
Computational Physics

Feb 21, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

eugenio@fsu.edu

Adaptive, Adaptive,
Multi-Dimensional, & Multi-Dimensional, &

Monte Carlo IntegrationMonte Carlo Integration

Computational Physics

Feb 21, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

eugenio@fsu.edu

Adaptive, Adaptive,
Multi-Dimensional, & Multi-Dimensional, &

Monte Carlo IntegrationMonte Carlo Integration

Series Integration

f(x)

xxa xb

w=x b−xa/N

xa xb

f(x)

x

4 ∑
k=0

N −1

f xaw k1/2 

I N =
w
6  f xa f x b2 ∑

k=1

N −1

f x ak w 

∫
x a

x b

f x dx = I N O w4∫
xa

xb

f  x dx = I N O w2

2 =
1
15∣I N 2

− I N 1
∣

error on 2nd integration

2 =
1
3∣I N 2

− I N 1
∣

error on 2nd integration

I N = w
2
∗ f x a f xb2∑

k=1

N −1

f  xak w 

trapezoidal rule Simpson's rule
review from last lecture

Series Integration

f(x)

xxa xb

w=x b−xa/N

xa xb

f(x)

x

4 ∑
k=0

N −1

f xaw k1/2 

I N =
w
6  f xa f x b2 ∑

k=1

N −1

f x ak w 

∫
x a

x b

f x dx = I N O w4∫
xa

xb

f  x dx = I N O w2

2 =
1
15∣I N 2

− I N 1
∣

error on 2nd integration

2 =
1
3∣I N 2

− I N 1
∣

error on 2nd integration

I N = w
2
∗ f x a f xb2∑

k=1

N −1

f  xak w 

trapezoidal rule Simpson's rule
review from last lecture

Adaptive Integration
Integration with just enough steps, N, to achieve the accuracy we want

 Decide on the integration accuracy
 Evaluate the integral with a small number of steps N1

 Then double the number N2 = 2N1, & evaluate integral
again

 Calculate the error on I2

use

 If error is to within accuracy then we are finished,

otherwise repeat doubling of integration steps until
desired accuracy is reached

ϵ2 = 1
3
∣I 2−I 1∣trapezodial or ϵ2 = 1

15
∣I 2−I 1∣Simpson

Adaptive Integration
Integration with just enough steps, N, to achieve the accuracy we want

 Decide on the integration accuracy
 Evaluate the integral with a small number of steps N1

 Then double the number N2 = 2N1, & evaluate integral
again

 Calculate the error on I2

use

 If error is to within accuracy then we are finished,

otherwise repeat doubling of integration steps until
desired accuracy is reached

ϵ2 = 1
3
∣I 2−I 1∣trapezodial or ϵ2 = 1

15
∣I 2−I 1∣Simpson

Adaptive Integration
Doubling the number of integration steps with half the calculations

½ 1 1 1 ½

½ 1 1 1 1 1 1 1 ½

doubling effectively adds an additional set
of points halfway between the previous points

I N = w 1
2

f xa
1
2

f xb∑
k=1

N −1

[f x ak w ]

Adaptive Integration
Doubling the number of integration steps with half the calculations

½ 1 1 1 ½

½ 1 1 1 1 1 1 1 ½

doubling effectively adds an additional set
of points halfway between the previous points

I N = w 1
2

f xa
1
2

f xb∑
k=1

N −1

[f x ak w ]

Adaptive Integration
Doubling the number of integration steps with half the calculations

½ 1 1 1 ½

½ 1 1 1 1 1 1 1 ½

doubling effectively adds an additional set
of points halfway between the previous points

 adaptive trapezoidal rule integration
(extra points are the odd points)

I N = w 1
2

f xa
1
2

f xb∑
k=1

N −1

[f x ak w ]

I 2=
1
2

I 1+ w2∗ ∑
k odd

1... N 2−1

f (xa+ k w2)

ϵ2 = 1
3
∣I 2− I 1∣N 2=2N1 w2=

w1

2

Adaptive Integration
Doubling the number of integration steps with half the calculations

½ 1 1 1 ½

½ 1 1 1 1 1 1 1 ½

doubling effectively adds an additional set
of points halfway between the previous points

 adaptive trapezoidal rule integration
(extra points are the odd points)

