
PHZ4151C: Exercise 7 
Computational Physics Lab
Due Tuesday March 26

For each problem you will write one or more python programs.  These programs should follow the
Python 2.7.x coding and formatting conventions outlined for our course.   You must hand in copies 
of the programs and outputs as prescribed in each problem.   

In addition, you must submit all Python programs as an archive tgz file via email to 
phz4151c@hadron.physics.fsu.edu.   Place copies of only your Python programs in a directory 
called <last_name>-exercise6/where <last_name> is your last name and use similar command as 
provided in earlier exercises for submission.  

1. Wien’s displacement constant:  Planck’s radiation law tells us that the intensity of radiation per 
unit area and per unit wave- length λ from a black body at temperature T is

I  =
2 hc2−5

ehc / kBT−1
,

where h is Planck’s constant, c is the speed of light, and kB is Boltzmann’s constant.

a) Show by differentiating that the wavelength λ at which the emitted radiation is strongest is the 
solution of the equation

5e−hc / k BT hc
 k BT

−5 = 0.

Make the substitution x = hc/λkBT and hence show that the wavelength of maximum radiation 
obeys the Wien displacement law:

max = b /T

where the so-called Wien displacement constant is b = hc/kBx, and x is the solution to the nonlinear 
equation

5e−x x−5 = 0 .

b) Write a program to solve this equation to an accuracy of ε = 10−6 using the binary search method,
and hence find a value for the displacement constant. Use the scipy module to obtain values for the 
parameters: h, c, kB.   See "pydoc scipy.constants".

c) The displacement law is the basis for the method of optical pyrometry, a method for measuring 
the temperatures of objects by observing the color of the thermal radiation they emit. The method 
is commonly used to estimate the surface temperatures of astronomical bodies, such as the Sun. 
The wavelength peak in the Sun’s emitted radiation falls at λ = 502 nm. From the equations above 
and your value of the displacement constant, estimate the surface temperature of the Sun.

For full credit turn in your derivation for part (a), a printout of your finished program, and your 
results for in parts (b) and (c).
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2. The roots of a polynomial:  Consider the sixth-order polynomial 

P(x) = 924x6 − 2772x5 + 3150x4− 1680x3 + 420x2 − 42x + 1. 

There is no general formula for the roots of a sixth-order polynomial, but one can find them easily 
enough using a computer. 

a)  Write a program which obtains a polynomial function, its derivative, and a plotting range
from the user.   The program should then plot the given polynomial function.  The program 
should then ask the user to input an initial value, then determine and print out the root of 
the polynomial, repeating this process for additional root finding until the user decides to 
quit.  The program should accurately solve for the root value to at least ten decimal places 
using Newton’s method.   The purpose of the plot is to aid the user in determining an initial 
input value for finding the appropriate root(s) of the polynomial.

b) Use your program to find the six roots of the polynomial P(x) in the range x = {0,  1}.

Note that the polynomial P(x) in this example is the sixth Legendre polynomial mapped onto the 
interval from zero to one.

For full credit turn in a print out your graph, a printout of the program and its output.

3. The Lagrange point:  There is a magical point between the Earth and the Moon, called the L1 
Lagrange point, at which a satellite will orbit the Earth in perfect synchrony with the Moon, 
staying always in between the two. This works because the inward pull of the Earth and the 
outward pull of the Moon combine to create exactly the needed centripetal force that keeps the 
satellite in its orbit. Here’s the setup:

a) Assuming circular orbits, and assuming that the Earth is much more massive than either the 
Moon or the satellite, show that the distance r from the center of the Earth to the L1 point satisfies

GM
r 2

−
Gm

R−r 2
= 2 r ,

where M and m are the Earth and Moon masses, G is Newton’s gravitational constant, and ω is the 
angular velocity of both the Moon and the satellite.  Obtain the value of G from the scipy module.

b) The equation above is a fifth-order polynomial equation in r (also called a quintic equation). 
Such equations cannot be solved exactly in closed form, but it’s straightforward to solve them 
numerically. Write a program that uses either Newton’s method or the secant method to solve for 
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the distance r from the Earth to the L1 point. Compute a solution accurate to at least four significant
figures.

The values of the various parameters are:

M = 5.974 × 1024 kg,  m = 7.348 × 1022 kg, 
R = 3.844×108 m,       ω = 2.662 × 10−6 s−1.

