie Mellon uni glueball (3,3g,...), butitcould be a hybrid qg) or a

versity, Pittsburgh, PA 15213. multiquark @qqQ) state.
*Permanent address: Rafael, Haifa, Israel.
SPresent address: Department of Physics, University of Maryland,
College Park, MD 20742. A qg meson with orbital angular momentuimand total spinS
** Present address: Department of Physics, Kansas State Univafust haveP=(—1)-*! and the neutral member of its isospin mul-
sity, Manhattan, KS 66506. tiplet must haveC=(—1)-"S. A resonance with quantum number
"Present address: Department of Physics, University of Arizonain the sequencé®®=0"",0"",1"*,2*~,3 ", .. does not satisfy
Tucson, AZ 85721. these conditions and must be exotic.
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A. Models
; ; ; TPX 1-3 LGD
Properties of hybrids and multiguark mesons have been TCYL DEA —
discussed in the framework of various modgls-12]. Cal- \ /N/ W /
culations based upon the MIT bag model predi&t6] that
an 1=1,1"" hybrid (gqg) will have a mass near NLLNMZLEL DN

1.4 GeVk2. On the other hand, the flux-tube mod&l8] \ .
predicts the mass of the lowest-lying hybrid state to be [ =N {1y [ I N
around 1.8 GeW?. Characteristics of bag-mod&wave '
multiquark stategwhich would haveJP=0", 1% or 27)
have been discussg@] but those for a I state have not.
QCD sum-rule predictions[10] vary widely between
1.0 GeVk? and 2.5 GeVe¢?. Recently, an analysis of the e Modules Seintilat
multiquark hybrids has been carried out, based on the di- e Counters (EV.BV)
quark cluster model11]; this model predicts a lowest-lying = =
|soveqtorJPC=1 " state at 1.39 Gew with a very nar- FIG. 1. Experimental layout for E852. The nomenclature is de-
row width (=8 MeV/c?). Finally, recent lattice-gauge cal- fined in the text.

culations yield mass estimates for a1 hybrid in the range
from 1.7 to 2.1 GeW¢? [12].

3 meters

Brookhaven National LaboratoryBNL) with the Multi-
Particle SpectrometeiMPS) [19] augmented by additional
detectors. A diagram of the experimental apparatus is shown
Several experiments, prior to the publication of the E852n Fig. 1. A Cerenkov taggedr~ beam of momentum
results[1], had studied theyw final state, and observed an 18 GeVk was incident on a one-foot long liquid hydrogen
enhancement in the wave around 1400 Me\¢? [13-16.  target at the center of the MPS magnet. The target was sur-
However, they reached conflicting conclusions. rounded by a four-layer cylindrical drift chambéFCYL)
The 1988 GAMS experimenfl3] at CERN (= p at  [20] used to trigger on the proton recoil of Reactidy, and
100 GeVk) claimed to find a narrow enhancement in thea 198-element cylindrical thallium-doped cesium iodide ar-
unnatural parity exchangB, wave, but found the natural ray (Csl) [21] capable of rejecting events with wide-angle
parity exchangé , wave to be “structureless.” The method photons. The downstream half of the magnet was equipped
of analysis and the conclusions were seriously disputed bwith six drift chamber moduleéDC1-6) [22], each consist-
some of the same authors laféf7]. ing of seven planes, used for charged-particle tracking. Inter-
The 1993 VES experimeritl4] at Serpukhov ¢ N at  spersed among these were three proportional wire chambers
37 GeVk on a beryllium targgtfound an enhancement in (TPX1-3) to allow triggering on the multiplicity of forward
the natural parity exchange, wave and concluded that tracks; a window-frame lead scintillator photon veto counter
“the P, wave is small but statistically significant and con- (DEA) to ensure photon hermeticity; a scintillation counter
tains a broad bump.” They made no attempt to identify the(CPVB) to veto forward charged tracks for neutral triggers;
“bump” with a resonance. and a window-frame scintillation count6€PVC) to identify
The 1993 KEK experimenfl5] (7= p at 6.3 GeVE) charged particles entering the DEA. Beyond the magnet were
claimed that “A clear enhancement of tHe, wave was a newly-built drift chamber(TDX4) consisting of two
observed around 1.3 Ged” but noted that “The phase of x-planes; two scintillation counteréBV and EV) to veto
the P, wave relative to theD, wave shows no distinct non-interacting beam tracks and elastic scatters respectively;
variation with mass in the analysis region.” They thereforeand a 3045-element lead glass electromagnetic calorimeter
made no attempt to offer a resonance hypothesis. (LGD) [23] to detect forward photons. Further details are
The 1994 Crystal Barrel experimefit6] on pp annihila-  given elsewherg24].
tion at rest concluded that their#®7°7 data may at most
accommodate a small amount of featurelessP-wave.” B. Trigger

, ; N : . -
The first claim for a 1" exotic resonance in them The trigger (see Ref.[24] for detaily for Reaction(1)

Cgag?aewﬁsrggfgegnsg; t?])épgrég]sel?rte?nteit[\iuénlg r;h(:‘ho q required a recoil charged particle in the TCYL detector and
pap P e charged particle traversing each of the first two TPX

analysis_usgd in ‘h"’?t earlier publicatign. We note that Sinc%hambers. In addition, an electronic algorith®8] coupling
the publication, an independent confirmation of our results nergy and position ir;formation in the LGD calorimetan
has come from a new measurement by the Crystal Barre effective-mass” trigge¥ was utilized for the purpose of en-

Collaboration[18] hancing the fraction ofy's relative tom"’s in the sample. A
total of 47 million triggers of this type were recorded.

B. Previous experiments

Il. EXPERIMENTAL DETAILS
A. E852 apparatus C. Event reconstruction and selection
Our data sample was collected in the first data run of Of the 47 million triggers, 47,235 events were recon-
E852 at the Alternating Gradient Synchrotr¢AGS) at  structed which were consistent with Reacti¢l). These
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TABLE |. Reduction in the data sample as a function of the cut type.

Cut Remaining Fraction
number of removed
events (%)
Number of triggers 4% 10° -
Topological and trigger cuts 583,094 98.8
7 preselection (C.L>10™%) 270,364 53.6
Removal of runs with LGD 159,871 40.9
trigger processor failure
LGD fiducial cut 146,584 8.3
Photon-hadron distance cut 145,710 0.60
Missing-mass-squared cut 103,341 29.1
Confidence level cut 85,888 16.9
Ap<8° 53,219 38.0
TPX2 cut 49,113 7.7
Cut on position at EV/BV 47,235 3.8
0.10<|t|<0.95 (GeVE?) 42,676 9.7
0.98<M(7nm )<1.85 GeVE? 38,272 10.3

these cuts. The last two cuts listed in the table were addi-

logical and tri includi , ‘ tional cuts made on the data to carry out the partial-wave
topological and trigger cuts including requirements for analysis(PWA).

were selected by requiring:

(1) two photons reconstructed in the LGD,
(2) one forward track reconstructed in DC1-6,
(3) one recoil track reconstructed in TCYL,
(4) a common vertex, in a target fiducial volume, recon-  The experimental acceptance is determined by a Monte
structed from the charged tracks and the beam trackCarlo method. Events are generated ussage [26] with
(5) no energy deposited in the DEA detector or outsideperipheral productiopof the formdN/d|t| = A exp—blt| with
the fiducial volume of the LGD, b=4.0 (GeVk) 2] and with isotropic angular distributions
(6) the energy deposited in the Csl array being less thaih the Gottfried-JacksofGJ) frame.(The GJ frame is a rest
160 MeV; frame of thenp#w~ system in which the-axis is in the direc-
tion of the beam momentum, and tleaxis is in the direc-
that the effective mass of the two photons be consistent witlion of the vector cross-product of the target and recoil mo-
the » effective mass with a confidence level greater thanmenta) After adding detector simulation usirgGeANT [27],
1074 the Monte Carlo event sample is subjected to the same event-
that all data come from runs which had proper functioning ofselection cuts and run through the same analysis as the data.
the trigger processor; A second methodcalled SAGEN) which did not USEGEANT
that the photons hit the LGD within a fiducial volume which was employed as well. This method also use@E as the
excluded a 4.0-cm regiofone block width around the pe- event generator, but instead of usi@ganT, the acceptance
riphery of the LGD as well as a 4.0-cm wide region sur-was determined using a full detector simulation but without
rounding the beam hole; such effects as multiple scattering, pair production and sec-
that the distance between a photon and a charged track higndary interactions. This second method allowed acceptan-
ting the LGD exceed 20 cm; ces to be calculated much more quickly. The only differ-
—1.0<(missing mas$)< 2.5 (GeVk?)?; ences noted in the amplitude analysis resyttscussed
asQUAW [25] kinematic fit(requiring energy and momentum below) between the two methods was in the number of
conservationto Reaction(1) with a confidence level-10%;  events, sincesEANT takes account of pair production and
that the difference in angld¢ between the fitted proton secondary interactions, wheressGeN does not. The aver-
direction and the measured track in TCYL be less than 8°; age acceptances are the ratios of the generated events to the
the exclusion of events for which the™ went through an accepted events and are shown in Figs. 2—4 usingAbenN
insensitive region of TPX2; method.
the exclusion of events for which the~ went through a The average acceptance as a functiomaf  effective
small region surrounding the EV/BV veto countefBvents  mass is shown in Fig. 2. The average acceptance decreases
which had a7~ in this region were sometimes vetoed, prob- by about a factor of two over the effective mass region from
ably due to @renkov radiation in the EV or BV light pipks 1.0 to 2.0 GeV¢2. Average acceptances are calculated for
peripheral production and isotropic decay as described
Shown in Table I is the effect on the data sample for each oébove.

D. Experimental acceptance
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FIG. 2. Average acceptance vgr~ effective mass. mass regions.