I N = w 1
2

f xa
1
2

f xb∑
k=1

N −1

[f x ak w ]

I 2=
1
2

I 1+ w2∗ ∑
k odd

1... N 2−1

f (xa+ k w2)

ϵ2 = 1
3
∣I 2− I 1∣N 2=2N1 w2=

w1

2

Adaptive Integration
Doubling the number of integration steps with half the calculations

½ 1 1 1 ½

½ 1 1 1 1 1 1 1 ½

doubling effectively adds an additional set
of points halfway between the previous points

I 2=
1
2

I 1+ w2∗ ∑
k odd

1... N 2−1

f (xa+ k w2)

I 2 = 1
2

I 1 −1
3

w2 ∑
k odd
k=1

N 2−1

f (xa+ w2 k)
 adaptive trapezoidal rule integration

(extra points are the odd points)

 adaptive Simpson's rule integration
(extra points are the new mid points minus odd endpoint point values)

I N =
w
6  f xa f x b2 ∑

k=1

N−1

f x ak w4 ∑
k=0

N−1

f x awk1 /2 

I N = w 1
2

f xa
1
2

f xb∑
k=1

N −1

[f x ak w ]

ϵ2 = 1
3
∣I 2− I 1∣ ϵ2 = 1

15
∣I 2− I 1∣

+ 2
3

w2 ∑
k=0

N 2−1

f (xa+ w2(k+ 1/2))

N 2=2N1 w2=
w1

2
N 2=2N1 w2=

w1

2

Adaptive Integration
Doubling the number of integration steps with half the calculations

½ 1 1 1 ½

½ 1 1 1 1 1 1 1 ½

doubling effectively adds an additional set
of points halfway between the previous points

I 2=
1
2

I 1+ w2∗ ∑
k odd

1... N 2−1

f (xa+ k w2)

I 2 = 1
2

I 1 −1
3

w2 ∑
k odd
k=1

N 2−1

f (xa+ w2 k)
 adaptive trapezoidal rule integration

(extra points are the odd points)

 adaptive Simpson's rule integration
(extra points are the new mid points minus odd endpoint point values)

I N =
w
6  f xa f x b2 ∑

k=1

N−1

f x ak w4 ∑
k=0

N−1

f x awk1 /2 

I N = w 1
2

f xa
1
2

f xb∑
k=1

N −1

[f x ak w ]

ϵ2 = 1
3
∣I 2− I 1∣ ϵ2 = 1

15
∣I 2− I 1∣

+ 2
3

w2 ∑
k=0

N 2−1

f (xa+ w2(k+ 1/2))

N 2=2N1 w2=
w1

2
N 2=2N1 w2=

w1

2

Integrals over infinite ranges

∫
0

∞

f x dx

Solve by changing variables: z= x
1x

 x= z
1−z 

& dx= dz
1−z 2

∫
0

∞

f  x dx = ∫
0

1 1
1−z 2 f  z

1−z  dz

Integrals over infinite ranges

∫
0

∞

f x dx

Solve by changing variables: z= x
1x

 x= z
1−z 

& dx= dz
1−z 2

∫
0

∞

f  x dx = ∫
0

1 1
1−z 2 f  z

1−z  dz

Integrals over infinite ranges

∫
0

∞

f x dx

solution is to change variables: z= x
1x

 x= z
1−z 

& dx= dz
1−z 2

∫
0

∞

f  x dx = ∫
0

1 1
1−z 2 f  z

1−z  dz

We can make two changes of variables: y = x - a & z = y/(1+y)

to calculate: ∫
a

∞

f xdx = ∫
0

1 1
1−z 2 f  z

1−z a  dz

Integrals over infinite ranges

∫
0

∞

f x dx

solution is to change variables: z= x
1x

 x= z
1−z 

& dx= dz
1−z 2

∫
0

∞

f  x dx = ∫
0

1 1
1−z 2 f  z

1−z  dz

We can make two changes of variables: y = x - a & z = y/(1+y)

to calculate: ∫
a

∞

f xdx = ∫
0

1 1
1−z 2 f  z

1−z a  dz

Multi-Dimensional Integration

∫
xa

xb

∫
ya

yb

f x , ydy dx

∫
xa

xb

f  xdx

f x=∫
ya

yb

f x , ydy

For N points in each integral calculation there are N2 calculations

Solve by Series Integration

“Divide and Conquer”

