
PHZ4151C: Exercise 5 
Computational Physics Lab
Due Feb  22

For each problem you will write one or more python programs.  These programs should follow the
Python 2.7.x coding and formatting conventions outlined for our course.   You must hand in copies 
of the programs and outputs as prescribed in each problem.   

In addition, you must submit all Python programs as an archive tgz file via email to 
phz4151c@hadron.physics.fsu.edu.   Place copies of only your Python programs in a directory 
called <last_name>-exercise4/where <last_name> is your last name and use similar command as 
provided in earlier exercises.

1. Floating point precision:

(a) Write a program to find the largest positive floating-point number x, to within a factor of 2, such
that when you add the value x to the value 1.0 the resulting value is 1.0.   The value obtained for x 
is an approximation (to within a factor of two) for the precision of 64 bit floating point numbers.  

(b) Modify your program to use numpy floating point data types: float16, float32, float64, and 
float128.  Obtain the floating point precision, to within a factor of two, for all of the above float data
types.   The statement " var = numpy.float128(1.0)" will create a 128 bit floating point variable with 
the value 1.0.

For full credit, turn in a printout of your program and the results from for the various data types in
part(b). 

2. Calculating derivatives: 

Suppose we have a function f (x) and we want to calculate its derivative at a point x.  We can do 
that with pen and paper if we know the mathematical form of the function, or we can do it on the 
computer by making use of the definition of the derivative:

df
dx

=lim
 0

f x− f x 


.

On the computer we can’t actually take the limit as δ goes to zero, but we can get a reasonable 
approximation just by making δ small. 

(a) Write a program that defines a function f(x) which returns the value x(x − 1).  In the same 
program define a generic derivative function of a real variable which takes as function arguments: 
the name of a function, a value of x for which the derivative is calculated at, and a value for the 
limit variable δ.   Next have your program calculate and print the derivative of the function  f(x) at 
the point x = 1 using the formula above with δ = 10−2. Calculate the true value of the same 
derivative analytically and compare with the answer your program gives. The two will not agree 
perfectly. Why not?

(b) Create a second program which calculates the derivative for δ = 10−2, 10−4, 10−6, 10−8, 10−10, 10−12, 
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10−14. 10−16, and 10−18.  You should see that the accuracy of the calculation initially gets better as δ 
gets smaller, but then gets worse again. Why is this?  

For full credit, turn in a printout of your two programs, the results from the various calculations,  
and your answer to the questions in part (a) and part (b)

We will look at numerical derivatives in more detail later in the course, when we will study 
techniques for dealing with these issues.

3. Simpson’s rule:

(a) Write a program to calculate an approximate value for the integral ∫
0

2

x4−2x1dx  from 

Example 5.1, but using Simpson’s rule with 10 slices instead of the trapezoidal rule.

(b) Run the program and compare your result to the known correct value of 4.4. What is the 
fractional error on your calculation?

(c) Modify the program to use a hundred slices instead, then a thousand. Note the improvement in 
the result. How do the results compare with those from Example 5.1 for the trapezoidal rule with 
the same number of slices?

For full credit turn in a printout of your program, plus your results and a brief discussion of how 
they compare with the trapezoidal rule. 

4. Gaussian error function:

Consider the integral

E x =∫
0

x

e−t
2

dt .

(a) Write a program to calculate E(x) for values of x from 0 to 3 in steps of 0.1. Choose the 
trapezoidal method for performing the integral and choose a suitable number of slices.

(b) When you are convinced your program is working, extend it further to make a graph of E(x) as 
a function of x.  If you want to remind yourself of how to make a graph, you should consult Section
3.1, starting on page 88.

Note that there is no known way to perform this particular integral analytically, so numerical 
approaches are the only way forward.

For full credit turn in a printout of your program, plus a printout of your graph from part (b) .
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