
PHZ4151C: Exercise 9 
Computational Physics Lab
Due Friday April 12

For each problem you will write one or more python programs.  These programs should follow the
Python 2.7.x coding and formatting conventions outlined for our course.   You must hand in copies 
of the programs and outputs as prescribed in each problem.   

In addition, you must submit all Python programs as an archive tgz file via email to 
phz4151c@hadron.physics.fsu.edu.   Place copies of only your Python programs in a directory 
called <last_name>-exercise8/where <last_name> is your last name and use similar commands as 
provided in earlier exercises for submission.

1.  The Lotka–Volterra equations:  The Lotka–Volterra equations are a mathematical model of 
predator–prey interactions between biological species.  Let two variables x and y be proportional 
to the size of the populations of two species, traditionally called “rabbits” (the prey) and “foxes” 
(the predators).  You could think of x and y as being the population in thousands, say, so that x = 
2 means there are 2000 rabbits.  Strictly the only allowed values of x and y would then be 
multiples of 0.001, since you can only have whole numbers of rabbits or foxes.  But 0.001 is a pretty 
close spacing of values, so it’s a decent approximation to treat x and y as continuous real numbers 
so long as neither gets very close to zero.

In the Lotka–Volterra model the rabbits reproduce at a rate proportional to their population, but 
are eaten by the foxes at a rate proportional to both their own population and the population of 
foxes:

dx
dt

=  x− x y

where α and β are constants. At the same time the foxes reproduce at a rate proportional the rate at
which they eat rabbits—because they need food to grow and reproduce—but also die of old age at 
a rate proportional to their own population:

dy
dt

=  x y− y

where γ and δ are also constants.

a) Write a program to solve these equations using the fourth-order Runge–Kutta method for 
the case α = 1, β = γ = 0.5, and δ = 2, starting from the initial condition x = y = 2.  Have 
the program make a graph showing both x and y as a function of time on the same axes 
from t = 0 to t = 30.  (Hint: Notice that the differential equations in this case do not 
depend explicitly on time t—in vector notation, the right-hand side of each equation is a 
function f (r) with no t dependence.  You may nonetheless find it convenient to define a 
Python function f(r,t) including the time variable, so that your program takes the same form 
as programs given chapter 8.  You don’t have to do it that way, but it can avoid some 
confusion.  Several of the following exercises have a similar lack of explicit time-
dependence.)

b) Describe in words what is going on in the system, in terms of rabbits and foxes.

For full credit turn in a printout of your finished program and graph from part a) and the 
discussion from part b).

PHZ4151C: Exercise 9 
Computational Physics Lab
Due Friday April 12

For each problem you will write one or more python programs.  These programs should follow the
Python 2.7.x coding and formatting conventions outlined for our course.   You must hand in copies 
of the programs and outputs as prescribed in each problem.   

In addition, you must submit all Python programs as an archive tgz file via email to 
phz4151c@hadron.physics.fsu.edu.   Place copies of only your Python programs in a directory 
called <last_name>-exercise8/where <last_name> is your last name and use similar commands as 
provided in earlier exercises for submission.

1.  The Lotka–Volterra equations:  The Lotka–Volterra equations are a mathematical model of 
predator–prey interactions between biological species.  Let two variables x and y be proportional 
to the size of the populations of two species, traditionally called “rabbits” (the prey) and “foxes” 
(the predators).  You could think of x and y as being the population in thousands, say, so that x = 
2 means there are 2000 rabbits.  Strictly the only allowed values of x and y would then be 
multiples of 0.001, since you can only have whole numbers of rabbits or foxes.  But 0.001 is a pretty 
close spacing of values, so it’s a decent approximation to treat x and y as continuous real numbers 
so long as neither gets very close to zero.