N . _ lation between the energy of thgand ¢ at finite momentum
Shown in Figs. 3 and 4 is the acceptance as a function Y ansfer and this leads ?oythe Ziser\(/j:ad shape.

cos# and of ¢ for various ranges c_uf thew~ effective mass. _ Finally, shown in Fig. 5 is the average acceptance
Here 6 and ¢ are the polar and azimuthal angles measured 2}8

; GEANT-based as a function oft’|=|t—t,|, wheret is the
the GJ frame. The polar angle is the angle between the beagg, ,omentum-transfer between the initial- and final-state
direction and they direction in this frame. The inefficiency

in the backward directi ds 1o Slo d fast protons and i, is the minimum value for this quantity for a
'n_, € backward direction ’correspon slos o,vs’an as given n7~ effective mass. The dramatic decrease in accep-
7 's in the lab. The slowy's lead to low energyy's which

_ _ tance below about’|=0.08 (GeVt)? is due to a trigger
are often produced at wide angles and thus miss the LGD. IFl%quirement. In particular, since we require the presence of a

s?me tc;]asg} fas;;/’s c_a;Jiet_the ever:t to T’e (\j/_etoeid f'f ttT]ey recoil proton in TCYL, the trigger cannot be satisfied if the
strike the or scintillation counters, leading to further proton stops in the hydrogen target.

inefficiency in the backward direction. The inefficiency in
the forward direction is due to an inefficiency in detecting
slow, wide-angle pions which can scatter in the Csl detector.
The acceptance i is relatively uniform. There is a corre- Shown in Fig. 6 is the 2 effective mass distribution for
events in thea, (1320) mass region from 1.22 Gedf/to
1.42 GeVt?. The data sample used for this distribution

E. Background studies

r
0.4+
L . 0.25 ' ;
0.2t 1.02 < M(nr) < 1.22 GeV/c? ]
0.0} ]
- 0.20 -
0.4
g 0.2 122 <M 1.42 GeV/c?
e - < Minm) < g 8 015+
g 0.0 c
5 F £
g 0.4F 3
< 0.2k ] < 010
“Cr 1.42 < M(nn) < 1.62 GeV/c?
0.0 ]
0.4F 3 0.05F
0.2F q
L 1.62 < M(nn) < 1.82 GeV/¢2 ] L J
0.0 1 | L q ool Lo 0
10 0.5 0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Cos 0 Itl (GeVie)
FIG. 3. Average acceptance vs. eb®r different nm~ effec- FIG. 5. Average acceptance Ms$!| integrated over allym™
tive mass regions. effective masses.
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FIG. 6. Two-photon effective mass distribution for events in the FIG. 7. M'SS'“Q'maSS_ed squared d'Str_'bUt'on' The dash_ed h'St_o'
a; (1320) effective-mass region. The central cross-hatched regioﬁr"f‘m shqws the distribution of events which remain after kinematic
shows the events which remain afteguaw fitting. The shaded fitting which leads to a rather sharp cutoff.
sidebands show the regions selected to estimate the background
using Method L(see text regions. Because the background regions have different

thresholds, one higher than the signal region and one lower

consisted of a subset of events satisfying the cuts listed ithan the signal region, the histograms are shifted by an ap-
Table | but withoutsQuAw confidence level cuts. The central propriate amountso that their thresholds match that of the
cross-hatched region in Fig. 6 shows the events which resignal region before summing.
main after thesQuaw-based kinematic-fitting cuts. The dis-  |n Fig. 10 is shown the polar angular distribution of the
tribution haso~.03 GeVk?. Both this distribution and the background events from Method 1 in tha, (1320)
missing-mass-squared distribution discussed below are coRstactive-mass region from 1.22 Ged/to 1.42 GeVE?.
sistent with that expected from Monte Carlo studies when they;qiihytions are shown separately for the low-mass and the
energy resolution of the LGD for a photon of enerByis g -mass sidebands of the This high-mass sideband dis-
taken to be ofl'gge formr/E:a+b/\/E with a=0.032 and  ripytion is somewhat peaked in the backwards direction
b=.096 (GeV)™. (This was the resolution function used for yjth a tendency for the distribution to have an excess below
the LGD in the kinematic fitting. Two methods have been he region cog<—0.5. We note that this is in the opposite
used to study the background in our sample. Method 1 usegirection from the asymmetry in the datsee below and
the shaded sidebands of Fig. 6 and allows us to study thgerefore cannot be the cause of the observed asymmetry. Of

non-y background in the data. course the intensity of the background is quite small as seen
The missing-mass-squared distribution for the data

sample before kinematic fitting is shown in Fig. 7. The
dashed histogram shows the events which remain after kine-
matic fitting. The distribution for good events for Reaction
(1) should peak at the square of the proton mass or at a value
of 0.88 (GeVt?)2.

A scatterplot of the missing-mass squared versus the 2
effective mass is shown in Fig. 8. Background studies using
our Method 2 take as the background estimator a region sur-
rounding the central signal region seen here instead of using
the sidebands of Fig. 6. In this way we take into account
background events of both the nentype and of the type
which does have ap present but is not exclusively Reaction
(1) such as events with an extra’. (The background is
estimated using the region included within the outer elliptical - A
area of Fig. 8 but not within the middle elliptical region. 20l -
Events in this elliptical band are used to determine the mag- —
nitude of the background as a functionf effective mass.

Shown in Fig. 9 is the effective-mass distribution of the
background, estimated using Method 1. In this figure are FIG. 8. Missing-mass squared vs. two-photon mass. The ellipti-
shown the effective-mass distribution for each sideband reeal regions are used to estimate the background using Method 2
gion as well as the summed distribution for the backgroundsee text

10.0

2

8.0
6.0
40F

2.0

Missing Mass Squared (GeV/c)

0.2 0.4 0.6 0.8
M(yy) (GeV/c?)
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FIG. 11. 7~ effective mass distribution uncorrected for accep-
ance. The shaded region is an estimate of the background using
Method 2.

FIG. 9. Effective-mass distribution of the background estimatedt
from the 7 sideband$Method 1.

in Fig. 11 below and therefore could not lead to Signiﬁcantprediction) The model includes contributions fropf]a_ndf2
changes in the angular distributions in the data in any caseregge trajectories with parameters from a fit by Sacharidis
[28] and also includes a smdl#% att’=0.15(GeVEt)?]
Ill. GENERAL FEATURES OF THE DATA contribution from a uniform ' independent background.
For comparison, results of another experim@men circley

. S 29] which studied the reactiom p—a, p,a, —K K? at
effgcﬂye-mass spectrum shown |n'F|g. 1%' The. backgroun 2.4 GeVt and the Sacharidis fitcurve 2 are shown.
which is shown shaded in the figure, is estimated from

) . (Note that the values shown take into accountdhealecay
0, (Zé\/
Method 2 above, and is approximately 7% at 1.2 / branching fraction$.We conclude that the shape of otr
and only 1% at 1.3 Ge\¢~.

The acceptance-corrected distribution|df=|t—t,. | is distribution is consistent with previous experiments and with
- min _ H i i _ _
shown as the solid points in Fig. 12 fort'| natural-parity exchange production in Regge-pole phenom

. . enology[30].
>0.08 (GeVk)?. [Our acceptance is quite low below ) P .
0.08 (GeVE)? as discussed in Sec. Il DSince the data are Acceptance-corrected distributions of abare shown in

. Z . ~ . Fig. 13 for various ranges of#~ effective mass. For illus-
dominated bya, (].'3.20) production, we show as the SOI_'d tration purposes, the acceptance correction is calculated here
curve (1) the prediction of a Regge role model for the dif-

) X - o for isotropic decay of theym~ system. The acceptance cor-
ferential cross section for the reaction p—a,p al  yection used in the amplitude analysis discussed below is
18 GeVk. (Note that the ordinate values are given by thepased upon the observed decay angular distribution. The

theory and the data are normalized to the theory so we argresence of a significant forward-backward asymmetry in the
comparing only the shape of the data with the theoreticalygy distribution is obvious.

The forward-backward asymmetry in céss plotted as a
function of »7~ effective mass in Fig. 14. Here, the asym-

The a, (1320) is the dominant feature of thew~

400

2
300 10% ¢

200

100 .
- E 3)
S g 3 10
E 0 E‘ | | { 8
= 2
2 3
Y 400 e
5 4
al ©
F T r
200 r
0:"""""""(')15"'i0 10'1‘,\.1‘\.l‘.‘.l‘..‘l‘“r".\..‘.m.‘.
-1.0 -0.5 0.0 0. : 0.0 0.2 0.4 0.6
Cos 6 )
It (GeV/c)
FIG. 10. Angular distribution of the backgrouriethod 1
shown separately fofa) the low-mass sideband arft) the high- FIG. 12. Distribution of|t’|=|t—tm, (acceptance-correctgd
mass sideband of the). Events are plotted which fall in the This experiment(solid dot3 compared to a second experiment
a, (1320) effective-mass region. (open circles, see texand to a Regge pole fit.
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FIG. 13. Distributions of the acceptance-corrected cosine of the

decay angle in the GJ frame for various effective mass selections. FIG. 15. Distributions of the acceptance-corrected Treiman-

) ) ) Yang angleg in the GJ frame for various effective mass selections.
metry is defined asK—B)/(F +B) whereF(B) is the num-

ber of events in the mass bin with thgdecaying forward

(backward in the GJ frame.. For this f|gure, the asymmetry effective mass is shown in Fig. 15. The observed structure
was calculated for events in the region wjttps6|<0.8 to

. - . . has a clear sigh component which indicates the presence of
avoid any possibility of having results distorted by the ex- natural-parity-exchange waves in the production pro-
treme forward and backward regions which have IowCeSS (See the discussion in Sec. IV below
acceptancé.The asymmetry is large, statistically significant Sﬁown in Fig. 16 are ther’p; and 7p éﬁective-mass
ar;(\jlem;r?; i?sp%?sceunstée\évlt&rllow etrl:(reamrivglgrrllé eOfO]EhgnIpag\'/ahistributions for the data sample. It is important to note that
values Oﬂywould yield a symm,etric dﬁstribution in cczs “He abse_nce of baryon isobar pro_duction is_ required for the

hus the ob d t : that badstial assumptions of our PWA to be valid. There is at most a very
Thus the observed asymmetry requires tha il 18 small amount of isobar production in the regih( = p)
waves be present and that they interfere with elvpartial ~2.0 GeVvk? in Fig. 162 and none in Fig. 16). The
wa\t/es_totﬁi eslc Zb%trlzzdata_. Note thbat thg dﬁffasf] in asyrgﬁ]blitude analysis described in Sec. IV was checked to en-
{gebg égusgd 5y thee pharsigtlj?geigﬂcee(t?;thn tf? esé;\ivdr_] sure that isobar production did not effect our results. This
oddd waves approaching/2 rad was done by redoing that analysis after requirM@m~p)