Trapezoidal
Simpson's Rule

Multi-Dimensional Integration

∫
xa

xb

∫
ya

yb

f x , ydy dx

∫
xa

xb

f  xdx

f x=∫
ya

yb

f x , ydy

For N points in each integral calculation there are N2 calculations

Solve by Series Integration

“Divide and Conquer”

Trapezoidal
Simpson's Rule

Multi-Dimensional Integration

I=∫
0

1

dx1∫
0

1

dx2 ...∫
0

1

dx12 f x1, x2, ... x12

For 100 steps in each integration there are 10012 =1024 calculations

Example: Atomic Physics

3 Dimension/electron * 4 electrons = 12 Dimensions

 Assuming 1 Giga evaluations/sec
It would take over 107 years!!!!

4Be

Multi-Dimensional Integration

I=∫
0

1

dx1∫
0

1

dx2 ...∫
0

1

dx12 f x1, x2, ... x12

For 100 steps in each integration there are 10012 =1024 calculations

Example: Atomic Physics

3 Dimension/electron * 4 electrons = 12 Dimensions

 Assuming 1 Giga evaluations/sec
It would take over 107 years!!!!

4Be

Monte Carlo Integration

Monte Carlo methods provide an alternative
method of calculating an integral.

Using Random Numbers to Solve Integrals

Monte Carlo Integration

Monte Carlo methods provide an alternative
method of calculating an integral.

Using Random Numbers to Solve Integrals

Random Numbers
Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed in what has statistical similarities to random fashion.

Random Numbers
Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed in what has statistical similarities to random fashion.

Random Numbers
Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed in what has statistical similarities to random fashion.

Python modules for generating random numbers:
● import random:

● a smaller set of functions for random numbers
● import numpy.random:

● a more complete set of utilities with many generating
functions along with array manipulation capabilities

Random Numbers
Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed in what has statistical similarities to random fashion.

Python modules for generating random numbers:
● import random:

● a smaller set of functions for random numbers
● import numpy.random:

● a more complete set of utilities with many generating
functions along with array manipulation capabilities

Random Numbers
Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed in what has statistical similarities to random fashion.

Python modules for generating random numbers:
● import random:

● a smaller set of functions for random numbers
● import numpy.random:

● a more complete set of utilities with many generating
functions along with array manipulation capabilities

Numpy.random and random modules uses a Mersenne Twister algorithm to
generate pseudorandom numbers which has become the generator of choice
for serious physics calculations.

Let's always use the NumPy random module

Random Numbers
Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed in what has statistical similarities to random fashion.

Python modules for generating random numbers:
● import random:

● a smaller set of functions for random numbers
● import numpy.random:

● a more complete set of utilities with many generating
functions along with array manipulation capabilities

Numpy.random and random modules uses a Mersenne Twister algorithm to
generate pseudorandom numbers which has become the generator of choice
for serious physics calculations.

Let's always use the NumPy random module

NumPy's random module

import numpy as np

>>> np.random.seed(136)
The seed is an integer value. Any program that starts
with the same seed will generate exactly the same
sequence of random numbers each time it is run. This
is useful for debugging programs but otherwise not
needed as the seed is uniquely set each time the
program executes.

Note: one could also import via:
import numpy.random as rnd
>>> rnd.seed(136)

NumPy's random module

import numpy as np

>>> np.random.seed(136)
The seed is an integer value. Any program that starts
with the same seed will generate exactly the same
sequence of random numbers each time it is run. This
is useful for debugging programs but otherwise not
needed as the seed is uniquely set each time the
program executes.

