
PHZ4151C: Exercise 2 
Computational Physics Lab
Due February 1

For each problem you will write one or more python programs.  These programs should follow the
Python 2.7.x coding and formatting conventions outlined for our course.   You must hand in copies 
of the programs and outputs as prescribed in each problem.   

In addition, you must submit all Python programs as an archive tgz file via email to 
phz4151c@hadron.physics.fsu.edu.   Place copies of only your Python programs in a directory 
called <last_name>-exercise2/where <last_name> is your last name.  Below are the commands for 
creating, checking, and submitting archive files.

Creating archive file: 
tar   -zcvf   last_name-exercise2.tgz    last_name-exercise2/ 

Checking archive contents:  
tar -ztvf    last_name-exercise2.tgz 

Submitting via email: 
              mail -s “exercise 2”  -c <your-email>  -a last_name-exercise2.tgz  phz4151c@hadron.physics.fsu.edu 

Note: the mail command expects a message to be entered before sending the email. After 
entering the full "mail" command line one must end the message with either a "." on a

 new line then the [return] key or use the key combination [control-d] on a new line. 

1. Catalan numbers: The Catalan numbers Cn are a sequence of integers 1, 1, 2, 5, 14, 42, 132... that 
play an important role in quantum mechanics and the theory of disordered systems. (They were 
central to Eugene Wigner’s proof of the so-called semicircle law.) They are defined by 

C0 = 1 , Cn1 = 4n2
n2

Cn  .

Write a program that prints, in increasing order, all Catalan numbers less than or equal to 
ten billion. (do not use recursive methods)

For full credit turn in a copy of your final program and a copy of the output of your program.

2. The Madelung constant: In condensed matter physics the Madelung constant gives the total 
electric potential felt by an atom in a solid. It depends on the charges on the other atoms nearby 
and their locations. Consider for instance solid sodium chloride—table salt. The sodium chloride 
crystal has atoms arranged on a cubic lattice, but with alternating sodium and chlorine atoms, the 
sodium ones having a single positive charge +e and the chlorine ones a single negative charge −e, 
where e is the charge on the electron. If we label each position on the lattice by three integer 
coordinates (i, j, k), then the sodium atoms fall at positions where i + j + k is even, and the chlorine 
atoms at positions where i + j + k is odd. 

Consider a sodium atom at the origin, i = j = k = 0, and let us calculate the Madelung constant. If 
the spacing of atoms on the lattice is a, then the distance from the origin to the atom at position (i, j,
k) is 

ia2 ja 2ka2 = a i2 j 2k 2 ,
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 and the potential at the origin created by such an atom is 

V i , j , k  = ± e
4 0ai 2 j2k 2

 ,

with ε0 being the permittivity of the vacuum and the sign of the expression depending on whether 
i + j + k is even or odd. The total potential felt by the sodium atom is then the sum of this quantity 
over all other atoms. Let us assume a cubic box around the sodium at the origin, with L atoms in all
directions. Then 

V total = ∑
i , j , k=−L
not i= j=k=0

L

V i , j , k  =
e

40a
M  ,

where M is the Madelung constant, at least approximately—technically the Madelung constant is 
the value of M when L → ∞, but one can get a good approximation just by using a large value of L. 

Write a program to calculate and print the Madelung constant for sodium chloride. Use as large a 
value of L as you can, while still having your program run in reasonable time—say in a minute or 
less. 

For full credit turn in a copy of your program, the answers you calculated using it, and a 
reasonable estimate of the program run time. 

3. Binomial coefficients: The binomial coefficient nk   is an integer equal to

nk  = n !
k ! n−k  !

= n×n−1×n−2××n−k1
1×2××k

 when k ≥ 1, or n0   = 1 when k = 0. 

a) Using this form for the binomial coefficient, write a Python user-defined function 
binomial(n,k) that calculates the binomial coefficient for given n and k. Make sure your 
function returns the answer in the form of an integer (not a float) and gives the correct value of 1 
for the case where k = 0. 

b)  Using your function write a program to print out the first 20 lines of “Pascal’s triangle.” The nth 
line of Pascal’s triangle contains n + 1 numbers, which are the coefficients n0  , n1  , and so on 

up to nn  . Thus the first few lines are 

1
1  1
1  2  1
1  3  3  1
1  4  6  4  1
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c)  The probability that an unbiased coin, tossed n times, will come up heads k times is nk  /2n. 
Write a program to calculate (a) the total probability that a coin tossed n times comes up heads 
exactly k times, and (b) the probability that it comes up heads k or more times.  Test your program 
with input values n = 137 and k = 53.

For full credit turn in copies of your two programs, a copy of the program output for part (b), and 
the answers you calculated for part (c). 

4. Recursion: A useful feature of user-defined functions is recursion, the ability of a function to call 
itself. For example, consider the following definition of the factorial n! of a positive integer n: 

n ! = { 1
n×n−1!} if n = 1,

if n  1.

This constitutes a complete definition of the factorial which allows us to calculate the value of n! for
any positive integer. We can employ this definition directly to create a Python function for 
factorials, like this: 

   def factorial(n):
       if n==1:
           return 1
       else:
           return n*factorial(n-1)

Note how, if n is not equal to 1, the function calls itself to calculate the factorial of n − 1. This is 
recursion. If we now say “print(factorial(5))” the computer will correctly print the answer 
120. 

(a) We encountered the Catalan numbers Cn previously in problem 1 above. With just a little 
rearrangement, the definition given there can be rewritten in the form

Cn = { 1
4n−2
n1

C n−1 } if n = 0,
if n  0.

Write a Python function, using recursion, that calculates Cn. Use your function to calculate and 
print C110. 

(b) Euclid showed that the greatest common divisor g(m,n) of two nonnegative integers m and n 
satisfies 

g m ,n  = { m
g n , mmod n} if n = 0,

if n  0.

Write a Python function g(m,n) that employs recursion to calculate the greatest common divisor 
of m and n using this formula. Use your function to calculate and print the greatest common 
divisor of 108 and 180. 

For full credit turn in copies of your two programs and the answers you calculated using them. 
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