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Assigned Reading

¢ Read Chapter 6 Section 1-4:
+ Solution of Linear Equations
+ Solution of Nonlinear Equations
¢ Turn-In Questions
* Two questions on material due Mar 26




Solution of Nonlinear Equations

[Finding the zeros ol a function!
¢ Relaxation Method
¢ Binary Search
¢ False Position Method
¢ Newton-Raphson Method

¢ Secant Method




Finding Zeros of Functions

One of the Most Basic Tasks:
Solving Equations Numerically

oF(x )=0 N-Dimensional Case

¢ Generic
¢N-Equations — N-solutions
¢ Distinct, Point-like, Separated

¢ Non-Generic

¢Degenerate
¢ Continuous family of solutions

¢Nonlinear
¢ May have no real solution
¢f(x)=0 One Dimensional Case
¢ Possible to trap a root between bracketing
values, and then hunt it down.




Relaxation Method

¢ Simple iteration of the equation

¢ Drawbacks
¢ equation must be of the form x = f(x)
¢ method often does not converge
¢ method has difficulties finding multiple solutions

Basic Approach

1) Guess an initial value x.. Also choose a solution accuracy.
2) Calculate the value of f(x)
3)if | f( x) - x.| > accuracy

¢ set x. to f(x)

¢ repeat from step 2




Example: x=2-e>*

Relaxation Method

import numpy as np

target = le-10
x =1
xold = float("inf")

while np.abs(x-x0ld)> target

xold = x

X = 2 - np.exp(-x)

print (x)

hpc-login 663% relaxation.py

.63212055883
.80448546585
.83544089392
.84045685534
.84125511391
.84138178281
.84140187354
.84140505985
.84140556519
.84140564533
.84140565804
.84140566006
.84140566038
.84140566043

PHERBERHEBERBRRRR

— f(x) =x
— f(x) = 2 - exp(-x)

‘\
two roots

1 2 3

Sometimes changing the initial guess
can results in finding another root,
but in this case only one root is found

independent of the initial value!




Bracketing & Bisection
(Binary Search)

Finding roots of f(x) =0

¢ If in {a,b}, f(a) & f(b) have opposite signs and
f(x) is continuous then (at least) one root must

exist.

f(x)

\ b
Bracketed
Root

f(x)

Lost Root

w

N

Looks like
a Root

Does not always work




Bracketing & Bisection
Basic Approach

1) Given x_,x,_check that f(x_) and f(x,) have opposite

signs. Also choose a solution accuracy.
2) Calculate the value of the midpoint x =72 (x_+Xx,)

3)
a)iff(x )=0 stop
b)if f(x _)*f(x ) >0 replace x_ with value of x_

c)else replace x_ with value of x_
4) if |x_ - x | > accuracy, repeat from step 2

f(x)
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example: f(x) =2 -e* - X

Bisection Method

e f{x) =2- ekp(-x} - X

target = le-10
xa = float( sys.argv[l] )
xb float( sys.argv[2] )
while np.abs(xa - xb) > targets /| . /|
X = (xa + xb)/2 P 5 L A R PR NS BN
if f(x)*f(xa) > O:
Xa = X
else:
Xb = x
print (x)

3ol

-3.5

both roots are easy to find

hpc-login 663% bisection.py -2 -1 hpc-login 663% bisection.py 1 2
-1.14619322057 1.84140566044




False Position Method

¢ Improve rate of convergence by using
iInformation about the values of the function
¢ Assume the function is linear between X & X,

+ use the linear zero intersection L(x __) =0 to
estimate f(x __) =0

f(x)




