
Computational Physics

Jan 31, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

eugenio@fsu.edu

User Defined Modules

Computational Physics

Jan 31, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

eugenio@fsu.edu

User Defined Modules

pydoc
Documentation generator and online

help system
pydoc numpy.random.random

pydoc
Documentation generator and online

help system
pydoc numpy.random.random

Why modules
 Sometimes you want to reuse a function or

several functions from an old program in a new
program.

One could simply copy and paste the old code into the
new program.

 The problem with this is that over time you
could end up with many copies of the same
code

if you fix or improve part of the code in one version, you
will have to update all copies

 Or you will end up with multiple versions
 some useful, some less useful, and possible some which

are buggy or faulty

Why modules
 Sometimes you want to reuse a function or

several functions from an old program in a new
program.

One could simply copy and paste the old code into the
new program.

 The problem with this is that over time you
could end up with many copies of the same
code

if you fix or improve part of the code in one version, you
will have to update all copies

 Or you will end up with multiple versions
 some useful, some less useful, and possible some which

are buggy or faulty

Making Modules
Golden RuleGolden Rule

Have one and only one version of a piece of code

This is easy to implement if we create a module containing
the code we want to reuse.

import mystuff

value = mystuff.myfunction(10)

Making Modules
Golden RuleGolden Rule

Have one and only one version of a piece of code

This is easy to implement if we create a module containing
the code we want to reuse.

import mystuff

value = mystuff.myfunction(10)

Example: lobbs_number()
#! /usr/bin/env python

def lobbs_number(m, n):
 """
 Lobb numbers form a natural generalization

of the Catalan numbers.

 Lobb's Numbers L_n,n = (2m+1)/(M+n+1) Bionomial(2n, n)
 """
 return binomial(2*n, m+n)* (2*m+1) // (m+n+1)

We want to make this function available in a module named mystuff

import mystuff as my
my.lobbs_number(m, n)

So how do we create the mystuff module?

function docstring
Example: lobbs_number()

#! /usr/bin/env python

def lobbs_number(m, n):
 """
 Lobb numbers form a natural generalization

of the Catalan numbers.

 Lobb's Numbers L_n,n = (2m+1)/(M+n+1) Bionomial(2n, n)
 """
 return binomial(2*n, m+n)* (2*m+1) // (m+n+1)

We want to make this function available in a module named mystuff

import mystuff as my
my.lobbs_number(m, n)

So how do we create the mystuff module?

function docstring

Collecting functions in a
module

 Simply create a new source file and copy all of
the code into this file.

 Save the file with the module name along with
the standard “.py” file extension.

In our case, the filename mystuff.py implies a
module with the name mystuff.

Collecting functions in a
module

 Simply create a new source file and copy all of
the code into this file.

 Save the file with the module name along with
the standard “.py” file extension.

In our case, the filename mystuff.py implies a
module with the name mystuff.

Using functions in a module

import mystuff as my
lobbs_1_3 = my.lobbs_number(1, 3)

But Python needs to now about the module in order to use it.

Using functions in a module

import mystuff as my
lobbs_1_3 = my.lobbs_number(1, 3)

But Python needs to now about the module in order to use it.

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

 However if you move your program to another
directory, running the program will give an error.

hpc-login 515% lobbs.py
Traceback (most recent call last):
 File "lobbs.py", line 18, in <module>
 import mystuff as my
ImportError: No module named mystuff

How to make Python find your
module

 The program which imports you module(s) will
work fine if it is located in the same directory
as your module

 However if you move your program to another
directory, running the program will give an error.

hpc-login 515% lobbs.py
Traceback (most recent call last):
 File "lobbs.py", line 18, in <module>
 import mystuff as my
ImportError: No module named mystuff

How to make Python find your
module

A better solution is to store your module(s) in
your Python search path

How to make Python find your
module

A better solution is to store your module(s) in
your Python search path

How to make Python find your
module

 A better solution is to store your module(s) in your
Python search path

 Create a dir/ for storing your python modules

mkdir $HOME/python/mymodules/

 Place your module(s) in this directory

Set the PYTHONPATH environmental variable
cshell command:

setenv PYTHONPATH "${HOME}/python/mymodules:./mymodules"
bash command:

export PYTHONPATH=$HOME/python/mymodules/:./mymodulesAdd the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

How to make Python find your
module

 A better solution is to store your module(s) in your
Python search path

 Create a dir/ for storing your python modules

mkdir $HOME/python/mymodules/

 Place your module(s) in this directory

Set the PYTHONPATH environmental variable
cshell command:

setenv PYTHONPATH "${HOME}/python/mymodules:./mymodules"
bash command:

export PYTHONPATH=$HOME/python/mymodules/:./mymodulesAdd the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

How to make Python find your
module

Set the PYTHONPATH environmental variable

cshell command:
setenv PYTHONPATH "${HOME}/python/mymodules"

bash command:
export PYTHONPATH=$HOME/python/mymodules/

Add the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

hpc-login-25 % emacs ~/.cshrc &
do it!

How to make Python find your
module

Set the PYTHONPATH environmental variable

cshell command:
setenv PYTHONPATH "${HOME}/python/mymodules"

bash command:
export PYTHONPATH=$HOME/python/mymodules/

Add the above path definition to your .cshrc (or .bashrc) file
so that $PYTHONPATH is defined every time you log in.

hpc-login-25 % emacs ~/.cshrc &
do it!