Note: one could also import via:
import numpy.random as rnd
>>> rnd.seed(136)

NumPy's random module
Generate random integers in the range [min, max)

>>> np.random.randint(5,10)
8

 Generates a single random number in [0.0, 1.0)
>>> np.random.random()
0.70110427435769551

 Generate an array of random numbers in the interval [0.0, 1.0)
>>> np.random.rand(1)
array([0.73549029])

>>> np.random.rand(5)
array([0.6652181 , 0.58861746, 0.8514131 , 0.68607923,
0.8785746])

>>> np.random.rand(2,3)
array([[0.81698429, 0.632073 , 0.10512043],
 [0.88226248, 0.47654622, 0.45082853]])

NumPy's random module
Generate random integers in the range [min, max)

>>> np.random.randint(5,10)
8

 Generates a single random number in [0.0, 1.0)
>>> np.random.random()
0.70110427435769551

 Generate an array of random numbers in the interval [0.0, 1.0)
>>> np.random.rand(1)
array([0.73549029])

>>> np.random.rand(5)
array([0.6652181 , 0.58861746, 0.8514131 , 0.68607923,
0.8785746])

>>> np.random.rand(2,3)
array([[0.81698429, 0.632073 , 0.10512043],
 [0.88226248, 0.47654622, 0.45082853]])

NumPy's random module
hpc-login% pydoc numpy.random
 ...
 ...
DESCRIPTION
 ========================
 Random Number Generation
 ========================

 ...
 ...

 ==================== ===
 Univariate distributions
 ==
 beta Beta distribution over ``[0, 1]``.
 binomial Binomial distribution.
 chisquare :math:`\chi^2` distribution.
 exponential Exponential distribution.
 f F (Fisher-Snedecor) distribution.
 gamma Gamma distribution.
 geometric Geometric distribution.
 gumbel Gumbel distribution.
 hypergeometric Hypergeometric distribution.
 laplace Laplace distribution.
 logistic Logistic distribution.
 lognormal Log-normal distribution.
 logseries Logarithmic series distribution.
 negative_binomial Negative binomial distribution.
 noncentral_chisquare Non-central chi-square distribution.
 noncentral_f Non-central F distribution.
 normal Normal / Gaussian distribution.
 pareto Pareto distribution.
 poisson Poisson distribution.

...

...

NumPy's random module
hpc-login% pydoc numpy.random
 ...
 ...
DESCRIPTION
 ========================
 Random Number Generation
 ========================

 ...
 ...

 ==================== ===
 Univariate distributions
 ==
 beta Beta distribution over ``[0, 1]``.
 binomial Binomial distribution.
 chisquare :math:`\chi^2` distribution.
 exponential Exponential distribution.
 f F (Fisher-Snedecor) distribution.
 gamma Gamma distribution.
 geometric Geometric distribution.
 gumbel Gumbel distribution.
 hypergeometric Hypergeometric distribution.
 laplace Laplace distribution.
 logistic Logistic distribution.
 lognormal Log-normal distribution.
 logseries Logarithmic series distribution.
 negative_binomial Negative binomial distribution.
 noncentral_chisquare Non-central chi-square distribution.
 noncentral_f Non-central F distribution.
 normal Normal / Gaussian distribution.
 pareto Pareto distribution.
 poisson Poisson distribution.

...

...

Generating random distributions

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> plt.hist(numpy.random.normal(size=10000), bins=numpy.linspace(-3,3,100))
>>> plt.show()

hpc-login-24 % pydoc numpy.random.normal

Generating random distributions

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>>
>>> plt.hist(numpy.random.normal(size=10000), bins=numpy.linspace(-3,3,100))
>>> plt.show()

hpc-login-24 % pydoc numpy.random.normal

Monte Carlo Integration

 Two of the most common ways to employ Monte Carlo
techniques are

 Monte Carlo Sampling method

Monte Carlo Mean-Value method

Monte Carlo Integration

 Two of the most common ways to employ Monte Carlo
techniques are

 Monte Carlo Sampling method

Monte Carlo Mean-Value method

Monte Carlo Sampling Method

Box off the region of integration
calculate the area of the box

Randomly place points in the box
Count # of points in the box vs # under the

function
Areaf(x) =Areabox * Nf(x)/Nbox

f(x) = -xπ + π x
fmax

xmax x

f(x)

Nf(x) = #

Nbox = # + #

“random marks”

Monte Carlo Sampling Method

Box off the region of integration
calculate the area of the box

Randomly place points in the box
Count # of points in the box vs # under the

function
Areaf(x) =Areabox * Nf(x)/Nbox

f(x) = -xπ + π x
fmax

xmax x

f(x)