In the Lotka–Volterra model the rabbits reproduce at a rate proportional to their population, but 
are eaten by the foxes at a rate proportional to both their own population and the population of 
foxes:

dx
dt

=  x− x y

where α and β are constants. At the same time the foxes reproduce at a rate proportional the rate at
which they eat rabbits—because they need food to grow and reproduce—but also die of old age at 
a rate proportional to their own population:

dy
dt

=  x y− y

where γ and δ are also constants.

a) Write a program to solve these equations using the fourth-order Runge–Kutta method for 
the case α = 1, β = γ = 0.5, and δ = 2, starting from the initial condition x = y = 2.  Have 
the program make a graph showing both x and y as a function of time on the same axes 
from t = 0 to t = 30.  (Hint: Notice that the differential equations in this case do not 
depend explicitly on time t—in vector notation, the right-hand side of each equation is a 
function f (r) with no t dependence.  You may nonetheless find it convenient to define a 
Python function f(r,t) including the time variable, so that your program takes the same form 
as programs given chapter 8.  You don’t have to do it that way, but it can avoid some 
confusion.  Several of the following exercises have a similar lack of explicit time-
dependence.)

b) Describe in words what is going on in the system, in terms of rabbits and foxes.

For full credit turn in a printout of your finished program and graph from part a) and the 
discussion from part b).

mailto:phz4151c@hadron.physics.fsu.edu


2. The Lorenz equations: One of the most celebrated sets of differential equations in physics is the 
Lorenz equations: 

dx
dt

=  y− x , dy
dt

= rx− y−xz , dz
dt

= xy−bz

where σ, r, and b are constants. (The names σ, r, and b are odd, but traditional—they are always 
used in these equations for historical reasons.) 
These equations were first studied by Edward Lorenz in 1963, who derived them from a simplified 
model of weather patterns.  The reason for their fame is that they were one of the first 
incontrovertible examples of deterministic chaos, the occurrence of apparently random motion even 
though there is no randomness built into the equations. 

a)  Write a program to solve the Lorenz equations for the case σ = 10, r = 28, and b = 8/3 in 
the range from t = 0 to t = 50 with initial conditions (x, y, z) = (0, 1, 0).  Have your program 
make a plot of y as a function of time.  Note the unpredictable nature of the motion. (Hint: If 
you base your program on previous ones, be careful.  This problem has parameters r and b 
with the same names as variables in previous programs—make sure to give your variables 
new names, or use different names for the parameters, to avoid introducing errors into your 
code.) 
b)  Modify your program to also produce a plot of z against x.  You should see a picture of 
the famous “strange attractor” of the Lorenz equations, a lop-sided butterfly-shaped plot 
that never repeats itself. 

For full credit turn in a printout of your finished program and the two graphs which the program 
generates.

3. The Nonlinear Pendulum: Building on the results from Example 8.6 in chapter 8, calculate the 
motion given the nonlinear equations of motion for a pendulum:

d 2
dt 2

= −
g
L
sin

a) Write a program to solve the two first-order equations obtained from the above second-
order equation, using the fourth-order Runge–Kutta method for a pendulum with a L=10 
cm arm.  Have the program initialize the starting angle from a value obtained on the 
command line(i.e. use the sys module). Use your program to calculate the evolution of the 
angle θ for small starting angles over several periods of the pendulum. Use θ = 10◦ from the 
vertical as your small starting angle.  Make a graph of θ as a function of time and an 
additional graph of dθ/dt as a function of θ(i.e. the velocity of the oscillator against its 
position).  The later plot is called a phase space plot.  

b) Use your program to calculate the angle evolution θ(t) over the range of several 
pendulum periods with the angle initially released from a standstill at θ = 179◦ from the 
vertical. Make a graph of θ as a function of time and a graph of dθ/dt as a function of θ.

For full credit turn in a printout of your finished program together with your plots from part a) 
and b).

4. The Character of a Short Spring: Let's examine realistic effects of a short spring system limited 
in its stretching length.  For example, a spring made of several windings at most would stretch to 
the unwound length of the spring(assuming the wire itself does not stretch).  One could expect 
some non-linearity between the force applied to the spring and the stretch of the spring.  The 
spring constant, instead of being constant as in a simple harmonic oscillator, could have a 
quadratic dependence.  That is, k would be proportional to x2 giving the nonlinear equation:

2. The Lorenz equations: One of the most celebrated sets of differential equations in physics is the 
Lorenz equations: 

dx
dt

=  y− x , dy
dt

= rx− y−xz , dz
dt

= xy−bz

where σ, r, and b are constants. (The names σ, r, and b are odd, but traditional—they are always 
used in these equations for historical reasons.) 
These equations were first studied by Edward Lorenz in 1963, who derived them from a simplified 
model of weather patterns.  The reason for their fame is that they were one of the first 
incontrovertible examples of deterministic chaos, the occurrence of apparently random motion even 
though there is no randomness built into the equations. 

a)  Write a program to solve the Lorenz equations for the case σ = 10, r = 28, and b = 8/3 in 
the range from t = 0 to t = 50 with initial conditions (x, y, z) = (0, 1, 0).  Have your program 
make a plot of y as a function of time.  Note the unpredictable nature of the motion. (Hint: If 
you base your program on previous ones, be careful.  This problem has parameters r and b 
with the same names as variables in previous programs—make sure to give your variables 
new names, or use different names for the parameters, to avoid introducing errors into your 
code.) 
b)  Modify your program to also produce a plot of z against x.  You should see a picture of 
the famous “strange attractor” of the Lorenz equations, a lop-sided butterfly-shaped plot 
that never repeats itself. 

For full credit turn in a printout of your finished program and the two graphs which the program 
generates.

3. The Nonlinear Pendulum: Building on the results from Example 8.6 in chapter 8, calculate the 
motion given the nonlinear equations of motion for a pendulum:

d 2
dt 2

= −
g
L
sin

a) Write a program to solve the two first-order equations obtained from the above second-
order equation, using the fourth-order Runge–Kutta method for a pendulum with a L=10 
cm arm.  Have the program initialize the starting angle from a value obtained on the 
command line(i.e. use the sys module). Use your program to calculate the evolution of the 
angle θ for small starting angles over several periods of the pendulum. Use θ = 10◦ from the 
vertical as your small starting angle.  Make a graph of θ as a function of time and an 
additional graph of dθ/dt as a function of θ(i.e. the velocity of the oscillator against its 
position).  The later plot is called a phase space plot.  

b) Use your program to calculate the angle evolution θ(t) over the range of several 
pendulum periods with the angle initially released from a standstill at θ = 179◦ from the 
vertical. Make a graph of θ as a function of time and a graph of dθ/dt as a function of θ.

For full credit turn in a printout of your finished program together with your plots from part a) 
and b).

4. The Character of a Short Spring: Let's examine realistic effects of a short spring system limited 
in its stretching length.  For example, a spring made of several windings at most would stretch to 
the unwound length of the spring(assuming the wire itself does not stretch).  One could expect 
some non-linearity between the force applied to the spring and the stretch of the spring.  The 
spring constant, instead of being constant as in a simple harmonic oscillator, could have a 
quadratic dependence.  That is, k would be proportional to x2 giving the nonlinear equation:



d 2 x
dt 2

A x3 = 0

A realistic system will also have a frictional term proportional to the velocity.  To over come losses 
due to friction, and to make the system more interesting at large time values, let's have the system 
periodically driven.  The resulting equation of motion is given below:

d 2 x
dt 2

b dx
dt

A x3 = B cos d t 

This equation describes what is known as Duffing's oscillator, and it is know to exhibit a wide 
variety of behaviors.  A, B, b, and ωd are adjustable parameters.  For this study, let's set A=1 and ωd 
=1; though they need not be.  

a) Write a program to solve the two first-order equations obtained from the above second-
order equation, using the fourth-order Runge–Kutta method.  Develop your program to 
graph the position x versus time for 25 periods of the  driving frequency ωd and to graph the
phase space (i.e. x versus dx/dt).  Use as starting values for t =0,  x = 3 and dx/dt=0.  Test 
your program with parameters (B, b) =  (7, 6).  You should see the motion transition to  a 
steady state harmonic motion.

 b) Study the system for various choices of the following parameters (B, b) =  (7, 6), (7,0.6), 
(10, 0.05),  and (7, 0.01).   For each set of parameters plot the position vs time and the phase 
space.  After the initial transient motion, describe the motion.  Is it a steady motion? Do you 
see any bifurcation(or splitting) of the motion?  Are there any solutions which are clearly not
a steady motion?  

c) A measurement of the divergence is attained with the use a device known as the Poincare'
section.  To generate a Poincare' section, one asks what the phase space looks like at the 
same phase angle (ωd t + ϕ) of the driving frequency, which for our short spring system, is 
the time corresponding to a multiple of 2π(remember ωd =1) plus an arbitrary phase.  In 
other words, Poincare' sections are phase space plots with all points erased save those that 
correspond to a time value of n2π of the forcing period.   