' >2.0 GeVk?. The resulting intensities and phases did not

The azimuthal angular distribution as a functionpi~

. change(other than an overall magnitude change due to the
—_ I JF loss of eventsin most cases by more than one standard
L 0.6F “‘ JF
3 | 1 +
3 0.4:- JF ‘PF + + ¢ 400f
s ++ %
£ L O
2 0.2} + + N 200F 3
E ++ + 5 3
> r I 3
1] -E 3
<00‘\>III|llll\llllllllllllllllI|III|I¢ g qo
1.0 1.2 1.4 1.6 1.8 @ : 20 3.0 4.0 , 50 6.0
M(nr) (GeV/c?) - M(np) (GeV/c?)
~, 800
FIG. 14. Forward-backward asymmetfgcceptance-corrected % a b E
as a function of effective mass. The asymmet(¥ —B)/(F + B) 0] ’ ]
whereF(B) is the number of events for which thgdecays in the S 400 =
forward (backward hemisphere in the GJ frame. > b 3
5
@ 0
2.0 3.0 4.0 5.0 6.0

M(np) (GeV/c?)
2The asymmetry function was plotted for various ranges of the

decay angle and the presence of a strong asymmetry was noted in FIG. 16. Effective mass distributions fg¢a) the = p; and (b)
all cases. the n»p systems for the final event samplencorrecteyd
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deviation and in no case by more than 1.5 standard devia- y 103
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i -~ 7600
tions. S 0, 7l b) P 2
> %
) 5 4001
IV. PARTIAL-WAVE ANALYSIS 3 8 1 g ]
A. Procedure E 4 - EZOO'{ } h
A partial-wave analysisPWA) [31-33 based on the ex- § :>j 11 I }
tended maximum likelihood method has been used to study f 03 0 7
the spin-parity structure of thgm~ system. We give in Ap- g I o 8.01 ) 1
pendixes A and B some mathematical details regarding the "_"1.24 5 2
techniques used in the partial-wave analysis. The formalism 2 - H 8 2.07
adopted in this analysis is somewhat different from those 50.8- “}l o | 4
used by previous investigators. Although complete details § 1 21.0]
used in the formalism are given in a recent publication by g 0-47 a0, -R) | * ]
Chung[32], a portion of that work is reproduced in Appen- & 7] 0.0
dixes A and B in order to make this paper as complete and * 0'01 o 12 | 18

self-contained as possible.

In Appendix A, a brief description of the formalism is
given as the relationships between the partial wave ampli-
tudes(assuming <2) and the moments of the angular dis- . ) Lo P
tributi((')n The tgechn)ique of the extended maxim%m Iikeli_are (a) the fitted intensity distributions for thB , and(b) the P,

) . . . . artial waves, andc) their phase differencA®. The range of val-
gg?ﬁeagf:)ﬁ:;'jn?glvﬁ:ﬁ%:ennfs‘p%e(g(il)x Sr,]c\ilv?ﬁ(ereat(;hcz;)rlfggea)ﬁes for the eight ambiguous solutions is shown by the central bar

is d ibed(Th . | o dand the extent of the maximum error is shown by the error bars.
is described(The experimental acceptance is incorporate Also shown as curves i(a), (b), and(c) are the results of the mass

Into the PWA by using the accepted_ qute .Carlo eVemsdependent analysis described in the text. The linéd)isorrespond
described above to calculate normalization integrals—seg, (1) the fitted D, Breit-Wigner phase(2) the fitted P, Breit-
Ref.[31]) Wigner phase(3) the fitted relative production phage and(4) the
The partial waves are parametrized in terms of the quangyerall phase differencad.
tum numbersJ®¢ as well asm, the absolute value of the
angular momentum projection, and the reflectivit}34]. In . . - .
our naming convention, a letter indicates the angular mo_domlnant p93|t!ve-reflect|V|ty_ partial Waves. We havg also
mentum of the partial wave in standard spectroscopic notaRerformed fits including partial waves with=3 and with
tion, while a subscript of 0 meams=0, e= — 1, and a sub- J'=Af. Contributions from t.he'se partial waves are found tolbe
script of +(—) meansam=1, e= +1(—1). Thus,S, denotes within one standard deviation of zero for most mass bins
the partial wave having?®m<=0**0", while P_ signifies With M(77")<1.8 GeVk? and in all cases within two
1-717, D, means 271", and so on. standard deviations of zero. Thus, PWA fits shown or re-
We consider partial waves witm=1 in our analysis. ferred toin this paper include all partial waves witk 2 and
This assumption is true in the limit of-t=0, since the m=<1 (i.e. S, Py, P_, Do, D_, P, andD,). A non-
nucleon helicities give rise to the states with=0 or m= interfering, isotropic background term of fixed magnitude
+1 only. But this assumption can be dealt with— determined as described by Method 2 in Sec. 11D is used.
experimentally—since the momernit(LM) with M=3 or
M =4 can be checked, to see how important the stites
are in the data withm|=2. This has been done with our
data. The momentd (33), H(43) andH (44) are all small in
thea, (1320) region, and a fit includin@2) (shown in Sec- A ;
tion I2VC below) contains only a very small amount of this (Gev/c)? are shown in Figs. 17 and 18. In F!g. 17 the
wave and is very broad. accept_ance-corrected num_bers _o_f events predlcted_by the
We also assume that the production spin-density matripf WA fit for the D, and P intensities and the phase differ-
has rank one. This assumption is discussed in Appendix C&Nce between these amplitudas), are shown as a function
Goodness-of-fit is determined by calculation ofafrom  of M(#7 7). (The smooth curves shown in this figure are
comparison of the experimental moments with those prediscussed below in Sec. VBThere are eight ambiguous
dicted by the results of the PWA fit. A systematic study hassolutions in the fit[32,35,3§. These solutions are math-
been performed to determine the effect on goodness-of-fit g¢matically discrete but with equal likelihoods—that is, they
adding and subtracting partial wavesJsf2 andM<1. We  correspond to exactly the same angular distributions. We
find that although no significant structure is seen in theshow the range of fitted values for these ambiguous solutions
waves of negative reflectivitysee below, their presence in in the vertical rectangular bar at each mass bin, and the maxi-
the PWA fit results in a significant improvement in mum extent of their errors is shown as the error bar. These
goodness-of-fit compared to a fit which includes only therectangular bars are quite small and thus not apparent for the

1.0 14 1.8
M(nr) (GeV/c?) M(nrx) (GeV/c?)

FIG. 17. Results of the partial wave amplitude analysis. Shown

B. Results

The results of the PWA fit of 38,200 events in the range
0.98<M (77 )<1.82 GeVE? and 0.16<]t|<0.95
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FIG. 18. Results of the partial wave amplitude analysis. Shown

M(nn) (GeV/c?)
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1.0 .
400 b ¢ « Data »NPE contribution
200 _HE E I 0 8_= PWA prediction °UNPE contribution |
1T T T T T ® 0.6 ; .!! 3 A
200 P £ t "y t .
0] g o4 Pols"”
600 — R
. T N 0.2r* o, .
A400_ 00 o °°°o°° ° 6
g zoo—'i } I I E E 0053 T2 T 1.6 1.8
g o liﬁ.ﬂ } ! ilﬂ «f M) (Gevie?)
hy —_
g-, 600 | P FIG. 19. Forward-backward asymmetry as a function of effec-
2 400 0 tive mass. Shown are: the total asymmetry in the datased
L% 1 circles; the predicted asymmetry from the PWA (itpen squares
200 ] I -[ '{ '{i }' the prediction of the fit for that part of the asymmetry due to
0 - ;I natural-parity exchangéilled squarey and the prediction of the fit
600 — _ ! ! 2' for that part of the asymmetry due to the unnatural-parity exchange
- i 18,1 waves(open circleg
400~
] i the natural and unnatural-parity exchange waves. It is clear
20077 LE 'ﬁ that the asymmetry due to the unnatural-parity waves is
0 — _ﬂﬂ- FF!FIF about an order of magnitude less than that due to the natural-
1'0 1' \ ; '4 1'6 1'8 parity waves. Also shown in Fig. 19 is the comparison of the

asymmetry present in the data with that predicted by the fit.
The fit clearly does an excellent job in representing the data
points.

