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Adaptive Integration
Integration with just enough steps, N, to achieve the accuracy we want

 Decide on the integration accuracy
 Evaluate the integral with a small number of steps N1

 Then double the number N2 = 2N1, & evaluate integral 
again

 Calculate the error on I2

use

  
 If error is to within accuracy then we are finished, 

otherwise repeat doubling of integration steps until 
desired accuracy is reached 

ϵ2 = 1
3
∣I 2−I 1∣trapezodial  or ϵ2 = 1

15
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Adaptive Integration
Doubling the number of integration steps with half the calculations

½          1             1             1           ½ 

½     1     1       1      1      1       1      1     ½ 

doubling effectively adds an additional set 
of points halfway between the previous points
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(extra points are the odd points) 
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 adaptive Simpson's rule integration 
(extra points are the new mid points minus odd endpoint point values) 
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Integrals over infinite ranges
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Multi-Dimensional Integration
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Solve by Series Integration

“Divide and Conquer”

Trapezoidal
Simpson's Rule
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Multi-Dimensional Integration

I=∫
0

1

dx1∫
0

1

dx2 ...∫
0

1

dx12 f x1, x2, ... x12

For 100 steps in each integration there are 10012 =1024 calculations

Example: Atomic Physics 

3 Dimension/electron * 4 electrons = 12 Dimensions

 Assuming 1 Giga evaluations/sec 
It would take over 107 years!!!! 

4Be
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Monte Carlo Integration

Monte Carlo methods provide an alternative 
method of calculating an integral.

Using Random Numbers to Solve Integrals
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NumPy's random module

import numpy as np

>>> np.random.seed(136)
The seed is an integer value. Any program that starts 
with the same seed will generate exactly the same 
sequence of random numbers each time it is run.  This 
is useful for debugging programs but otherwise not 
needed as the seed is uniquely  set each time the 
program executes. 

Note: one could also import via:
import numpy.random as rnd
>>> rnd.seed(136)
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NumPy's random module
Generate random integers in the range [min, max)

>>> np.random.randint(5,10)
8

  Generates a single random number in [0.0, 1.0)
>>> np.random.random()
0.70110427435769551

       Generate an array of random numbers in the  interval [0.0, 1.0) 
>>> np.random.rand(1)
array([ 0.73549029])

>>> np.random.rand(5)
array([ 0.6652181 ,  0.58861746,  0.8514131 ,  0.68607923,  
0.8785746 ])

>>> np.random.rand(2,3)
array([[ 0.81698429,  0.632073  ,  0.10512043],
       [ 0.88226248,  0.47654622,  0.45082853]])
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NumPy's random module
hpc-login% pydoc numpy.random
 ...
 ...
DESCRIPTION
    ========================
    Random Number Generation
    ========================
    
    ...
    ... 

    ==================== =========================================================
    Univariate distributions
    ==============================================================================
    beta                 Beta distribution over ``[0, 1]``.
    binomial             Binomial distribution.
    chisquare            :math:`\chi^2` distribution.
    exponential          Exponential distribution.
    f                    F (Fisher-Snedecor) distribution.
    gamma                Gamma distribution.
    geometric            Geometric distribution.
    gumbel               Gumbel distribution.
    hypergeometric       Hypergeometric distribution.
    laplace              Laplace distribution.
    logistic             Logistic distribution.
    lognormal            Log-normal distribution.
    logseries            Logarithmic series distribution.
    negative_binomial    Negative binomial distribution.
    noncentral_chisquare Non-central chi-square distribution.
    noncentral_f         Non-central F distribution.
    normal               Normal / Gaussian distribution.
    pareto               Pareto distribution.
    poisson              Poisson distribution.

... 