You will also need to choose a suitable starting value for r, or two starting values if you use the 
secant method.

For full credit turn in your derivation for part (a), a printout of your finished program and your 
results for in part (b).

4. Mass on two springs:  As a simple example of the usefulness of the root finding techniques we 
will attempt to solve a deceptively simple problem that does not have an analytic solution, namely 
that of a mass suspended between two springs as shown above.

The basic problem is to find the value of θ at which this system will be in equilibrium.  For our 
present purposes we will use the following values:

m      5 kg                mass of the object 
Lo      0.3 m              half the distance between the two supports & spring rest length
k       1000 N/m      spring constant 
g        9.81 m/s2        acceleration due to gravity
 
Given the information above, derive the following equation that can be
solved to find the equilibrium  angle θ:

tan −sin −mg /2k Lo = 0

The physical problem is to find the angle of the spring when the above system is in equilibrium.  If 
we assume that we can determine the angle to an accuracy of  1/1000 of a degree, then we would 
like a numerical technique that provides us with at least that much precision.

One way to accomplish this is to search for the zero of the function in equation above.   We can 
accomplish this using any one of the methods described in class.  Furthermore if we examine the 
progression of the estimates obtained from our root finding methods and continue to iterate until 
the change in consecutive estimates is below the desired precision, we can get a result that has a 
known accuracy.  

(a) Write a program which utilizes the Bisection Method to solve this problem.  Implement the 
Bisection Method as a function which returns a list containing the root value and the number of 
iterations to determine the root to a desired accuracy.  You should obtain a value near 30 degrees.

(b) Once you are satisfied with your program from part (a), implement additional root finding 
functions for the Newton Raphston Method, False Position Method, and Secant Method.  Modify 
your program to solves the two spring problem using all four methods: Bisectional,  False Position, 
Newton-Raphson, and Secant Methods.  Compare the results given by all methods. Do they obtain 
the same roots?   Do they have the same rate of convergence to the answer?

For full credit turn in a printout of your finished program, the derivation of the equation f(θ), and 
your results from parts (b).

θ

m

the distance r from the Earth to the L1 point. Compute a solution accurate to at least four significant
figures.

The values of the various parameters are:

M = 5.974 × 1024 kg,  m = 7.348 × 1022 kg, 
R = 3.844×108 m,       ω = 2.662 × 10−6 s−1.

You will also need to choose a suitable starting value for r, or two starting values if you use the 
secant method.

For full credit turn in your derivation for part (a), a printout of your finished program and your 
results for in part (b).

4. Mass on two springs:  As a simple example of the usefulness of the root finding techniques we 
will attempt to solve a deceptively simple problem that does not have an analytic solution, namely 
that of a mass suspended between two springs as shown above.

The basic problem is to find the value of θ at which this system will be in equilibrium.  For our 
present purposes we will use the following values:

m      5 kg                mass of the object 
Lo      0.3 m              half the distance between the two supports & spring rest length
k       1000 N/m      spring constant 
g        9.81 m/s2        acceleration due to gravity
 
Given the information above, derive the following equation that can be
solved to find the equilibrium  angle θ:

tan −sin −mg /2k Lo = 0

The physical problem is to find the angle of the spring when the above system is in equilibrium.  If 
we assume that we can determine the angle to an accuracy of  1/1000 of a degree, then we would 
like a numerical technique that provides us with at least that much precision.

One way to accomplish this is to search for the zero of the function in equation above.   We can 
accomplish this using any one of the methods described in class.  Furthermore if we examine the 
progression of the estimates obtained from our root finding methods and continue to iterate until 
the change in consecutive estimates is below the desired precision, we can get a result that has a 
known accuracy.  

(a) Write a program which utilizes the Bisection Method to solve this problem.  Implement the 
Bisection Method as a function which returns a list containing the root value and the number of 
iterations to determine the root to a desired accuracy.  You should obtain a value near 30 degrees.

(b) Once you are satisfied with your program from part (a), implement additional root finding 
functions for the Newton Raphston Method, False Position Method, and Secant Method.  Modify 
your program to solves the two spring problem using all four methods: Bisectional,  False Position, 
Newton-Raphson, and Secant Methods.  Compare the results given by all methods. Do they obtain 
the same roots?   Do they have the same rate of convergence to the answer?

For full credit turn in a printout of your finished program, the derivation of the equation f(θ), and 
your results from parts (b).

θ

m


