
Computational Physics

Prof. Paul Eugenio
Department of Physics
Florida State University

Jan 22, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

Controlling Python

Computational Physics

Prof. Paul Eugenio
Department of Physics
Florida State University

Jan 22, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

Controlling Python

Announcements

Finish Reading Chapter 2

 Sections 2.4 - 2.7 Pages 46 – 87

 Turn-In Questions
2 questions on reading due

next Tuesday

Announcements

Finish Reading Chapter 2

 Sections 2.4 - 2.7 Pages 46 – 87

 Turn-In Questions
2 questions on reading due

next Tuesday

Controlling Python

Often we will want our programs to do something
only if a certain condition is true. That is the flow
of our computer programs often needs to branch.

For example:
f x  = { 0, x≤0

x , 0x1
1, x≥1 }

0 1-1

1

Controlling Python

Often we will want our programs to do something
only if a certain condition is true. That is the flow
of our computer programs often needs to branch.

For example:
f x  = { 0, x≤0

x , 0x1
1, x≥1 }

0 1-1

1

The if Statement

if condition:

 # “if” statements executed if condition is True

 …

next program statements

The if statements must be
indented by spaces
(use 4 spaces)

The next statement without
indentation is the continuation
of the program after the if

The if Statement

if condition:

 # “if” statements executed if condition is True

 …

next program statements

The if statements must be
indented by spaces
(use 4 spaces)

The next statement without
indentation is the continuation
of the program after the if

The if, elif, and else
Statements

if condition1:
 # “if” statements executed if condition1 is True
 …
elif condition2:
 # “else if” statements executed if condition1 is False &
 # condition2 is True

else:
 # “else” statements executed if all conditions are False

next program statements

 The elif and else statements are optional
 extensions of the if statement.

 The elif and else statements are optional
 extensions of the if statement.

The if, elif, and else
Statements

if condition1:
 # “if” statements executed if condition1 is True
 …
elif condition2:
 # “else if” statements executed if condition1 is False &
 # condition2 is True

else:
 # “else” statements executed if all conditions are False

next program statements

 The elif and else statements are optional
 extensions of the if statement.

 The elif and else statements are optional
 extensions of the if statement.

Using if Statements

F (x) = { 0, x≤0
x , 0< x<1

1, x≥1 }
0 1-1

1

 x = float(raw_input(“Enter a decimal number (i.e. float): “))

 if x<=0:
 Fx = 0
 elif x>0 and x<1:
 Fx = x
 else:
 Fx = 1

 print(“F(“, x, “) is “, Fx, sep='')

 x = float(raw_input(“Enter a decimal number (i.e. float): “))

 if x<=0:
 Fx = 0
 elif x>0 and x<1:
 Fx = x
 else:
 Fx = 1

 print(“F(“, x, “) is “, Fx, sep='')

Using if Statements

F (x) = { 0, x≤0
x , 0< x<1

1, x≥1 }
0 1-1

1

 x = float(raw_input(“Enter a decimal number (i.e. float): “))

 if x<=0:
 Fx = 0
 elif x>0 and x<1:
 Fx = x
 else:
 Fx = 1

 print(“F(“, x, “) is “, Fx, sep='')

 x = float(raw_input(“Enter a decimal number (i.e. float): “))

 if x<=0:
 Fx = 0
 elif x>0 and x<1:
 Fx = x
 else:
 Fx = 1

 print(“F(“, x, “) is “, Fx, sep='')

The Python Interpreter
Interactive Mode

 hpc-login-38 58% python

 Python 2.7.5 (default, Feb 11 2014, 07:46:25)
 [GCC 4.8.2 20140120 (Red Hat 4.8.2-13)] on linux2
 Type "help", "copyright", "credits" or "license" for more information.
 >>> 2/3
 0
 >>> from __future__ import division
 >>> 2/3
 0.6666666666666666
 >>>

 hpc-login-38 58% python

 Python 2.7.5 (default, Feb 11 2014, 07:46:25)
 [GCC 4.8.2 20140120 (Red Hat 4.8.2-13)] on linux2
 Type "help", "copyright", "credits" or "license" for more information.
 >>> 2/3
 0
 >>> from __future__ import division
 >>> 2/3
 0.6666666666666666
 >>>

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the
primary prompt causes the interpreter to exit with a zero exit status. If that doesn’t
work, you can exit the interpreter by typing the following command: quit().

Continuation lines are needed when entering a multi-line construct. As an
example, take a look at this if statement:

 >>> the_world_is_flat = True
 >>> if the_world_is_flat:
 ... print("Be careful not to fall off!")
 ...
 Be careful not to fall off!

 >>> the_world_is_flat = True
 >>> if the_world_is_flat:
 ... print("Be careful not to fall off!")
 ...
 Be careful not to fall off!

The Python Interpreter
Interactive Mode

 hpc-login-38 58% python

 Python 2.7.5 (default, Feb 11 2014, 07:46:25)
 [GCC 4.8.2 20140120 (Red Hat 4.8.2-13)] on linux2
 Type "help", "copyright", "credits" or "license" for more information.
 >>> 2/3
 0
 >>> from __future__ import division
 >>> 2/3
 0.6666666666666666
 >>>

 hpc-login-38 58% python

 Python 2.7.5 (default, Feb 11 2014, 07:46:25)
 [GCC 4.8.2 20140120 (Red Hat 4.8.2-13)] on linux2
 Type "help", "copyright", "credits" or "license" for more information.
 >>> 2/3
 0
 >>> from __future__ import division
 >>> 2/3
 0.6666666666666666
 >>>

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the
primary prompt causes the interpreter to exit with a zero exit status. If that doesn’t
work, you can exit the interpreter by typing the following command: quit().

