
Computational Physics

Prof. Paul Eugenio
Department of Physics
Florida State University

Jan 15, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

Intro to Python

Computational Physics

Prof. Paul Eugenio
Department of Physics
Florida State University

Jan 15, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

Intro to Python

Announcements

Read Chapter 2

Python programming for physicists
 Sections 2.1, 2.2, & 2.3 Pages 09 – 46

Turn-In Questions
 Ch 2 Sections 1-3

Turn in two questions on the
reading material: Due start of
class Tuesday Jan 22.

Announcements

Read Chapter 2

Python programming for physicists
 Sections 2.1, 2.2, & 2.3 Pages 09 – 46

Turn-In Questions
 Ch 2 Sections 1-3

Turn in two questions on the
reading material: Due start of
class Tuesday Jan 22.

What is Python?

see http://www.python.org

Python is an interpreted, object-oriented, high-
level programming language with dynamic
semantics.

Python's simple, easy to learn syntax
emphasizes readability and therefore reduces
the cost of program maintenance.

Python supports modules and packages, which
encourages program modularity and code
reuse. An extensive library of modules are
available for all major platforms.

What is Python?

see http://www.python.org

Python is an interpreted, object-oriented, high-
level programming language with dynamic
semantics.

Python's simple, easy to learn syntax
emphasizes readability and therefore reduces
the cost of program maintenance.

Python supports modules and packages, which
encourages program modularity and code
reuse. An extensive library of modules are
available for all major platforms.

Python’s Identity Crisis
 Python 2 or Python 3

From Wiki.python.org:
 Python 2 is legacy, Python 3 is the present and future of the language

Python 3 has many structural improvements but is not fully backwards
compatible with earlier Python versions

 As a result, some 3rd party libraries/modules are lacking in Python 3

We will initially use Python 2.7.5
 For beginners 2.7 has more documentation in addition to a plethora of

3rd party enhancements
 Most Unix operating systems still utilize Python 2.7 for core tasks

 BUT We will utilize "future" features in Python 2.7 to be more compatible
with Python 3

Python’s Identity Crisis
 Python 2 or Python 3

From Wiki.python.org:
 Python 2 is legacy, Python 3 is the present and future of the language

Python 3 has many structural improvements but is not fully backwards
compatible with earlier Python versions

 As a result, some 3rd party libraries/modules are lacking in Python 3

We will initially use Python 2.7.5
 For beginners 2.7 has more documentation in addition to a plethora of

3rd party enhancements
 Most Unix operating systems still utilize Python 2.7 for core tasks

 BUT We will utilize "future" features in Python 2.7 to be more compatible
with Python 3

Getting Started
Python is a General Purpose Programing &

Scripting Language
There are many ways to build and run Python

programs: Python, iPython, IDLE, Spyder, ...

We will start with basic Python programming
Create a src file with an editor and run python from the

command line.

hpc-login 430% nedit hello.py &

hpc-login 432% chmod +x hello.py

hpc-login 433% hello.py

write the program &
 save it

make program
 executable

run/execute the
 program

Getting Started
Python is a General Purpose Programing &

Scripting Language
There are many ways to build and run Python

programs: Python, iPython, IDLE, Spyder, ...

We will start with basic Python programming
Create a src file with an editor and run python from the

command line.

hpc-login 430% nedit hello.py &

hpc-login 432% chmod +x hello.py

hpc-login 433% hello.py

write the program &
 save it

make program
 executable

run/execute the
 program

Python Programming

A basic program is a list of statements which the
computer performs, or executes, in the order in

which they appear in the program

 In this course, all our Python programs will be developed
as stand-a-lone executable programs

Python Programming

A basic program is a list of statements which the
computer performs, or executes, in the order in

which they appear in the program

 In this course, all our Python programs will be developed
as stand-a-lone executable programs

A Python program

 #! /usr/bin/env python

 # hello.py is a simple Python example script. It functions
 # by simple printing “Hello, Python!”
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 15, 2019

 # program header code
from __future__ import division, print_function

 # main body of program

 print(“Hello, Python!”)

 #! /usr/bin/env python

 # hello.py is a simple Python example script. It functions
 # by simple printing “Hello, Python!”
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 15, 2019

 # program header code
from __future__ import division, print_function

 # main body of program

 print(“Hello, Python!”)

hpc-login 401% nedit hello.py &

hpc-login 432% chmod +x
hello.py
hpc-login 433% hello.py
Hello, Python!
hpc-login 434%

Python 2.7 programs need to
include this statement
See (and read) Appendix B

__future__ has two underscores on both sides of “future”

first line must have the “hash-bang”
A Python program

 #! /usr/bin/env python

 # hello.py is a simple Python example script. It functions
 # by simple printing “Hello, Python!”
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 15, 2019

 # program header code
from __future__ import division, print_function

 # main body of program

 print(“Hello, Python!”)