Write a new program (copy and modify the existing program) to create a  Poincare' section 
for the parameters (B,b) = (7, 0.01), at n2π    Since the Poincare' section uses only one data 
point per driving cycle, to receive good resolution many steps are needed(Usually one to 
two orders of magnitude over that required in the earlier plots).  (Hint: one may want to 
choose a time step equivalent to one degree of the driven phase angle so that one cycle  
equals 360 steps .)

Chaos, chaotic behavior, is described as arising from phase space operations of stretching and 
folding.   Because energy conservation confines the motion to a finite volume in phase space, the 
chaotic system cannot diverge exponentially forever.  The phase space motion must at some time 
pass near or on prior states; this is know as stretching (exponential divergence in phase space) and 
folding (confinement in phase space) and it is responsible for the picturesque fractal behavior that 
is observed in the Poincare' section.

For full credit turn in a printout of your programs from part a) and part c)  along with your plots 
from part b) and c) and the discussion from part b).  

d 2 x
dt 2

A x3 = 0

A realistic system will also have a frictional term proportional to the velocity.  To over come losses 
due to friction, and to make the system more interesting at large time values, let's have the system 
periodically driven.  The resulting equation of motion is given below:

d 2 x
dt 2

b dx
dt

A x3 = B cos d t 

This equation describes what is known as Duffing's oscillator, and it is know to exhibit a wide 
variety of behaviors.  A, B, b, and ωd are adjustable parameters.  For this study, let's set A=1 and ωd 
=1; though they need not be.  

a) Write a program to solve the two first-order equations obtained from the above second-
order equation, using the fourth-order Runge–Kutta method.  Develop your program to 
graph the position x versus time for 25 periods of the  driving frequency ωd and to graph the
phase space (i.e. x versus dx/dt).  Use as starting values for t =0,  x = 3 and dx/dt=0.  Test 
your program with parameters (B, b) =  (7, 6).  You should see the motion transition to  a 
steady state harmonic motion.

 b) Study the system for various choices of the following parameters (B, b) =  (7, 6), (7,0.6), 
(10, 0.05),  and (7, 0.01).   For each set of parameters plot the position vs time and the phase 
space.  After the initial transient motion, describe the motion.  Is it a steady motion? Do you 
see any bifurcation(or splitting) of the motion?  Are there any solutions which are clearly not
a steady motion?  

c) A measurement of the divergence is attained with the use a device known as the Poincare'
section.  To generate a Poincare' section, one asks what the phase space looks like at the 
same phase angle (ωd t + ϕ) of the driving frequency, which for our short spring system, is 
the time corresponding to a multiple of 2π(remember ωd =1) plus an arbitrary phase.  In 
other words, Poincare' sections are phase space plots with all points erased save those that 
correspond to a time value of n2π of the forcing period.   

Write a new program (copy and modify the existing program) to create a  Poincare' section 
for the parameters (B,b) = (7, 0.01), at n2π    Since the Poincare' section uses only one data 
point per driving cycle, to receive good resolution many steps are needed(Usually one to 
two orders of magnitude over that required in the earlier plots).  (Hint: one may want to 
choose a time step equivalent to one degree of the driven phase angle so that one cycle  
equals 360 steps .)

Chaos, chaotic behavior, is described as arising from phase space operations of stretching and 
folding.   Because energy conservation confines the motion to a finite volume in phase space, the 
chaotic system cannot diverge exponentially forever.  The phase space motion must at some time 
pass near or on prior states; this is know as stretching (exponential divergence in phase space) and 
folding (confinement in phase space) and it is responsible for the picturesque fractal behavior that 
is observed in the Poincare' section.

For full credit turn in a printout of your programs from part a) and part c)  along with your plots 
from part b) and c) and the discussion from part b).  