Nf(x) = #

Nbox = # + #

“random marks”

Monte Carlo Mean-Value Method

Integration using the Monte Carlo method is done by averaging
the value of the function at randomly selected points within
the integration interval

I=∫
a

b

dx f  x=b−a〈 f 〉

〈 f 〉≃
1
N ∑

i=0

N

f x i

Statistical Error  f= f / N
standard deviation of mean

 I~ f

“The Work Horse”

f(x)

x

<f>

Monte Carlo Mean-Value Method

Integration using the Monte Carlo method is done by averaging
the value of the function at randomly selected points within
the integration interval

I=∫
a

b

dx f  x=b−a〈 f 〉

〈 f 〉≃
1
N ∑

i=0

N

f x i

Statistical Error  f= f / N
standard deviation of mean

 I~ f

“The Work Horse”

f(x)

x

<f>

fmax

xmax x

f(x)
import numpy.random as rnd
nUnder = 0
for _ in range(nPoints):
 x = xMin + (xMax - xMin)*rnd.random()
 fRand = fMin + (fMax - fMin)*rnd.random()
 if fRand < f(x):
 nUnder += 1
 print(“Integration by Samples = ”, \
 fMax*(xMax - xMin) * nUnder/nPoints)

import numpy.random as rnd
sum = 0
for _ in range(nPoints):
 x = xMin + (xMax - xMin)*rnd.random()
 sum += f(x)

print(“Integration by Mean-Value = ”, \

 (xMax – xMin) * sum/nPoints)

Example: MC integration

f(x) = -xπ + πx

<f>

xmax x

f(x)

xmin

xmin

∫
0

e
ln (π)
(π−1)

π x−xπ

fmax

xmax x

f(x)
import numpy.random as rnd
nUnder = 0
for _ in range(nPoints):
 x = xMin + (xMax - xMin)*rnd.random()
 fRand = fMin + (fMax - fMin)*rnd.random()
 if fRand < f(x):
 nUnder += 1
 print(“Integration by Samples = ”, \
 fMax*(xMax - xMin) * nUnder/nPoints)

import numpy.random as rnd
sum = 0
for _ in range(nPoints):
 x = xMin + (xMax - xMin)*rnd.random()
 sum += f(x)

print(“Integration by Mean-Value = ”, \

 (xMax – xMin) * sum/nPoints)

Example: MC integration

f(x) = -xπ + πx

<f>

xmax x

f(x)

xmin

xmin

∫
0

e
ln (π)
(π−1)

π x−xπ

Multi-Dimensional Monte Carlo

I=∫
a

b

dx∫
c

d

dy f x , y≃b−ad−c∗ 1
N ∑

i

N

f x i , y i

 Easy to generalize mean-value integration to many dimensions
Multi-Dimensional Monte Carlo

I=∫
a

b

dx∫
c

d

dy f x , y≃b−ad−c∗ 1
N ∑

i

N

f x i , y i

 Easy to generalize mean-value integration to many dimensions

Multi-Dimensional Monte Carlo

I=∫
a

b

dx∫
c

d

dy f x , y≃b−ad−c∗ 1
N ∑

i

N

f xi , y i

 Easy to generalize mean-value integration to many dimensions

import numpy.random as rnd
def integrateMC(func, dim, limit, N=100):
 I,sum = 1/N,0
 for n in range(dim):
 I *= (limit[n][1] - limit[n][0])
 for k in range(N):
 x = []
 for n in range(dim):
 x += [limit[n][0] + (limit[n][1] - limit[n][0])*rnd.random()]
 sum += func(x)
 return I*sum

def f(x):
 return np.sin(x[0] * x[1]**2)

dim,limit = 2,[[0,np.pi],[0,np.pi]]
print(integrateMC(f, dim, limit))

main part of program

integrand function

multi-dimensional Monte Carlo
integration implementation

f (x , y)=sin(xy2)