 #! /usr/bin/env python

 # hello.py is a simple Python example script. It functions
 # by simple printing “Hello, Python!”
 #
 # Paul Eugenio
 # PHZ4151C
 # Jan 15, 2019

 # program header code
from __future__ import division, print_function

 # main body of program

 print(“Hello, Python!”)

hpc-login 401% nedit hello.py &

hpc-login 432% chmod +x
hello.py
hpc-login 433% hello.py
Hello, Python!
hpc-login 434%

Python 2.7 programs need to
include this statement
See (and read) Appendix B

__future__ has two underscores on both sides of “future”

first line must have the “hash-bang”

Programing Standards & Styles

Formatting Conventions
“Style Guide for Python” (More to come)

Comments
These are informative statements which are ignored by

the computer
Two Comment Types

Comment Blocks
 Inline Comments

 We will adhere to much of the PEP 8 format standards

See https://www.python.org/dev/peps/pep-0008/#code-lay-out

The code is read much more often than it is written.

Programing Standards & Styles

Formatting Conventions
“Style Guide for Python” (More to come)

Comments
These are informative statements which are ignored by

the computer
Two Comment Types

Comment Blocks
 Inline Comments

 We will adhere to much of the PEP 8 format standards

See https://www.python.org/dev/peps/pep-0008/#code-lay-out

The code is read much more often than it is written.

Prolog Comments: The 411 of
Programming

Comment Blocks
 It's a block of comment lines describing the code that follows

 The comment block is indented to the same level as the code
Three Basic Comment Block

 Prolog (Every Program should start with a Prolog)
 Section explanation
 Interpretation of significant code

The “#” symbol denotes the start of a comment statement which is
ignored by the computer

 #! /usr/bin/env python

 # hello.py is a simple Python example script. It functions
 # by simple printing “Hello, Python!”
 #
 # Paul Eugenio
 # Florida State University
 # PHZ4151C
 # Jan 15, 2019

prolog

Prolog Comments: The 411 of
Programming

Comment Blocks
 It's a block of comment lines describing the code that follows

 The comment block is indented to the same level as the code
Three Basic Comment Block

 Prolog (Every Program should start with a Prolog)
 Section explanation
 Interpretation of significant code

The “#” symbol denotes the start of a comment statement which is
ignored by the computer

 #! /usr/bin/env python

 # hello.py is a simple Python example script. It functions
 # by simple printing “Hello, Python!”
 #
 # Paul Eugenio
 # Florida State University
 # PHZ4151C
 # Jan 15, 2019

prolog

Inline Comments: The 411 of
Programming

Inline Comments

A comment on the same line as a Python statement
 theta = degreeAngle * (pi/180) # Convert the angle to radians

Use inline comments sparingly
 Inline comments should be separated by at least two spaces from the

statement. They should start with a # and a single space.
Don't comment the obvious or add distracting comments

YES:
M = 5.97e24 # Mass of the Earth (kg)
x += 1

NO:
M = 5.97e24 # Set M value
x += 1 # Increment x

Inline Comments: The 411 of
Programming

Inline Comments

A comment on the same line as a Python statement
 theta = degreeAngle * (pi/180) # Convert the angle to radians

Use inline comments sparingly
 Inline comments should be separated by at least two spaces from the

statement. They should start with a # and a single space.
Don't comment the obvious or add distracting comments

YES:
M = 5.97e24 # Mass of the Earth (kg)
x += 1

NO:
M = 5.97e24 # Set M value
x += 1 # Increment x

Variables and Assignments
Variable Names

 Variable names are made from one or more characters,
numbers, and only the underscore symbol “_”

names cannot start with a number
names cannot contain any other symbols and spaces

Give your variables meaningful names that describe
what they represent

energy, transverseMomentum, xPosition, angularVelocity, …

Variables cannot have names that are reserved words in
Python

print, for, if, while, import, ...

Variables and Assignments
Variable Names

 Variable names are made from one or more characters,
numbers, and only the underscore symbol “_”

names cannot start with a number
names cannot contain any other symbols and spaces

Give your variables meaningful names that describe
what they represent

energy, transverseMomentum, xPosition, angularVelocity, …

Variables cannot have names that are reserved words in
Python

print, for, if, while, import, ...

Variables and Assignments

Assignment Statements
velocity = 1 : velocity is assigned the value 1
 : this is not a mathematical equation

Variable Types
Integers, floats, complex, strings(i.e. Text)

 velocity = 1 : integer value
 velocity = 300.0 : or 3e2 float value
 velocity = 2 + 3j : complex number value
 velocity = “slow” : text string value

The type of variable is set by the value assigned or by how it is
used.
 One could also force the type via type functions

 int(), float(), complex(), str()
 speed = float(2)

Variables and Assignments

Assignment Statements
velocity = 1 : velocity is assigned the value 1
 : this is not a mathematical equation

Variable Types
Integers, floats, complex, strings(i.e. Text)

 velocity = 1 : integer value
 velocity = 300.0 : or 3e2 float value
 velocity = 2 + 3j : complex number value
 velocity = “slow” : text string value

The type of variable is set by the value assigned or by how it is
used.
 One could also force the type via type functions

 int(), float(), complex(), str()
 speed = float(2)

Variables and Assignments

format style: spaces

 In Python “x=1” and “x = 1” are the same, but for readability
always put one space before and after the “=” symbol
(except when setting attribute values).