The unnormalized spherical harmonic momeHtd. M)

are the fitted_ intensity distributions for the waves produced byand their prediction from the PWA fit as a function of mass
unnatural-parity exchange. are shown in Fig. 20. Herel (LM) =N, YM(6;, ;) [N be-
ing the number of events in a given bin Bf(77)]. The
relationships between the moments and the amplitudes are
given in Appendix A, Eqs(A27). All of the even moments
(M=0,2) are well-described by the fit as are most of the
[Fig. 171@]. A broad peak is seen in the, wave at about M =1 moments. Some points witti =1 are somewhat less
1.4 GeVk? [Fig. 17b)]. The phase differencéd increases well fitted but, as we will discuss below, the significant con-
through thea, (1320) region, and then decreases aboveclusions which will be drawn from this work come from the
about 1.5 GeW? [Fig. 17(c)]. This phase behavior will al- natural-parity sector whose amplitudes do not contribute di-
low us to study the nature of the, wave.(We note that rectly to theM =1 momentdsee Eqs(A27)].
there is a sign ambiguity in the phase difference and thus An examination of thed(30), H(32), H(40) andH(42)
only the magnitude oA® is actually measureg. moments along with a comparison with Eq&27) shows
Shown in Fig. 18 are the fitted intensities for waves whichthat theD . amplitude dominates and demonstrates clearly
are produced by negative-reflectivifpr unnatural-parity  that theP, partial wave is required for the PWA fit to de-
exchange. The predicted numbers of events for these wavesribe the experimental moments. These moments cannot be
are generally small and are all consistent with zero aboveéescribed solely by the combination of thbe. partial wave
about 1.3 GeW?. Although there is some non-zero contri- and experimental acceptance.
bution from theD _ and(especially the S, waves below this The change in—log(Likelihood) as a function of the
region, the uncertainties and ambiguity ranges associatatumber of events for thd®, partial wave for the 1.30
with these waves make it impossible to do a definitive study<M (77~ )<1.34 GeVE? bin is shown for all the ambigu-
of them to determine their nature. In addition, the absence odus solutions in Fig. 21. The curves were obtained by fixing
a strong wave(such as theD . wave in the natural-parity the P, intensity at various values and maximizing the like-
sectoj to beat against these waves precludes us from drawtihood function varying all of the other parameters. All eight
ing any conclusions about possible resonant behavior in thambiguous solutions were found for each value of he
unnatural parity sector. intensity. The number of predicted, events at the maxi-
The forward-backward asymmetry noted earlier is due tanum of the likelihood ranges from 330 events to 530 events
interference in the natural-parity exchange sector rather thafor the eight solutions with typical errors of 280 eveniia.
to the unnatural-parity exchange waves. This is illustrated irthange in—log(Likelihood) of 0.5 corresponds to one stan-
Fig. 19 which shows the predicted asymmetry separately fodard deviation). For all solutions, the likelihood function gets

D, intensity, but they are quite clear for th, -intensity
and the phase-difference distributions.
Thea, (1320) is clearly observed in tH2, partial wave
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FIG. 20. Experimental momentd(L,M) (open circles shown
with the predicted moment&pen triangles from the amplitude
analysis.

so bad below 100 events that tRe wave is clearly required

x 10 R R
N§ t2f . if N§ s00 ’ | P, I
S s S M

% J . %200 { ++++ Hﬁm“
E‘ 0 [ L. Treeen,, 5 0 4

D w

_ =)
~5 200! c) 2, £ d) $,.1

‘% ID,.,| g1:2 sty
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o 'Y « @ -R)
@ o0 : To.0

1.0 1.4 1.8 1.0 1.4 1.8
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FIG. 22. Results of the partial wave amplitude analysis when the
natural parity exchangm=2 amplitude is included. Shown are the
fitted intensity distributions fota) theD , , (b) the P, , and(d) the
D,. partial waves. Shown irfc) is the phase differencA¢ be-
tween theD , and theP, partial waves.

C. Systematic studies

PWA fits were performed for two differertitranges con-
taining approximately equal numbers of events. One bin
spanned the range 0.40t|<0.25 (GeVkt)?, and the other
was for 0.25 |t|<0.95 (GeVE)?2. Both bins yielded compa-
rable structures in the , wave, and thex, (1320) was the

to fit the data. Thus the observed variation ingominant feature of th® . wave for both bins. The relative

—log(Likelihood) further demonstrates that tiRe, partial
wave is required to describe our data.

10—
of 3 S
E. 0.8‘\ . ‘1' . o
8F e i .
Jb o)k P N
; 3 \\ . ! .
£} [+ 3 .' s .‘
8 6— 0.41.. \ < !'
< F e s
£ SF, 0.2 X ’
8 4F ook
< + 7200
[0]
{=)]
c
o
K
o

-
600
Predicted P+ Events

0 560 400

P, —D, phase behavior for each bin was similar to the re-
sults for the integrated fit shown in Fig. .

A PWA fit has been carried out excluding those events
with |cosfs)>0.8 (the region in which experimental accep-
tance is pooregtNeither theP , -wave intensity nor its phase
variation relative to théd . wave change by more than one
standard deviation in any mass bin.

As mentioned above, a PWA fit has been carried out in-
cluding the natural parity exchange=2 amplitude(labeled
D,.) in the fit. The results of this fit are shown in Fig. 22.
Comparing this fit with the fit shown in Fig. 17, it is clear
that the magnitude and phase behavior of Ehe wave is
quite unaffected by inclusion of the=2 amplitude.

To test forA andN* contamination, a fit has been done in
which events withVl (7~ p)<2.0 GeVk? are excluded. As
discussed earlier, the resulting intensities and phases did not
change in most cases by more than one standard deviation
and in no case by more than 1.5 standard deviations.

Fits were also carried out on Monte Carlo events gener-
ated with a purd . wave to determine whether structure in

FIG. 21. Vglue of the log ||ke||h00d as af.UnCtion of the number the P+ wave could be art|f|c|a”y induced by acceptance ef-
of P, events in the PWA fit for all 8 ambiguous solutions. The fects resolution, or statistical fluctuations. Shown in Fig. 23

inset shows a view with expanded scales. Because some solutiog§e the results of such a fit. We do find thaPa wave can

are very close to each other, not all 8 solutions are distinguishabl

on this figure.

Be induced by such effects. This “leakage” leads t® a
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M(nn) (GeV/c?) with the VES experiment. Shown are tRe —D , phase difference

and theP. intensity as a function ofy7~ effective mass for each
experiment. Note that the left-hand scales are for E852 and the
right-hand scales are for VES.

Phase Difference (degrees)

FIG. 23. FittedP, intensity andP, — D, phase difference for
the Monte Carlo sample generated with a pire sample of
a, (1320) events.

o ) ] ] D. Comparison with previous experiments
wave that(1) mimics the generateD . intensity[and in our

case would therefore have the shape of 4h€1320)]; and These results for thé®, and D, intensities and their

(2) has a phase differenck® that is independent of mass phase difference are quite consistent with the VES results
Neither property is present in our study and we conclude th 4] as can be seen in Fig. 24. In parpcular, _the b.ehawor of
the P, structure which we observe is not due to “leakage.” e shape of the phase difference is virtually identical to that

. : N reported by VES. This is particularly noteworthy since, as
Fits have been performed allowig:3 andl =4 waves. will be seen below, it is this phase difference which allows

We fin9 that these waves are negligiblg ?n the .r.egion _belov\ﬁs to draw conclusions regarding the nature ofRhewave.
M(#m") of about 1.7-1.8 G'e\dz, their intensities being o results are compared with those of the KEK experi-
less than one standard deviation from zero in almost all b'”sment[15] in Fig. 25. In this case, it is clear that the two
(The largest number of events in any bin for the wave  reguits differ. The KEK results have B-wave intensity
was 34:22 events and for th&. wave was 148100  hich is narrower and B-D phase difference which, within

events) errors, is consistent with being constant as a function of
The data have been fit using different parametrizations op (7).

the background. The background has been set at fixed values
determined from the two different background estimates dis-
cussed previously. In another fit, the background has been set . . .
to zero. And finally, a fit was performed allowing the back- A _second data set n ano_ther topologlcal clasgh two

. additional charged particles in the final sjates been used
ground level to be a free parameter. Although the negativ

; ; +, -0
reflectivity waves do change somewhat for different treat—%\ 0 study Reactior(1) with the decay modey—m " .

Besides having three forward charged particles instead of
ments of the backgrourttithe results for theD, and P, one, these events haverd instead of any to be detected by

waves and their relative phase do not change by more thatl'ﬁe LGD. Since ther® is one of three pions in the decay

one standard deviation in the entire region between 1.2 angl energy will be significantly less than thgn the topology
2.0 GeVk? except for a few isolated points which vary up

to 1.5 standard deviations.

E. Comparison with p— o+ 7~ 7° data sample

“The magnitude of the phase difference is shifted by about 20°
relative to that of VES. A production phase shift would not be
3Since the background and ti wave are both isotropic, the unexpected because of the differing energies and targets in the two
fitting program cannot distinguish between them. experiments.
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FIG. 25. Comparison of the results of this amplitude analysisHTr ™ - event sample.

with those of the KEK experiment. Shown are the —D . phase Kin th . After ki ic fitti |
difference and th@ . intensity as a function o7~ effective mass strong peak in the region. After kinematic fitting, a sample

for each experiment. Note that the left-hand scales are for E852 antfas o_btained_ of 2'235+ eYeQ}S ‘_NhiCh were consistent with
the right-hand scales are for KEK. Reaction(1) with »— 7" 7~ . Figure 27 shows the effec-

tive mass distribution for this sample of events. As expected,

with only one charged track. Thus it is clear that the thea, (1320) dominates this spectrum. _
— a7~ 7° data sample will have significantly different ac-  Although the data sample is very small for this topology,

ceptance and systematics when compared to he2y  We have carried out an amplitude analysis in order to com-
sample. pare with the primaryy— 2y analysis. Results of the analy-

Shown in Fig. 26 is ther* =~ =° effective mass distribu- sis are shown in Fig. 28 where we compare the shapes of the
tion from this data set. There is a cleapeak as well as a P+ intensities for the two data sets as well as the—D .

phase differences. Despite the rather large statistical uncer-

tainties, there is excellent agreement between these distribu-

tions.
2500
[ V. MASS-DEPENDENT FIT
I In an attempt to understand the nature of the wave
2000 observed in our experiment, we have carried out a mass-
- dependent fit to the results of the mass-independent ampli-
3 tude analysis. The fit has been carried out in e~ mass
& 1500 range from 1.1 to 1.6 Ge\f. In this fit, we have assumed
o L that theD , -wave and theP,-wave decay amplitudes are
5 resonant and have used relativistic Breit-Wigner forms for
S 1000 these amplitudes.
]
A. Procedure
500 We shall use a shorthand notatiarto stand for thepz™
i mass, i.ew=M(»n7"). Representing the mass-dependent
L . ' 1 L amplitudes foiD , andP, asV,(w) for =2 and 1, we may
0705 1.0 1.5 2.0 25 3.0 write
M(n*n0) (GeV/c?) _
Vi(w) =€ 4A (W) By (a)[ &+ by (w—wp) + ¢ (w—wf) ]
FIG. 26. Thew" 7 «° effective mass distribution for events (2
with the topology of three forward charged tracks, one recoil
charged track, and two photon clusters consistent witf.a whereq is the 7~ breakup momentum at mags Here ¢,
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% 200 | . _» 23 12
2 200 §§ N { % B(q)__2(2—15)2+9(22—5)
L

