Wlonte Carly [otegration
Feb 21, 2019

http://hadron.physics.fsu.edu/~eugenio/comphy/

eugenio@fsu.edu

Series Integration

review from last lecture
trapezoidal rule Simpson's rule

f(x) %)

Lo = 20 f)+fx)42 2 £, rhw)

k=1

V; f(xa)+f(xb)+2;1 flx,+hkw) +4NZ:1f(xa+w(k+1/2))]

1 1k=0
€ = §|]N2_IN1| € = E|IN2_[N1|

nd : :
error on 2™ integration error on 2™ inte gration

Adaptive Integration

Integration with just enough steps, N, to achieve the accuracy we want

¢ Decide on the integration accuracy
¢ Evaluate the integral with a small number of steps N.

¢ Then double the number N, = 2N, & evaluate integral
again
¢ Calculate the error on |,

®use 1

1
EZ — §|12_Il|trapez0dial or EZ — E|IZ_I

1 |Simps0n

¢ If error is to within accuracy then we are finished,
otherwise repeat doubling of integration steps until
desired accuracy is reached

Adaptive Integration

Doubling the number of integration steps with half the calculations

V2

doubling effectively adds an additional set
of points halfway between the previous points

Adaptive Integration

Doubling the number of integration steps with half the calculations

v
doubling effectively adds an additional set

of points halfway between the previous points

vz

[N:WEf +;fxb Z X, +kw)]

adaptive trapezoidal rule integration

(extra points are the odd points)

1
2:E]1+W2* Z f(xa"'sz)

k odd
1..N,—1

1
€ = §|12_Il|

Adaptive Integration

Doubling the number of integration steps with half the calculations

vz

. doubling effectively adds an additional set

of points halfway between the previous points

vz

Lo = FU S ()42 5 f (erkw)+4 2 1 (row(k172)]

Z X, +kw)]

+fxb

adaptive trapezoidal rule integration

(extra points are the odd points)

|
2:§]1+W2* Z f(xa"'sz)

k odd
1..N,—1

1
- §|12_Il|

adaptive Simpson's rule integration

(extra points are the new mid points minus odd endpoint point values)

N,—
I, = l11 _lwz Z f(xa+ Wzk)
2 3 i
k=1

+ 2w, 3 flx wy (ke 172))

N,—1

3

1
€ = E|Iz_11|

Integrals over infinite ranges

Tf(x)dx

Solve by changing variables: zZ= T+ — X= 1

z

Integrals over infinite ranges
ff(x)dx
0
solution is to change variables: Zzlix - x:(liz)

1

J 7 = {u

)2f1 dz

We can make two changes of variables: y=x-a & z=y/(1+y)

to calculate: T f(x)dx =

Multi-Dimensional Integration

“Divide and Conquer”

F)=[Flx.v)dy

<

f f(x)dx Solve by Series Integration

Trapezoidal
Simpson's Rule

For N points in each integral calculation there are N* calculations

Multi-Dimensional Integration

Example: Atomic Physics

3 Dimension/electron * 4 electrons = 12 Dimensions

For 100 steps in each integration there are 100! =10* calculations

Assuming 1 Giga evaluations/sec
It would take over 107 years!!!!

Monte Carlo Integration

Using Random Numbers to Solve Integrals

/Monte Carlo methods provide an alternative
method of calculating an integral.

.

Random Numbers

Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed 1n what has statistical similarities to random fashion.

Random Numbers

Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed 1n what has statistical similarities to random fashion.

Python modules for generating random numbers:
e import random:

 a smaller set of functions for random numbers
e import numpy.random:
e a more complete set of utilities with many generating
functions along with array manipulation capabilities

Random Numbers

Pseudo-Random Numbers

The numbers are pseudo-random in the sense that they are
generated deterministically from a seed number, but are
distributed 1n what has statistical similarities to random fashion.

Python modules for generating random numbers:
e import random:
 a smaller set of functions for random numbers
e import numpy.random:
e a more complete set of utilities with many generating
functions along with array manipulation capabilities

Numpy.random and random modules uses a Mersenne Twister algorithm to
generate pseudorandom numbers which has become the generator of choice
for serious physics calculations.

Let's always use the NumPy random module

NumPy's random module

import numpy as np

>>> np.random.seed(136)
The seed 1s an integer value. Any program that starts
with the same seed will generate exactly the same
sequence of random numbers each time it 1s run. This
1s useful for debugging programs but otherwise not
needed as the seed is uniquely set each time the
program executes.

Note: one could also import via:

import numpy.random as rnd
>>> rnd.seed(136)

NumPy's random module

Generate random integers 1n the range [min, max)

>>> np.random.randint (5,10)
8

Generates a single random number in [0.0, 1.0)

>>> np.random.random()
0.70110427435769551

Generate an array of random numbers in the interval [0.0, 1.0)

>>> np.random.rand (1)
array([0.73549029])

>>> np.random.rand(5)

array([0.6652181 , 0.58861746, 0.8514131 , 0.68607923,
0.8785746 1)

>>> np.random.rand(2,3)

array([[0.81698429, 0.632073 , 0.10512043],
[0.88226248, 0.47654622, 0.45082853]1])

NumPy's random module

hpc-login% pydoc numpy.random

DESCRIPTION

Beta distribution over "~ [0,
binomial Binomial distribution.
chisquare tmath: \chi”2~ distribution.
exponential Exponential distribution.
f F (Fisher-Snedecor) distribution.
gamma Gamma distribution.
geometric Geometric distribution.
gumbel Gumbel distribution.
hypergeometric Hypergeometric distribution.
laplace Laplace distribution.
logistic Logistic distribution.
lognormal Log-normal distribution.
logseries Logarithmic series distribution.
negative_binomial Negative binomial distribution.
noncentral_chisquare Non-central chi-square distribution.
noncentral_ £ Non-central F distribution.
normal Normal / Gaussian distribution.
pareto Pareto distribution.
poisson Poisson distribution.