YES
 x = 1
 speed = 100.5

NO
 x=1
 speed = 100.5
 time = 1

Variables and Assignments

format style: spaces

 In Python “x=1” and “x = 1” are the same, but for readability
always put one space before and after the “=” symbol
(except when setting attribute values).

YES
 x = 1
 speed = 100.5

NO
 x=1
 speed = 100.5
 time = 1

Output and Inputs statements
print()‡: Print a value to the screen

 height = 100.0 speed = 25.5
 print(height) print(height, speed)
 100.0 100.0 25.5

 print(“The height (m) is”, height,
 “and the speed (m/s) is”, speed, “.”)
 The height (m) is 100.0 and the speed (m/s) is 25.5 .

 print(“The height (m) is ”, height,
 “ and the speed (m/s) is ”, speed,
 “.”, sep='')
 The height (m) is 100.0 and the speed (m/s) is 25.5.

attribute sep='' is not spaced

‡ remember for Python 2.7 “from __future__ import print_function”

Output and Inputs statements
print()‡: Print a value to the screen

 height = 100.0 speed = 25.5
 print(height) print(height, speed)
 100.0 100.0 25.5

 print(“The height (m) is”, height,
 “and the speed (m/s) is”, speed, “.”)
 The height (m) is 100.0 and the speed (m/s) is 25.5 .

 print(“The height (m) is ”, height,
 “ and the speed (m/s) is ”, speed,
 “.”, sep='')
 The height (m) is 100.0 and the speed (m/s) is 25.5.

attribute sep='' is not spaced

‡ remember for Python 2.7 “from __future__ import print_function”

Output and Inputs statements
input() and raw_input(): Input a value to the program

 height = input(“Enter the value for the height: “)
 Enter the value for the height:
 # The computer will stop and wait for the user
 # to input a value. The variable type is defined
 # from the input. This is not always desirable.
 # In Python version 3.x, input() types are always
 # strings.

Python 2.7.x
 height = input(“Enter the value for the height: “)
 Enter the value for the height: 10.5
 print(height + 10.0)
 20.5

Python 3.x
 height = input(“Enter the value for the height: “)
 Enter the value for the height: 10.5
 print(height + 10.0)
 TypeError: cannot concatenate 'str' and 'float' objects

Output and Inputs statements
input() and raw_input(): Input a value to the program

 height = input(“Enter the value for the height: “)
 Enter the value for the height:
 # The computer will stop and wait for the user
 # to input a value. The variable type is defined
 # from the input. This is not always desirable.
 # In Python version 3.x, input() types are always
 # strings.

Python 2.7.x
 height = input(“Enter the value for the height: “)
 Enter the value for the height: 10.5
 print(height + 10.0)
 20.5

Python 3.x
 height = input(“Enter the value for the height: “)
 Enter the value for the height: 10.5
 print(height + 10.0)
 TypeError: cannot concatenate 'str' and 'float' objects

Input() and raw_input()

Python 2.7.x provides the function raw_input() which
behaves like the input() function in Python 3.x

To be compatible with Python 3.x (and the
book), we will always use the raw_input()
with Python 2.7 programs.

Examples in the book which use input()
should be changed to raw_input()in order
to function properly with Python 2.7.

Input() and raw_input()

Python 2.7.x provides the function raw_input() which
behaves like the input() function in Python 3.x

To be compatible with Python 3.x (and the
book), we will always use the raw_input()
with Python 2.7 programs.

Examples in the book which use input()
should be changed to raw_input()in order
to function properly with Python 2.7.

raw_input() & input()

Python 2.7.x

 height = float(raw_input(“Enter the value for the height: “))
 Enter the value for the height: 10.5
 print(height + 10.0)
 20.5

Python 3.x

 height = float(input(“Enter the value for the height: “))
 Enter the value for the height: 10.5
 print(height + 10.0)
 20.5

raw_input() & input()

Python 2.7.x

 height = float(raw_input(“Enter the value for the height: “))
 Enter the value for the height: 10.5
 print(height + 10.0)
 20.5

Python 3.x

 height = float(input(“Enter the value for the height: “))
 Enter the value for the height: 10.5
 print(height + 10.0)
 20.5

Let's get working

Today:
Finish up Unix exercise

Thursday:
- We start Python programming

Let's get working

Today:
Finish up Unix exercise

Thursday:
- We start Python programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