100 % | 4 :

} B4(Q):>(Zz_45z+ 105)%+ 25z(2z— 21)?
o A
s T T T AICI)(D+I- 0) ! wherez=(q/qg)? andgg=0.1973 GeV¢ corresponding to

1 fermi. Note thatB,(q)=1 asq=».
The relativistic Breit-Wigner functions can be written

1.5 §
K re 1. _
£ - Ay(w)= € sin 5,(w) (4)
8 T Iy(w)
2 o- 3
G § % where T} is the nominal width(mass independentand
a % I',(w) is the mass-dependent width given by
o
& 0.5 0 2
,_All B= /o) | e ©
0.0 1 T T A T T T Whereq|0 is the breakup momentum evaluateadvat W|O. The
11 1.2 13 1.4 15 1.6 1.7 1.8 mass-dependent phase skiftw) is given by
M(nr) (GeV/ic?) o 5
w w
FIG. 28. Comparison of the results of the amplitude analysis for cotd(w)= [TW)} [ 1- ( ﬁ> } (6)
the »— "7~ «° (filled triangles and the— 2y (open circley ! Wi
samples. The ordinate scale for tRe intensity is for thep—2y
fit only. Thus, only the shapes of the, intensity distributions
should be compared. ots (W)_( W ) ( QPNBI(QP) 2 (WP)Z—(W)Z -
! wP/\'a/[Bi(@]  wr?

and the overall phase for tHevave amplitude is
is the production phas@nass independehtassociated with
a wavel. The quantitiesA;(w) andB,(q) are the standard D=+ 5 (w). (8)

relativistic Breit-Wigner form and the barrier factor, respec-y . ~re dealing with two wave® . andD . . and can onl

tively, and are given below. The square-root factor has been a 9 ' o . y

introduced primarily to take into account possible deviationg"€8SUrép= b~ ¢;. Thus the phase difference being mea-

from the standard Breit-Wigner form, at valueswfaway sured experimentally, corresponds to

from the resonance magdenoted byw/). The overall nor- AD=Dy— D=+ So(W)— 51 (W). (9)

malization of a wave is governed fay, while the constants

b, andc, allow for deviations in the mass spectra from the Finally, the experimental mass distribution for each whige

Breit-Wigner form. The constants , b, andc, are all real, given by

so that the square-root factor does not affect the rapidly vary-

ing phase implied by the standard Breit-Wigner fdtm. %: IV,(w)|2pq (10)
The barrier function$37], which are real, are given by dw

wherepqis the phase-space factor for whiglis the breakup
momentum of theps~ system(or of the final-state protgn
5We have tried a linear dependence in mass for the productioi) the overall center-of-mass frame in Reactiah Since the
phase; the fits did not require it. problem here is for a giver's, all other relevant factors,
SFor a Breit-Wigner form with a constant width, the phase rises 9ancluding that of the beam flux, have been absorbed into the
degrees over one full width centered at the resonance mass. amplitude itself, i.e. the constands, b, andc;.
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The input quantities to the fit included, in each mass bin: TABLE Il. Comparison of the results of E852 and the Crystal
the P_ -wave intensity; thd , -wave intensity; and the phase Barrel for the parameters of thE“=1"" resonance.
difference A® [the relevant formulas are given i®) and . : .
(10)]. Each of these quantities was taken with its efior Mass (MeVt?) Width (MeVi/c?)
c!udlng correlayon)sfr_om the result of the amphtudg analy- 52 1370+ 16" % 385+ 40" %5,
sis. One can view this fit as a test of the hypothesis that th% 50

- . . . . rystal Barrel 140620+ 20 310=50"3,
correlation between the fittdékwave intensity and its phase
(as a function of magscan be fit with a resonant Breit-

Wigner amplitude. for the non-resonant hypothesis—but in this case the produc-

We find that the fit does not improve significantly when (o phase must have a very rapid variation with nfaBar-
the P, wave is modified from the Breit-Wigner form, and hermore, for this non-resonant hypothesis, one must also
hence seb, andc,=0 for the final fit. We also note that the explain the correlated structure observed in tRe

magnitudes of the quantitids, andc, in the final fit corre-  jntensity—a structure which is explained naturally by the
spond to a small deviation of tHe__-wave intensity of the |agonance hypothesis.
order of 1%. An attempt39] to explain our result as the interference of
a non-resonant Deck-type background and a resonance at
B. Results 1.6 GeVk? can reproduce this correlatiofEvidence for an
Results of the fit are shown as the smooth curves in FigsXotic meson with a mass near 1.6 Ge¥has been re-
17(a)-17(c). The mass and width of tha”C=2+" state ported[40] by our collaboration).However, th|s'explanat|on
[Fig. 17@] are (131Z1+2) MeVic? and (12Z2 is excluded because of _the re_cent observatmﬁj by the
+2) MeV/c? respectively[38]. (The first error given is sta- Cr_ystal Barrel Collaboratlon which _conflrms the_p_res_ence of
tistical and the second is systematithe mass and width of this state prpduced in nqcleon—antmucleon ar)n|h|lat|on. The
the JP°=1* state as shown in Fig. 1) are (1370 Deck—effect is a m(_aghanlsm applicable to peripheral produc-
+165) MeV/c? and (385-40°%5) MeV/ic? respec- Uon but not to annihilation.

; PC_q1—+
tively. Shown in Fig. 17) are the Breit-Wigner phase de- Our f|tte_d parameters for tha""=1 resonance are
pendences for tha, (1320) (line 1) and theP, waves(line compared in Table Il with the values reported by the Crystal

2); the fittedD , — P, production phase differenaéine 3); ?E?lr[el ?ggg;';ﬁgt?f]ihmatcﬁ);ﬁ?,r;ﬂin:ere&?éf t??;[t‘ﬁt)heir
and the fittedD , — P, phase differencéline 4). [Line 4, N 8&m 9

. T . — O . .
which is identical to the fitted curve shown in Fig.(&) is data in the annihilation channgin—a" a~. Their fitted
obtained as line 2line 2+ line 3.] parameters are very consistent with those determined from

The systematic errors have been determined from consid!’ mass-dependent analysis.
eration of the range of solutions possible because of the am-

biguous solutions in the PWA. Since there are 8 ambiguous
solutions per mass bin and we are fitting over 12 mass bins, 1. Sensitivity to the D-wave intensity distribution function

it is clearly impossible to try all & possible combinations. | der to determine th itivity of th its of
Instead, we have fit some 16ombinations where the values n order to determine the sensilivity of the results ot our
gass-dependent analysis to the exact function being used to

C. Other systematic studies

to be fitted in each mass bin have been chosen at rando . . S )
from among the 8 ambiguous PWA solutions. The resultin it the D-wave intensity distribution we have redone the fit
: sing two other hypotheses. First we have performed a fit in

fits generally clump into a group with reasonable values of "> : N
Y2/DOF(=2) and into a group with poor values. The sys- which the mass-dependent amplitude is given by(Bqg.but

tematic errors on the mass and width given above are take‘ﬁ'tg blzchlo' Sgctohnd'B"l"etth\?vV? tall:dang:bcz:_O |fn eq._(2) ;
from the extremes observed for the solutions with reasonabl@n¢ &0 replacea ihe |a “yYeISskopt barrier functions for
values of y?/DOF. The central values quoted above areeach wave by the factay. Although the resulting fits are

taken from a fit which uses the average values of the inpu'?oorer in quality, we find that the parameters of t_he fit do not
. ; change by amounts greater than the systematic uncertainty

parameters in each bin. 4

The fit to the resonance hypothesis hagDOF of 1.49. described above.
The fact that the production phase difference can be fit by a
mass-independent constafaf 0.6 rad is consistent with
Regge-pole phenomenologin the absence of final-state in-  As shown in Sec. IV C, th®, wave observed in our data
teractions. If one attempts to fit the data with a non-resonaris not consistent with “leakage.” That is, the analysis shows
(constant phageP, wave, and also postulates a Gaussianthat the intensity and phase motion of tRe wave do not
intensity distribution for theP_ wave, one obtains a very have the characteristics of the wave which is artificially gen-
poor fit with ay?/DOF of 7.08. Finally if one allows a mass- erated from a puréD, wave due to possible incomplete
dependent production phasey&DOF of 1.55 is obtained knowledge of the resolution or detection inefficiency. This

2. Sensitivity to leakage

"The signature factor and the residue functions are at most ®The fit requires a linear production phase difference with a slope
t-dependentnot mass dependentsee Ref[30]). of —4.3 rad/GeV.
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does not preclude the possibility of some leakage being
present in the data and distorting the results of the mass

600

dependent analysi#1DA). In this section, we describe a test ‘o C 1P, 3 a)
which has been carried out to study the sensitivity of our E 400 |- 3
MDA results to possible residual leakage being presentinthe 4 N
data. 2 200F L
The fit which has been carried out is a mass dependent £ C
partial wave analysisMDPWA). In such a fit, the PWA is L% 0
carried out as in Section IV but instead of carrying it out — —~ e o S I R S B B R R
separately for eacly™ mass bin, all bins are fit simulta- “2 x 1031 D, I° b)
neously and are tied together with a mass-dependent function 3 15| *
for each partial wave. That is, the extended maximum like- (j -
lihood function of the form given by E¢B16) is generalized e 10~
to include mass dependence: 2 5 B
2 L
n w 0 PRI N TN SO T N Y N E B BRI |
|n£oc§i: In1(Q; ,wi)—J dQdwz(Q,w)l(Q,w). g - 20, - D) o
(1D g Or
& C
The free parameters in the fit include, in addition to the am- £ 4F —+
plitudes of the partial waves, the Breit-Wigner masses, f) B
widths, and intensities as well as mass-independent produc- Jc:"é » :—| | | | | |
tion amplitude phases. T - — '1.2' e '1.4' = 6