... 
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Generating random distributions

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> plt.hist(numpy.random.normal(size=10000), bins=numpy.linspace(-3,3,100))
>>> plt.show()

hpc-login-24 % pydoc numpy.random.normal
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Monte Carlo Integration
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techniques are

 Monte Carlo Sampling method

Monte Carlo Mean-Value method
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Monte Carlo Sampling Method

Box off the region of integration
calculate the area of the box

Randomly place points in the box
Count # of points in the box vs # under the 

function
Areaf(x)  =Areabox * Nf(x)/Nbox  

f(x) = -xπ + π x
fmax

xmax x

f(x)

Nf(x) = #

Nbox = #    + #  

“random marks”
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Monte Carlo Mean-Value Method

Integration using the Monte Carlo method is done by averaging 
the value of the function at randomly selected points within 
the integration interval

I=∫
a

b

dx f  x=b−a〈 f 〉

〈 f 〉≃
1
N ∑

i=0

N

f x i

Statistical Error  f= f / N
standard deviation of mean

 I~ f

“The Work Horse”

f(x)

x

<f>
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fmax

xmax x

f(x)
import numpy.random as rnd
nUnder = 0 
for _ in range(nPoints):
    x = xMin + (xMax - xMin)*rnd.random()
    fRand = fMin + (fMax - fMin)*rnd.random()
    if fRand < f( x ):
        nUnder += 1
 print(“Integration by Samples = ”, \ 
      fMax*(xMax - xMin) * nUnder/nPoints)

import numpy.random as rnd
sum = 0
for _ in range(nPoints):
    x = xMin + (xMax - xMin)*rnd.random()
    sum += f( x )
 
print(“Integration by Mean-Value = ”, \ 

  (xMax – xMin) * sum/nPoints )

Example: MC integration  

f(x) = -xπ + πx

<f>

xmax x

f(x)

xmin

xmin

∫
0

e
ln (π)
(π−1)

π x−xπ
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Multi-Dimensional Monte Carlo
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dx∫
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 Easy to generalize mean-value integration to many dimensions
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Multi-Dimensional Monte Carlo

I=∫
a

b

dx∫
c

d

dy f x , y≃b−ad−c∗ 1
N ∑

i

N

f xi , y i

 Easy to generalize mean-value integration to many dimensions

import numpy.random as rnd
def integrateMC(func, dim, limit, N=100):
    I,sum = 1/N,0
    for n in range(dim):
        I *= (limit[n][1] - limit[n][0])
    for k in range(N):
        x = []
        for n in range(dim):
            x += [limit[n][0] + (limit[n][1] - limit[n][0])*rnd.random()]
        sum += func(x)
    return I*sum

def f(x):
    return np.sin(x[0] * x[1]**2)

dim,limit = 2,[[0,np.pi],[0,np.pi]]
print(integrateMC(f, dim, limit))

main part of program

integrand function 

multi-dimensional Monte Carlo
integration implementation

f (x , y )=sin(xy2)

Multi-Dimensional Monte Carlo

I=∫
a

b

dx∫
c

d

dy f x , y≃b−ad−c∗ 1
N ∑

i

N

f xi , y i
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Multi-Dimensional Integration
via MC mean value

I=∫
0

1

dx1∫
0

1

dx2 ...∫
0

1

dx12 f x1, x2, ... x12

For N=106 random points in the MC integration there are  ~106 calculations

Example: Atomic Physics 

3 Dimension/electron * 4 electrons = 12 Dimensions

 Assuming 1 Giga evaluations/sec 
It would take ~ 10-3 sec 

4Be

≃1−0 12∗
1
N ∑

i

N

f x1,
i x2,

i  x12
i

compare to 107 yrs
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Monte Carlo Error

Monte Carlo error is Statistical
Error decreases as 1/ N

Mean-Value Integration is an ordinary statistical mean 

x=
1
N ∑

i=1

N

xi

The error on the mean is the standard deviation of the mean (SDOM)

x=
 x

N
With the standard deviation σξ defined as usual

 x= 1
N −1∑  xi−xb

2

Note: ∑ [x i−x 2]=[∑ x i
2]−N x2  is very useful in computing SDOM!
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Monte Carlo Error
∫
0



∫
0



sin x∗y2dx dy=1.9051±0.0006

Mean-value 
integration error 
decreases linearly 

with 1/√N

SDOMAVG

Averaged over 20 samples 
for each value of number of

Monte Carlo samples

   nSamples, n = 10000, 20
   While nSamples < MaxSamples
        vSum, vSumSq = 0.0, 0.0  
       for _ in range(n):
           v = integrateMC(func, nDim, limits, nSamples)
           vSum += v
           vSumSq += v*v
        avg = vSum/n
        SDOM = sqrt(1/n) * sqrt( 1/(n - 1) * (vSumSq - n*avg*avg) )
        nSamples *= 2
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See python code at 
http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py
See python code at 
http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py

http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py


Let's get working on #5

MONTE CARLO
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