Continuation lines are needed when entering a multi-line construct. As an
example, take a look at this if statement:

 >>> the_world_is_flat = True
 >>> if the_world_is_flat:
 ... print("Be careful not to fall off!")
 ...
 Be careful not to fall off!

 >>> the_world_is_flat = True
 >>> if the_world_is_flat:
 ... print("Be careful not to fall off!")
 ...
 Be careful not to fall off!

https://docs.python.org/3.3/reference/compound_stmts.html#if

Boolean Expression

x == 13 # x equals 13
x != 13 # x does not equal 13
x >= 13 # x is greater than or equal to 13
x <= 13 # x is less than or equal to 13
x > 13 # x is greater than 13
x < 13 # x is less than 13

Boolean expressions evaluate to bool type values of True or False
Boolean Expression

x == 13 # x equals 13
x != 13 # x does not equal 13
x >= 13 # x is greater than or equal to 13
x <= 13 # x is less than or equal to 13
x > 13 # x is greater than 13
x < 13 # x is less than 13

Boolean expressions evaluate to bool type values of True or False

Boolean Expression

x == 13 # x equals 13
x != 13 # x does not equal 13
x >= 13 # x is greater than or equal to 13
x <= 13 # x is less than or equal to 13
x > 13 # x is greater than 13
x < 13 # x is less than 13

The key words and, or, or not can be used in the boolean expressions

Boolean expressions evaluate to bool type values of True or False

hpc-login 400% python

>>> x, y = 0, 1.2

>>> x >= 0 and y < 1

False

>>> x >= 0 or y < 1

True

>>> x > 0 or y > 1

True

>>> x > 0 or not y > 1

False

>>> -1 < x <= 0 # -1 < x and x <= 0

True

>>> not(x > 0 or y > 0)

False

>>> bool(5) # bool(0 or neg.) is False

True
using the Python interpreter

Boolean Expression

x == 13 # x equals 13
x != 13 # x does not equal 13
x >= 13 # x is greater than or equal to 13
x <= 13 # x is less than or equal to 13
x > 13 # x is greater than 13
x < 13 # x is less than 13

The key words and, or, or not can be used in the boolean expressions

Boolean expressions evaluate to bool type values of True or False

hpc-login 400% python

>>> x, y = 0, 1.2

>>> x >= 0 and y < 1

False

>>> x >= 0 or y < 1

True

>>> x > 0 or y > 1

True

>>> x > 0 or not y > 1

False

>>> -1 < x <= 0 # -1 < x and x <= 0

True

>>> not(x > 0 or y > 0)

False

>>> bool(5) # bool(0 or neg.) is False

True
using the Python interpreter

The while Statement

while condition:
 # “while” statements executed if condition is True
 …
next program statements

The while statements must be
indented by spaces
(use 4 spaces)

The next statement without
indentation is the continuation
of the program after the while

The while Statement

while condition:
 # “while” statements executed if condition is True
 …
next program statements

The while statements must be
indented by spaces
(use 4 spaces)

The next statement without
indentation is the continuation
of the program after the while

The break and continue
Statements

while condition:
 …
 break
 …
next program statements

The break statement allows us to break
out of a loop even if the condition in the
while statement is not met.

The continue statement make the program
skip the rest of the indented code in the while
loop but then goes back to the beginning of the loop

while condition:
 …
 continue
 …
next program statements

The continue statement is rarely used.

The break and continue
Statements

while condition:
 …
 break
 …
next program statements

The break statement allows us to break
out of a loop even if the condition in the
while statement is not met.

The continue statement make the program
skip the rest of the indented code in the while
loop but then goes back to the beginning of the loop

while condition:
 …
 continue
 …
next program statements

The continue statement is rarely used.

The break and continue
Statements

x = 11

while x>10:

 # This loop will continue until one enters a number not

 # greater than 10, except if one enter the number 111.

 #

 x = int(raw_input(“Enter a number no greater than ten: “))

 if x==111:

 # “if” statements executed only if condition is True

 break

The value of x is either less than 10 or exactly 111.

This is an example of nesting an if statement in a while loop. The
nested block of statements must be further indented (+4 spaces).

The break and continue
Statements

x = 11

while x>10:

 # This loop will continue until one enters a number not

 # greater than 10, except if one enter the number 111.

 #

 x = int(raw_input(“Enter a number no greater than ten: “))

 if x==111:

 # “if” statements executed only if condition is True

 break

The value of x is either less than 10 or exactly 111.

This is an example of nesting an if statement in a while loop. The
nested block of statements must be further indented (+4 spaces).

User Defined Functions

import numpy as np
In cylindrical coordinates calculate the
distance "d" between a point and the origin
#
def distance(r, theta, z):
 x = r*np.cos(theta)
 y = r*np.sin(theta)
 d = np.sqrt(x**2 + y**2 + z**2)
 return d

● The function statements must be indented by spaces
● use 4 spaces

● The next statement without indentation is the continuation
of the program after the function

Python allows you to define your own functions

User Defined Functions

import numpy as np
In cylindrical coordinates calculate the
distance "d" between a point and the origin
#
def distance(r, theta, z):
 x = r*np.cos(theta)
 y = r*np.sin(theta)
 d = np.sqrt(x**2 + y**2 + z**2)
 return d

● The function statements must be indented by spaces
● use 4 spaces

● The next statement without indentation is the continuation
of the program after the function

Python allows you to define your own functions

cylindricalDistance.pycylindricalDistance.py

Let's get workingLet's get working

cylindricalDistance.pycylindricalDistance.py

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