For simplicity, we have taken the Breit-Wigner form of
Eqg. (2) to describe each of the partial waves. A common

mass and width were used for tBe, , D_, andD, partial FIG. 29. The fit results of the MDPWAcurves and of one

waves. Similarly, thé>,, P_, andP, waves were assumed solution for the mass independent PVigkossesfor the 77~ sys-
to be described by a common mass and width. Sveave  tem: (a) P, , (b) D, intensities and(c) their relative phase

was assumed to have its own mass and width. The constanisp(P, —D.). (a) also shows the contributions of the 1 signal
b, andc, of Eq. (2) were taken to be zero for tHe,y, D _, intensity (1), the sum of the leakage arfdignal-leakagginterfer-
P., Py, P_, and S, waves. Each wave was allowed to ence term2) and the complete 1" wave (3).
have its own normalization constant and production phase.
In order to include leakage in the fit, a leakage amplitude
P'f with the characteristics obtained in the leakage study of
Sec. IV C was defined. This amplitude was taken to have the
shape of thdd , amplitude as well as its Breit Wigner phase The results of the fit are given in Table Il where they are
dependence. Its production phase was fixeds®t)=80°.  compared with those of the combined PWA and mass depen-
This amplitude was then combined coherently with Ehe  dent fit. The results are quite compatible when one takes into
signal to given an effective amplitude given by the expres-account the systematic errors. The biggest difference is in the
sion: fitted width of theP . state which is larger for the MDPWA.
In Fig. 30 are shown the fitted values for the mémsgve
PEM(w)=P. (w)+ P (w) (12 1) and the width(curve 2 of the 1~ * resonance as well as
the change in I as a function ofR; (the leakage fraction
where We note that the mass and width are very insensitive up to
values of R;=5%, above which the fit becomes very un-
likely.

M(nr) (GeV/c® )

al

R,=
| ag—

. (14)

PUI(w)=a e *" Ay (wiw,,I'»)By(q)

TABLE lll. Comparison of the results of the PWA combined
with a separate mass dependent (lDF) with those of the
MDPWA with leakage.

X[1+b; (w—wd)+bs (w—w9?]*2 (13

The results of the MDPWA fit are shown as the smooth
curves in Fig. 29. Also shown as the points with error bars Mass Width
are the results of the mass-independent PWA. It is clear tha@eson (MeV/c?) (MeV/c?)
the two analyses give consistent results. Shown in Figg)29 —

eff . . . a, (1320) E852 (PWA+MDF) 1317t£1*2 127+2+2
are theP%'' intensity (curve 3 along with theP, signal 2
intensity (curve 1. The leakage is shown in curve 2 as the E852(MDPWA) 1313+1 119+2
sum of the leakage intensity and tfggnal-leakagginter- 7, (1400) E852 (PWA+MDF) 1370+1635 385+40' 53
ference term. The fitted leakage contribution is equaRto E852(MDPWA) 1369+ 14 51740
=0.018 where we have defined
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2 APPENDIX A: PARTIAL-WAVE FORMULAS

\ / In this appendix, the angular distributions are derived for
0 Lo T the »7~ system produced in Reactigh). The distributions
0.00 0.01 0.02 0.03 0.04 are given both in terms of the moments and the amplitudes in
Ik/D+) the reflectivity basis. For a system consistingSpP and D

waves, explicit formulas for the moments as functions of the
FIG. 30. Dependence of the'T signal parametera} (1), I  partial waves are also given.

wl@ ) and T (7 F) in (GeVE )

e

(2) and the change in the log(Likelihood) function relative to its In the Gottfried-JacksofGJ) frame, the amplitudes may
mlnlmum(3) on the Ieakage contributidﬁ| at ¢|k:80°. The black be expanded in terms of the partia| waves for m_ Sys-
points are at the position of the likelihood extremum. tem:

D. Cross section estimate

In order to estimate the cross section for production of the U (Q)= 2 VimikAim () (A1)
observedP , state]which we now refer to asr;(1400)], we Im
have fitted published total cross sectiop4l-51 for
a, (1320) production to a function of the formr whereV,, stands for the pr(_)duction amplitude for a state
=A(p/p,) "+ B, wherep is the beam momentum amg is lm) and k represents the spin degrees of freedom for the
set to 1 GeVé. Experiments with poora; (1260)/ iqitial anq final nucleon§K= 1,2 for spin-npnflip E-ll’ld spin-
a; (1320) separation were excluded from the fit. The best fifliP a@mplitudes. Ain(Q2) is the decay amplitude given by
gave: A=5099+221ub; n=1.88-0.03; and B=39.2 STT1
+2.0ub. From this we estimate the total cross section for _ I% _ym
a, (1320) production at 18.2 Ge¥/to be 61.12.2ub. Aim(€1) 47 Pmo($0.0=YI()  (A2)
This is in good agreement with the result of 62.56
+2.92ub measured47] at 18.8 GeVe. where the angleQ = (6, ¢) describe the direction of thgin
From the results of our PWA, we find that, in thgr~  the GJ frame. Itis noted, in passing, that the sidiinction
mass range from 1.10 to 1.58 Ge¥/there are 60,332 implicit in (A2) is related to the associated Legendre poly-
+2,060D ., events, and there are 3,321,245P, events. homial via
Here the error for the number d, events is statistical
and the error for the number &, events includes uncer- | o [(=mt
tainties due to ambiguities. One thus obtaieg7 p dmo(0)=(—) (I+m)! Pi(cos0). (A3)
—pmry (1400)* BR(7r; (1400)— 7~ )=0.49+0.19ub.

The angular distribution is given by
VI. SUMMARY AND CONCLUSIONS

In this paper, we have discussed the details of the ampli- Q)= |U(Q)% (A4)
tude analysis of data from Reacti@h. Interference between k

D-wave andP-wave amplitudes produced with natural parity

exchange is required in order to explain the data. Using thi$t should be emphasized that the nucleon helicities are exter-
interference, we have shown that tRewave phase has a nal entities and the summation &iis applied to the absolute
rapid variation with mass and that this phase variatiorsquare of the amplitudes. A complete study of #e~ sys-
coupled with the fittedP-wave intensity distribution is well- tem requires four variablesM(z7~), —t and the two
fitted by a Breit-Wigner resonance with mass and width ofangles in{). The distribution(A4) is therefore to be applied
(1370=16'3) MeV/c? and (385-40%3) MeVic? re-  to agiven bin ofM(»7~) and of —t.

spectively. Since #-wave resonance in thew system has The angular distribution may be expanded in terms of the
JPC=1"" it is manifestly exotic. The exact nature of the momentsH(LM) via

observed state awaits further experimentation.

2L+1 L

?) H(LM)Dyo(¢,6,00  (A5)
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21"+ 1)1 " production vertex is in reality a time-reversed process in
H(LM)= IE 5771 ] Pmm(I'M’LM[Im)(I"0LO]I0) which a state of arbitrary spin-parity decays into a pitre
,,:l, beam and a particle of a given naturalitfthe exchanged
(A6)  particle
wherep is the spin-density matrix given by JN— T+ 7 (A15)
I where 7's stand for intrinsic parities. The helicity-coupling
pmm’:Ek VimkV} - (A7) amplitudeF? for this decay[52] is
J I J*
It is seen that the momenits(L M) are measurable quantities ApM)=F\Di\(¢p0p,0) (A16)
since where \ is the helicity of the exchanged particle and the
subscriptp stands for the “production” variablesvl is the
H(LM)=f dQ1(Q)D}yo(,6,0). (A8)  z-component of spid in a J rest frame. From parity conser-
vation in the decay, one finds
The normalization integral is Fl=—F, (A17)
H(00)= f dQi(Q). (A9)  Where one has used the relationships= (—)? (true for two-
pseudoscalar systeinsand z.=(—)° (natural-parity ex-

changé. The formula shows that the helicity-coupling am-
plitude F? is zero if \ is zero. Since angular momentum is
conserved, its decay into two spinless particles in the final
H*(LM)=(—)MH(L—M) (A10)  state cannot havé =0 along the beam directiofthe GJ
rest systen) i.e. the D'-function is zero unlesM =\, if
and, from parity conservation in the production process, on#,= ¢,=0. Finally, one may identify) with | andM with m,

The symmetry relations for thd’s are well-known. From
the hermiticity ofp, one gets

finds which proves(Al4).
" The modified D-functions in the reflectivity basis are
H(LM)=(—)"H(L—M). (A11)  given by
These show that thE’s are real. Di¥y(¢,0,00= O(m)[DyX(,0,0)— e(—)™D'* (¢, 60,0)].