Multi-Dimensional Monte Carlo

I=∫
a

b

dx∫
c

d

dy f x , y≃b−ad−c∗ 1
N ∑

i

N

f xi , y i

 Easy to generalize mean-value integration to many dimensions

import numpy.random as rnd
def integrateMC(func, dim, limit, N=100):
 I,sum = 1/N,0
 for n in range(dim):
 I *= (limit[n][1] - limit[n][0])
 for k in range(N):
 x = []
 for n in range(dim):
 x += [limit[n][0] + (limit[n][1] - limit[n][0])*rnd.random()]
 sum += func(x)
 return I*sum

def f(x):
 return np.sin(x[0] * x[1]**2)

dim,limit = 2,[[0,np.pi],[0,np.pi]]
print(integrateMC(f, dim, limit))

main part of program

integrand function

multi-dimensional Monte Carlo
integration implementation

f (x , y)=sin(xy2)

Multi-Dimensional Integration
via MC mean value

I=∫
0

1

dx1∫
0

1

dx2 ...∫
0

1

dx12 f x1, x2, ... x12

For N=106 random points in the MC integration there are ~106 calculations

Example: Atomic Physics

3 Dimension/electron * 4 electrons = 12 Dimensions

 Assuming 1 Giga evaluations/sec
It would take ~ 10-3 sec

4Be

≃1−0 12∗
1
N ∑

i

N

f x1,
i x2,

i  x12
i

compare to 107 yrs

Multi-Dimensional Integration
via MC mean value

I=∫
0

1

dx1∫
0

1

dx2 ...∫
0

1

dx12 f x1, x2, ... x12

For N=106 random points in the MC integration there are ~106 calculations

Example: Atomic Physics

3 Dimension/electron * 4 electrons = 12 Dimensions

 Assuming 1 Giga evaluations/sec
It would take ~ 10-3 sec

4Be

≃1−0 12∗
1
N ∑

i

N

f x1,
i x2,

i  x12
i

compare to 107 yrs

Monte Carlo Error

Monte Carlo error is Statistical
Error decreases as 1/ N

Mean-Value Integration is an ordinary statistical mean

x=
1
N ∑

i=1

N

xi

The error on the mean is the standard deviation of the mean (SDOM)

x=
 x

N
With the standard deviation σξ defined as usual

 x= 1
N −1∑  xi−xb

2

Note: ∑ [x i−x 2]=[∑ x i
2]−N x2 is very useful in computing SDOM!

Monte Carlo Error

Monte Carlo error is Statistical
Error decreases as 1/ N

Mean-Value Integration is an ordinary statistical mean

x=
1
N ∑

i=1

N

xi

The error on the mean is the standard deviation of the mean (SDOM)

x=
 x

N
With the standard deviation σξ defined as usual

 x= 1
N −1∑  xi−xb

2

Note: ∑ [x i−x 2]=[∑ x i
2]−N x2 is very useful in computing SDOM!

Monte Carlo Error
∫
0



∫
0



sin x∗y2dx dy=1.9051±0.0006

Mean-value
integration error
decreases linearly

with 1/√N

SDOMAVG

Averaged over 20 samples
for each value of number of

Monte Carlo samples

 nSamples, n = 10000, 20
 While nSamples < MaxSamples
 vSum, vSumSq = 0.0, 0.0
 for _ in range(n):
 v = integrateMC(func, nDim, limits, nSamples)
 vSum += v
 vSumSq += v*v
 avg = vSum/n
 SDOM = sqrt(1/n) * sqrt(1/(n - 1) * (vSumSq - n*avg*avg))
 nSamples *= 2

Monte Carlo Error
∫
0



∫
0



sin x∗y2dx dy=1.9051±0.0006

Mean-value
integration error
decreases linearly

with 1/√N

SDOMAVG

Averaged over 20 samples
for each value of number of

Monte Carlo samples

 nSamples, n = 10000, 20
 While nSamples < MaxSamples
 vSum, vSumSq = 0.0, 0.0
 for _ in range(n):
 v = integrateMC(func, nDim, limits, nSamples)
 vSum += v
 vSumSq += v*v
 avg = vSum/n
 SDOM = sqrt(1/n) * sqrt(1/(n - 1) * (vSumSq - n*avg*avg))
 nSamples *= 2

See python code at
http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py
See python code at
http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py

http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py

Let's get working on #5

MONTE CARLO

Let's get working on #5

MONTE CARLO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