Doc strings in modules

"""
 Module MyStuff is a collection of useful functions which are
 user defined, stored locally at $HOME/python/mymodules/mystuff.py
 where the mymodules directory has been added to the $PYTHONPATH
 environment.

 Symbols:

 'n' is positive integer index

Paul Eugenio
Florida State University
Department of Physics
Jan 2019

"""

Always include a useful doc string at the beginning of the module.

header docstring + function docstring

Doc strings in modules

"""
 Module MyStuff is a collection of useful functions which are
 user defined, stored locally at $HOME/python/mymodules/mystuff.py
 where the mymodules directory has been added to the $PYTHONPATH
 environment.

 Symbols:

 'n' is positive integer index

Paul Eugenio
Florida State University
Department of Physics
Jan 2019

"""

Always include a useful doc string at the beginning of the module.

header docstring + function docstring

Documentation from Doc Strings

hpc-login 515% python
 ...
>>> help("mystuff")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc mystuff
 ...
 ...
 ...

WoW!!

Documentation from Doc Strings

hpc-login 515% python
 ...
>>> help("mystuff")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc mystuff
 ...
 ...
 ...

WoW!!

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Python allows the file to act both as a module
and as a main program

 To seamlessly have both functionality the main
program statements should be in a test block

if __name__ == '__main__':

 <block of statements>

Test block
 During import, the module file is fully executed

 The module should have function definitions and
should not have any open statements

It is desirable to have some test or verification code in
the module

Python allows the file to act both as a module
and as a main program

 To seamlessly have both functionality the main
program statements should be in a test block

if __name__ == '__main__':

 <block of statements>

Test block
test functions
def test_functions():
 """
 Routines to test module functions. To execute test of function run
 module as python program along with command line argument "test"
 example: "mystuff test"
 """
 # test lobb_number function
 if(lobb_number(1, 3) == 9):
 print("Module is Good")
 else:
 print("WARNING!!\n lobb_number() function failed test\n DO NOT USE!!")

TEST BLOCK
The test block only executes if the module is run as a main program
and if the word "test" is given on the command line.

if __name__ == '__main__':
 if len(sys.argv) == 2 and sys.argv[1] == 'test':
 test_functions()

import sys

hpc-login 515% mystuff.py test
 Module is Good

Test block
test functions
def test_functions():
 """
 Routines to test module functions. To execute test of function run
 module as python program along with command line argument "test"
 example: "mystuff test"
 """
 # test lobb_number function
 if(lobb_number(1, 3) == 9):
 print("Module is Good")
 else:
 print("WARNING!!\n lobb_number() function failed test\n DO NOT USE!!")

TEST BLOCK
The test block only executes if the module is run as a main program
and if the word "test" is given on the command line.

if __name__ == '__main__':
 if len(sys.argv) == 2 and sys.argv[1] == 'test':
 test_functions()

import sys

hpc-login 515% mystuff.py test
 Module is Good

Example: User Defined Module
#! /usr/bin/env python
Generate Lobb's Triangle
this program uses a user defined module mystuff
#
Paul Eugenio
PHZ4151C
Jan 31, 2019

from __future__ import division, print_function
import mystuff as my
import sys

#set triangle size
if len(sys.argv) == 2:
 size = int(sys.argv[1])
else:
 size = 5

print out a triangle of Lobb's Numbers
for n in range(size):

for m in range(n+1):
print(my.lobb_number(m, n), end=”\t”)

print()

See examples: mystuff.py & lobbs.py
Example: User Defined Module

#! /usr/bin/env python
Generate Lobb's Triangle
this program uses a user defined module mystuff
#
Paul Eugenio
PHZ4151C
Jan 31, 2019

from __future__ import division, print_function
import mystuff as my
import sys

#set triangle size
if len(sys.argv) == 2:
 size = int(sys.argv[1])
else:
 size = 5

print out a triangle of Lobb's Numbers
for n in range(size):

for m in range(n+1):
print(my.lobb_number(m, n), end=”\t”)

print()

See examples: mystuff.py & lobbs.py

We will soon be covering
numerical integration

#! /usr/bin/env python

def trapezoidal(fun, a, b, N):
…

def simpson(fun, a, b, N):
…

def adapatrap(fun, a, b, N, accuracy):
…

def adapasimp(fun, a, b, N, accuracy):
…

def mcintegrate(func, dim, limit, N=100):
…

You will be required to make your own functions available in a module

import myintegrate as myint
myint.trapezoidal(f, 0, 1, 100)

We will soon be covering
numerical integration

#! /usr/bin/env python

def trapezoidal(fun, a, b, N):
…

def simpson(fun, a, b, N):
…

def adapatrap(fun, a, b, N, accuracy):
…

def adapasimp(fun, a, b, N, accuracy):
…

def mcintegrate(func, dim, limit, N=100):
…

You will be required to make your own functions available in a module

import myintegrate as myint
myint.trapezoidal(f, 0, 1, 100)

Doc strings
from modules

hpc-login 515% python
 ...
>>> help("myintegration")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc
myintegration
 ...
 ...
 ...

WoW!!

Doc strings
from modules

hpc-login 515% python
 ...
>>> help("myintegration")

You can also run pydoc
on the module to see the
documentation of the new
module

hpc-login 515% pydoc
myintegration
 ...
 ...
 ...

WoW!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