Parity conservation in the production process can be (A18)
treated with the reflection operator which preserves all the B ] .
relevant momenta in th&matrix and act directly on the rest Itis seen that the modifie@-functions are real it=—1 and
states of the particles involved. It is important to remembeimaginary if e=+1:
that the coordinate system is always defined withytais (=) 1% _ |
along the production normal. In this case the reflection op- Dio( ¢, 60,0)=26(m)dq( #)cosme

S . - _ _ (A19)
irzt%rulﬁdsiwgi\;?; parity operator followed by a rotation by (+)D|r;<0(¢’0’0):2| H(m)dlmo( 0)sinme.
The eigenstates of this reflection operator are The overall amplitude in the reflectivity basis is now
[elm)=o(m){|Im)—e(—)™|I —m)} (A12)
U D)= Vi Am(Q) (A20)
where m
where
1
0(m)=5, m>0 . 2|+1E "
Am(®)=\/—7—Dmo($,6.0) (A1)
1
=5 m=0 (A13) and the resulting angular distribution is
=0, m<0. 1(©Q)=2 [U)?. (A22)
For positive reflectivity, then=0 states are not allowed: _ _ )
ie. It is seen that the sum involves four non-interfering terms for
e==* andk=1,2. The absence of the interfering terms of
lel0y=0 if e=+. (A14) different reflectivities is a direct consequence of parity con-

o _ _servation in the production process. We use the partial wave
The reflectivity quantum numberhas been defined so that it amplitude notation

coincides with the naturality of the exchanged particle in
Reaction(1). One can prove this by noting that the meson [110="Vio, [11-=Viy, [11.=7Vy; (A23)
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where[l] stands for the partial waveS, P, D, F andG
for1=0, 1, 2, 3 and 4.
Consider an example where the maximbi® 2. One sees

that there are in general twelve possible non-zero experimen-

tal moments:
H(00), H(10), H(11), H(20), H(21), H(22
H(30), H(31), H(32, H(40), H(41, H42
(A24)
while the partial waveH ] are, for unnatural-parity exchange
S, Po, P_, Dy, D_ (A25)
and, for natural-parity exchange,
P+1 D+- (A26)

One wave in each naturality can be set be r&lgndP, ,

for example, so that there are again twelve real parameters
(to be determined It is helpful to write down the moments

explicitly in terms of the partial waves:

H(00)=Si+P3+P2+D3+D2+P2+D2 (A27)

1 2
H(10)= — S,Pg+ —P,D
(10 1/?50 0 N oDo
1
+E(P,D,+P+D+)
H(11)= 1SOP +— ! P,D
NG N J_o
Hzo—1 D 2P2 l|:>2 P2 2D2
( )_ESO ot gPo—g(P+P%)+=Dg
1 2
7(D +D)

H(21)—1SOD +1\FPP+1DD
JI0°TT 5 N2 0 g 70

H(22)=%\[§(P2_—Pi)+%\/§(|32__

H(30)= —= (v3P,Dy—P_D_—P.D.,)

3

N
1 f3

H(31)=5 /£ (2PoD-+V3P_Do)

1 /3
H(32)=5 \[E(P_D_—P+D+)

H(40)= ED2——(D2 +D?%)

PHYSICAL REVIEW D 60 092001

1 /5
H(41):7 §D0D,

V10

2
21 21 (P=

H(42) = -D2).

APPENDIX B: MAXIMUM-LIKELIHOOD ANALYSIS

This appendix is devoted to an exposition of the experi-
mental moments, the acceptance moments and the

’ acceptance-correctddr “true” ) moments and the relation-

ships among them. Finally, the extended likelihood functions
are given as functions of the “true” and acceptance mo-
ments.

One may determine directly the experimental moments
(unnormalized as follows:

HX<LM>=2 Dol ¢i . 6,0 (B1)

where the sum is over a given numberof experimental
events in a mass bin. But this is given by, frdA8),

X<LM>:fdﬂnm)lm)DkAow,e,O) (B2)

where 7()) represents the finite acceptance of the apparatus,
and includes software cuts, if any. Frgib), one finds that

H (LM)= >, H(L'M" )W, (LML'M") (B3)
L'M’
where
"+1
V. (LML'M")= —)fdﬂn(ﬂ)

Diio(,0,0)Dy, /5(#,6,0). (B4

Note that the¥’s have a simple normalization
\PX(LML,M’):(SLL’(SMM’ (BS)

in the limit »(Q2)=1. The integral(B4) can be calculated
using a sample of “accepted” Monte CanlbIC) events. Let
N, be the number of accepted MC events, out of a totd\ of
generated MC events. Then, the integral is

2L +1
47

1

N

\IfX(LML’M’):(

X E. Dol #i ,0i:0)Dk/|,'*o(¢’i 16i,0).
(B6)

Equation(B3) shows that one can predict the experimentally
measurable momen{81), given a set of true momen{si}

and theW’s; this provides one a means of assessing the
goodness of fit by forming &2 based on the sdH,}.
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There exists an alternative method of determinikits.  for all the partial waves, corrected for finite acceptance and
For the purpose, one expands the acceptance fungti@n  angular distributions. The partial waves in turn give rise to a
in terms of the orthonormdD-functions, as follows: set of predicted momen{si}. But theH (00) is not 1 but the
total predicted number of events from the fit, i.e. one should
be using the unnormalized moments. It is possible to choose
H’s as unknowns in the fit, but the two setsk’E should be
the same ideally—this affords one an effective way of as-
whereé(LM) is given by sessing self-consistency between the chosen moments and
the partial waves.

For completeness, a short comment is given about the
extended likelihood functions. The likelihood function for

finding n events in a given bin with a finite acceptangd))
The complex conjugate is, from the defining formula abovejs defined as a product of the probabilities,

n(9>=§(2L+1>§<LM>DkA*o<¢,0,0> (B7)

1 L
f(LM)=EJ dQ7(2)Dyo(¢,60,0). (B8)

£ (LM) = (—)ME(L—M) (89) e
Lo OO

] n
e I1 (B14)
: i

so that the acceptance function can be made explicitly real

L where the first bracket is the Poisson probabilityri@vents.

77(9):% (2L+1)7(M)Re[§(LM)Dio(,6,0)} This is the so-called extended likelihood function, in the
(B10) sense that the Poisson distribution foitself is included in
the likelihood function. Note that the expectation vafutor

where nis given by
= > —
nM)=2, M>0, nocJ 1(Q) 7(Q)dQ. (B15)
=1, M=0,
The likelihood functionl can now be written, dropping the
=0, M<O0. (B11)  factors depending on alone,

One sees that(M)=46%(M) whered(M) is defined in Eq.

(A13). Lo
A set of ¢(LM) specifies completely the acceptance in the

problem. The normalization for the acceptance function has ¢

been chosen so that a perfect acceptance is given(by)

H 1(Q))

exp[ - J 1(Q) 7(Q)dQ

“log” of the likelihood function now has the form,

=1 and&(LM) =6, gSmo- The &(LM)’s can be measured n
experimentally using the accepted MC events In Eocz InI(Qi)—f dQn(Q)I1(Q) (B16)
I
NX
§(LM)= ﬁE Dio(¢i,6:,0). (B12)  Wwhich can be recast in terms of t§éLM)’s
TN 5
n
Finally, substituting(B7) into (B4), one finds InCoc >, Inl(Q)— 2, (2L+1)H(LM)E* (LM)
i LM
T (LML'M")= 3 (2L"+1)&*(L"M") :
U > In1(Q)—> (2L+1)7(M)H(LM)Re&(LM).
i LM
X(LML"M”|L'M")(LOL"0|L’0). (B17)
(B13)

H(LM)’s may be used directly as parameters in the fit or

This formula shows an important aspect of §{&M) tech-  may be given as functions of the partial waves. It is interest-
nique of representing acceptance. Althou&8) involves a  ing to note that thes(LM)’s for L>L,, and|M|>M,, are
sum in whichL and M could be extended to infinity for an not needed in the likelihood fit. Note also that only the real
arbitrary acceptance, there is a cutoff if the $ef has parts of the¢(LM)’s are used in the fit.
maximal,, andM,, [see(B3)]. The formula above demon- It should be borne in mind that a set of the momdhts
strates that."<2L,, and|M"|<2M,,. may not always be expressed in terms of the partial waves.

In a partial-wave analysis, it is usually best to take a set offhis is clear if one examines the formulé&27). Consider,
the partial waves|]y, [I]- and[l],, as unknown param- for example, an angular distribution in whi¢t(10) is the
eters to be determined in an extended maximume-likelihootnly non-zero moment. But this moment is given by a set of
fit. Since there is an absolute scale in an extended maximuniaterference terms involving even-odd partial waves. So at
likelihood fit, one then has the predicted numbers of eventteast one term cannot be zero—for example, the interference
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term involving S and P-waves. But then neithéd (00) nor  The integration over the angles can be carried out easily, to

H(20) can be zero, since bof andP-waves are non-zero. obtain

One must conclude then thai@ based on the s¢H,} may

not necessarily be zero identically. f 1(Q)dQe|D|2+ |P2 (C3)

APPENDIX C: RANK OF THE DENSITY MATRIX as expected.
An assumption needed for the partial-wave analysis is that It is easy to calculate the forward-backward asymmetry

the density matrix has rank 1, i.e. the spin amplitudes do notA(F,B)=(F—B)/(F+B) (see Sec. Il

depend on the nucleon helicities. Our justification, so far, has

been that the fitted partial waves are very reasonable, that 35 |P||D|

these waves can be fitted with a very simpie mass-dependent A(F,B)=—,—CoSA®) (PE+1D) (C9
formula, that Pomeron-exchange amplitudes are in general

independent of nucleon helicities, and sv.o. . where Ad is the phase difference between tReand D

The purpose of this appendix is to point out that, under gyayes.
simple model for mass dependence of the partial waves, itis The spin density matrix is given by
possible to prove that the spin density matrix has rank 1.
Suppose that one has found a satisfactory fit under a rank-1 ) .
assumption. One can then show that, even if the problem 1(Q)=|DAR(Q)+PAQ)?=2 priAAy  (CH
involves both spin-nonflip and spin-flip at the nucleon kiK'

vertex—i.e. it appears to be a rank-2 problem—the spin der\ivhere{k,k’}z{l,Z} and “1” (“2" ) corresponds t® (P).

sity matrix in reality has a rank of 1. Although this note is - this definition. one sees that

based on the results of ogrr~ analysis, the derivation does

not depend on the decay channels; the conclusions apply ID|2 DP*

equally well to other decay channels. p:( N 2 ) (C6)
This note relies on some technicalities generally well D*P [P|

known, and so they have been presented without attributiorb K he ei | f this 2 -

The reader may wish to consult a number of preprints and/o he can work out the eigenvalues of this 2 matrix:

papers, which deal with them in some def&il,34,52-54 A={|D|2+|P|,0.. (C7)

1. Partial waves produced via natural-parity exchange One of the two allowed eigenvalues is zero, i.e. the rank of

Consider thepm~ system produced via natural-parity ex- this matrix is 1. This is the “rank-1" assumption one makes
change. It consists mainly of just two wavBs andP, in  to carry out the partial-wave analysis and is valid for a given
the a, (1320) region. Assume these are the only wavesmass bin.