Generating random distributions

hpc-login-24 % pydoc numpy.random.normal

Help on built=in function normal in numpy.randoms:

numpy . random.normal = normal(...)
normal {loc=0.0, scale=1.0, size=None)

Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first
derived by De Moivre and 200 years later by both Gauss and Laplace
independently [2]_, is often called the bell curve because of

its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it
describes the commonly cccurring distribution of samples influenced
by a large number of tiny, random disturbances, each with its own
unique distribution [2]_.

: float or array like of floats
Mean ("centre") of the distribution.
scale : float or array like of floats
Standard deviation (spread or "width") of the distribution.
8ize : int or tuple of ints, optional
Output shape. If the given shape is, e.g., “~“(m, n, k) ~, then
""m* n * k°° samples are drawn. If size is " "Mone "~ (default),
a single value is returned if """ loc™" and ~“scale” " are both scalars.
Otherwise, -~ "np.broadcast(loc, scale).size =~ samples are drawn.

import numpy as np
import matplotlib.pyplot as plt

plt.hist (numpy.random.normal(size=10000), bins=numpy.linspace(-3,3,100))
plt.show()

Monte Carlo Integration

¢ Two of the most common ways to employ Monte Carlo
techniques are
_ /

¢ Monte Carlo Sampling method

¢ Monte Carlo Mean-Value method

Monte Carlo Sampling Method

“random marks”

¢ Box off the region of integration
¢ calculate the area of the box
¢ Randomly place points in the box
¢ Count # of points in the box vs # under the

function

f(x) fx)=-x"+m X
— *
¢ Area,) =Area,_ " N 1C(X)/ N

(x

max

Monte Carlo Mean-Value Method

“The Work Horse”

Integration using the Monte Carlo method is done by averaging
the value of the function at randomly selected points within
the integration interval

f(x) A

I=[dx f(x)=(b—a){f) -
‘ 4

/

standard deviation of mean

Statistical Error o,=0, INN

In ()

Example: MC integration <.

1)
JT
import numpy.random as rnd JI-X: X
0

nUnder = 0

L] L] f()
for _ in range(nPoints):
f

X = xMin + (xMax - xMin)*rnd.random()
fRand = fMin + (fMax - fMin)*rnd.random()
if fRand < f(x):
nUnder += 1
print (“Integration by Samples = ", \

fMax* (xMax - xMin) * nUnder/nPoints)

max

import numpy.random as rnd

sum = 0

for _ in range(nPoints):
X = xMin + (xMax - xMin)*rnd.random()
sum += £(x)

print (“Integration by Mean-Value = \

4
(xMax — xMin) * sum/nPoints)

Multi-Dimensional Monte Carlo

¢ Easy to generalize mean-value integration to many dimensions

Multi-Dimensional Monte Carlo

¢ Easy to generalize mean-value integration to many dimensions

1=f ax J dy f(x, y)=(b=a)(d=c)r= 3 f (5, 0)

import numpy.random as rnd
def integrateMC(func, dim, limit, N=100): multi-dimensional Monte Carlo
I,sum = 1/N,0 integration implementation
for n in range(dim):
I *= (limit[n][1] - limit[n][0]) /
for k in range(N):
x =[]
for n in range(dim):
x += [limit[n][0] + (limit[n][1l] - limit[n][O0])*rnd.random()]
sum += func(x)
return I*sum

f(x):
return np.sin(x[0] * x[1]**2)

«— integrand function f (x, y)zsin(xyz)

dim,limit = 2,[[0,np.pi],[0,np.pi]]

< — main part of program

print (integrateMC(f, dim, limit))

Multi-Dimensional Integration
via MC mean value

Example: Atomic Physics

1 1 1
[:f dxlf dxz...f dxlzf(xlsz,---xlz)
0 0 0

3 Dimension/electron * 4 electrons = 12 Dimensions
1 N
12 i i i
~(1-0) *NZf(’ﬁ Xy ees xlz)
i

For N=10° random points in the MC integration there are ~10° calculations

Assuming 1 Giga evaluations/sec

It would take ~ 107 soc ~C——

Monte Carlo Error

¢ Monte Carlo error is Statistical
Error decreases as 1/ N

Mean-Value Integration 1s an ordinary statistical mean

1 N
x:ﬁ; X;

The error on the mean 1s the standard deviation of the mean (SDOM)
)

X

o.=
x \/ﬁ

With the standard deviation O, defined as usual

ax=JﬁZ<xi—xb>2

Note: Y [(x,—%)*]=[D_(x,’]— N x’ is very useful in computing SDOM!

Monte Carlo Error

| [sin (x*y*)dx dy =1.9051+0.0006
0 0 AVG SDOM

TN\

0.014

Mean-value
integration error
o010 | decreases linearly

with 1/VN

0.012 4

0.008 -

0.006 -

0.004 4

0.002

T T T T T
500000 1000000 1500000 2000000 2500000
N

0.001 0.002 0.003 0.004 0.005 0.006 0.007
1/ N
nSamples, n = 10000, 20

While nSamples < MaxSamples
Jsum, vSumSq = 0.0, 0.0 Averaged over 20 samples

for _ in range(n): for each value of number of

v = integrateMC(func, nDim, limits, nSamples)

vSum += v

oSy e vy Monte Carlo samples
avg = vSum/n
SDOM = sqrt(1/n) * sqrt(1/(n - 1) *x (vSumSq - nxavgxavg))
nSamples x= 2

See python code at

http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py

http://hadron.physics.fsu.edu/~eugenio/comphy/examples/mcint.py

MONTE CARLO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