Without loss of generality, the decay amplitud8g] can be Suppose now that the rank is 2, i.e.
considered real, i.e.
1(2)%|D1Ap(2) + P1Ap(2)]?+D5Ap(Q) + PoAR(Q) |2

5 .
Ap(Q)= \/Eﬁdfo( 0)sing (C8)
where subscripts 1 and 2 stand for spin-nonflip and spin-flip
5 _ _ amplitudes at the nucleon vertex for Reactidn Compar-
==\ z,v3sindcosdsing ing (C2) and (C8), one finds immediately
T ID[?=[D4[2+|D,2
Ap(Q)=\/-—vV2di( 6)sin
TN gy e P2=[Pf2+ [P 9
3
=— \/Esinesinqb. (C1) R{P*D}=R{PID}+R{P3D,}.

Since one deals with the partial waves produced only by | ot w pe the effective mass of thew~ system. If the

natural-parity exchange, one can drop the subscript'” 555 dependence is included explicitly in the formula, one
from the waves, and the angular distribution is simply 9iveNghould write, in the case of rank 1,

by

3

2 do(w,Q)

()2 DAL(Q) + PA(Q)| oc( 4W)N§D cost — oD (W)Ap(Q) + P(W)A()[?pq (C10
3
2 of H 2

+P|?sir ¢ sir? ¢°‘(477)[5|D| cos' 0 wherep is the breakup momentum of ther ™~ system in the
_ _ overall c.m. system angis the breakup momentum of the
+25BR{D* P}cosd+ |P|?]sir? 6 Sir? ¢. in the »7~ rest frame. Note that bothandqg depend orw.

(C2) Note also that thev dependences of the partial wav@sand
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P are given in the formula. Obviously, a similar expression 1.0+

could be written down for the case of rank 2. [ T e vovers
One is now ready to make the one crucial assumption for 0.6f *

a mass-dependent analysis of theand P waves: one as- & sea, .
sumes that two resonances—i® and P waves, “'g, 0.2f "o, et
respectively— are produced in both spin-nonflip and spin- + . S
flip amplitudes. One may then write, for the rank-1 case, % -0.2¢ %

D(W):aelaelﬁasinb\a 0.6t o ﬂn,,_”unuﬂ““nmuuﬂ

P(w)=be % sin g, (€19 -1.0 : . — : : ;

1.2 1.3 1.4 1.5 1.6

wherea,b and the production phaseare all real and inde- M(nr) (GeV/e?) -

pendent of thepm~ mass. In addition, one can s&&0 and FIG. 31. cosg+8,—48) as a function ofw from 1.2 to
b=0 without loss of generality. Heré, and 5, are the 1 g Geve? for «=0° (0), a=45° (+) and a=90° (0).
phase-shifts corresponding to the resonances and are highly

mass dependent. In its generic form, the Breit-Wigner forparameters foa andb of 1.0 and 0.151 are taken from the

mula is given by the usual expression mass dependent fit of Section V B as are the resonant masses
and widths'® The normalized absolute squares of the Breit-
w(z)—w2 Wigner forms are given in Fig. 32, as is the “normalized”
coto= (C12  interference term. The same quantities, as they appear in Ref.

Wol'o [1], are shown in Fig. 33. This figure shows how important

wherew, and T, are the standard resonance parameters. [f€ interference term is compared to fRavave term. Note
this note, the width is considered independentofLike- also how rapidly the interference term varies as a function of
wise, the barrier factor dependence BrandP is ignored® W in thea,(1320) region. This term, of course, is intimately

The formulas(C11) are generalized to the case of rank 2,€lated to the asymmetry in the Jackson angle and vanishes
when integrated over the angle, i.e. it does not contribute to

as follows: _
o the mass spectrufisee(C2) and(C3)]. Figure 34 shows the
D1 (w)=a,e'*1e'%sin 5, contour plot of the intensity distribution w vs. cosd; note
. the variation of the asymmetry as a functian
P,(w)=b,e'%sin§, For the last equation ifC14) to be true for any mass, the
s (C13 coefficient of cos§,— &,) or sin(é,— &,) on the left-hand side
Da(w)=a,e'“2e'%asin 5, must be equal to that on the right-hand side, so that
P,(W)=b,e% sin s, . abcosa=a;b; cosa;+ayb, cosa,
. . . (C19
Once againa;, b; and «; are real,a;=0 andb;=0, and absina=a;b; sina; +azb; sina,.

independent ofv. One finds, usingC9), Taking the sum of the squares of the two formulas above and

azzaiJrag introducing the first two equations ¢€14), one obtains:
1.0 : T
b?=b%+ b3 (C14 :
0.8(
abcog a+ 5,— 8,)=a;b; cofa;+ 5,— &) o
0.6 las,
+a2b2 COSC{2+ 5a_ 5b) EQ . .
0.4 »°+ : .
A plot of cosf+ 8,— &) as a function ofv is shown in Fig. . ’
31 for three values of, i.e. 0°, 45° and 90°. The resonance 0.21 :
0.0 L . L I=I"'n.. Hm‘wﬂ,u,?.;"jnua.
0 o o 1.2 1.3 1.4 1.5 1.6
Although simplified formulas are used in this article, the results M(nr) (GeV/c?)

given here do not change even when correct formulas are used.

Note that, to go over to a correct formulation for each wave, one FIG. 32. sif s, (¢), sifé, (+) and sind,siné,cos@+ 8,
needs to substitute the absolute value of the Breit-Wigner formula-4,) (CJ) as a function ofw from 1.2 to 1.6 GeW¢?, using
as follows: =45°,

Io | .
W sin s(w)
whereB(q) is the barrier factor and'(w) is the mass-dependent L
width. It should be noted that the correction factors are all real, by “°The value ofa as determined from this fit is 37.46°; for the
definition. purpose of illustration, one may consider 45° close enough.

sin w)——B(q)
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1.0
0.87
0.6 ;
0.4

0.2F ,ec

.
.
......

1.2 1.3 1.4 1.5 1.6
M(nr) (GeV/c?)

FIG. 33. a’sirts, (), b?sits,  (+)  and
2absin 8, sin 8, cosle+ 8,— &) (O) as a function ofwv from 1.2 to
1.6 GeVk?2, where one has assumed tlgat 1.0, b=0.20 anda
=45°,

Zalblazbz COSal COSG{2+ Zalblazbz Sin aq Sin %)
=a’bs+asb?=a3b3(cos a;+sir? a;)
+a3b3(co ay,+Sirf as) (C16)
which is recast into
0=(a;b, cosa;—a,b; cosa,)?+ (a;b, sina;

_a2b1 Sinaz)z. (C17)

It is clear that each term must be set to zero, so that

a a
b—l) cosa;= (b_z) coSa,
(C18
a) . a\ .
b, sina,= b, sina,.
Placing these back int@C15), one deduces that
a a a,
o cosa= b_l Ccosa,= b_2 coSa,
(C19
a| . a) . a\ .
o/ Sina= b, sina,= b, sina,.
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1.5,
1.0t
] A AN 7”’?
R N
= 'WN&H%M@N‘
ey
iy
\‘\\\\
) 1.5
1.0 1 4&3\

FIG. 34. Angular distribution in cog as a function ofw from
1.2 to 1.6 GeVé?, where one has assumed that 1.0, b=0.151
and «=37.46°.

a; by

=3
(C21)

a, b,

with the constraink?+y?=1.
Now one can prove that the case of rank 2 is reduced to
that of rank 1. Indeed, one sees immediately that

(Dl :X(D - (Dz):y D

P, P P, P (€22

and (C8) becomes identical t6C2).

2. Discussion

It is shown in this appendix that the problem of two reso-
nances inD, and P, in the »#~ system in(1) is—
effectively—a rank-1 problem. For this to be true, the fol-
lowing conditions have to be met:

(@) There exist two distinct resonances with different
masses and/or widths. Note that the crucial step, ftGfiv)
to (C15, depends on that fact thag— &, is non-zero and is
mass dependent.

One may take—alternately—the sum of the squares of the (b) There exists a satisfactory rank-1 fit with two reso-
two formulas above, or a division of the second by the firstnances in a given mass region, in which each amplitude for

and obtain (remembering that the’'s and b's are non-
negative real quantities

a

b,

a a;
b b,

(C20
tana=tana;=tana,.

The last equation above demands thatand «, are deter-
mined(up to =), but they have to satisfyC19. It is there-
fore clear that one must set=a,=a,. Next, one intro-
duces two new real variables=0 andy=0, given by

D, or P, has the following general form

M(w,Q)=r e %ekWE (W)A(Q) (C23

wherek={1,2} and “1” (“2” ) corresponds t®, (P.).

S (w) is the Breit-Wigner phase and highly mass dependent,
while r and o, are mass independent in the fit. Of course,
one of the twoa,’s can be set to zero without loss of gen-
erality, so that there are three independent parameters, e.g.
ri, r, anda, (these were denotegl b anda, respectively,

in the previous sectignf,(w) contains the absolute value of
the Breit-Wigner form, plus any other mass-dependent fac-
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2

tors introduced in the modeh, () carries the information do(w,Q)
pq (C24

about the rotational property of a partial wakie “dwda ~
(c) The same twd , andP, resonances are produced in
both spin-nonflip and spin-flip amplitudes, with the sameindependent of the nucleon helicities.
general form as given above—but with arbitrarys and In other words, the spin density matrix has rank 1. The
ay’s for each spin-nonflip and spin-flip amplitude. It has key ingredients for this result are that both spin-nonflip and
been shown in this appendix that only one setrgé and  spin-flip amplitudes harbor two resonancesDn and P
ay’s,i.e.rq, ryanday, is required for both spin-nonflip and and that the production phase is mass-independent. It should
spin-flip amplitudes(This is indeed a remarkable result; the be emphasized that the derivation given in this article does
rank-2 problem entails a set of six parameters, but it has beemt depend on the existence of a good mass fit; it merely
shown that the set is reduced to that consisting of just threestates that any fit with a mass-independent production phase
Therefore, the distribution function in botihand(2 is given  is necessarily a rank-1 fit. Of course, the point is moot, if

Ek M(w,Q)

by there exists no satisfactory fit in this model.
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