False Position Method
Basic Approach

1) Given x_,X_ check that f(x_) and f(x_) have opposite signs. Also choose a

solution accuracy.
2) Calculate the slope m and intercept b
m = (f(x,)- f(x_))/(x,- x_), b= f(x)-mx_
3) Determine linear x__ = - b/m

a)iff(x _)=0 stop

b)if f(x __)*f(x ) >0 replace x_ with x__

Cc) else replace x, with x__
4) if [x - x__| > accuracy, repeat from step 2

ro

ro

f(x)
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ro

ro
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example: f(x) = 2

— f(x) =2 - exp(-x) - X

False Position Method

target = le-10

xa = float( sys.argv[1l] )

xb = float( sys.argv[2] )
xInt,xInt0Old = xa,float("inf")

while np.abs(xInt - xIntOld) > target:
xIntOld = xInt
= (f(xb) - f(xb)) / (xb - xa)
yInt = f(xa) - m*xa
xInt = -yInt/m
if f(xInt)*f(xa) > O:
Xa = xXInt
else:
xb = xInt
print (xInt)

both roots are easy to find

hpc-login 663% falseposition.py -2 -1 hpc-login 663% falseposition.py 1 2
-1.14619322057 1.84140566044




Newton-Raphson Method

aka Newton's Method

¢ Most Commonly Used Root-Finding Routine
¢ Uses only one starting point but needs the derivative
of the function
¢ Calculates f(x__.) & f'(x__.)

¢ Uses the tangent line's zero crossing L (x _ )=0 to
estimate f(x __)=0

(x) X, =x -1(x)/1'(x)

X

X = -b/m  (x-intercept)
2

x,=x, -1(x)/1'x,)




Newton's Method

¢ Most Commonly Used Root-Finding Routine
¢ Uses only one starting point but needs the derivative
of the function
¢ Calculates f(x__.) & f'(x__.)

¢ Uses the tangent line's zero crossing L (x _ )=0 to
estimate f(x __)=0

(x) X, =x -1(x)/1'(x)




example: f(x) =2 -e* - X

Newton's Method
def f(x): +o

—_ f(x) =2 -exp(-x) - x

return 2 - np.exp(-x) - Qymm“jmwmémmmguwmzm

ol /N

def dfdx(x):
return np.expml (-X)

ol N

target = le-10 iymmm;mmmgmmmimmm;mmmgmmm_
x = float( sys.argv[l] )
xlast = float("inf")

I A S S S S A

while np.abs(x - xlast) > target: Y AT S SN S
xlast = x s
x = xlast - f(xlast)/dfdx(xlast) -2
print (x)

both roots are easy to find

# Wwith initial x = -1.0 # With initial x = 1.0
hpc-login 663% newton.py -1 hpc-login 663% newton.py 1
-1.14619322062 1.84140566044




Newton-Raphson Method

Drawbacks of the method

f(x)




Newton-Raphson & Fractals

| B |

Also works for
Complex Functions (FOR FREEEE!))
1.5

L
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Secant Method

¢ Newton's/False Position Method without a known
derivative
+#Uses only two starting points, x, & x,, which need not

bracket the solution
¢ Uses Newton's method with an approximation for f'(x)

B f(x;) frix) = f(xi)_f<xi—1>
A xi_f'(xi> - v X;i 7 X

Secant Method for guessing the root location

X;— X

f(x;)—f(x;y)

X, = x,—f(x;)




example: f(x) =2 -e* - X

Secant Method

def f(x):
return 2 - np.exp(-x) -

def slope(y,x1,x2):
return (y(x2)-y(x1l))/(x2-x1)

target = le-10

xa = float( sys.arvg[l] )
xb = float( sys.arvg[2] )

while np.abs( xa-xb ) > target:

x = xXb — f(xb) / slope(f, xa, xb)

xXxa, Xb = xb, x
print (x)

1.0

—_ f(x) =2 -exp(-x) - x

M“mmmgm”mgmmm@mmm:m

ol /N
oslo /N ]
ol SN
ool N
Y I SRS S S S SO S

30 M

-3.5

-2

both roots are easy to find

# With initial a,b = -0.1,-0.5

hpc-login 663% secant.py -0.1 -0.5
-1.14619322062

# With initial a,b = 0.1,0.5

hpc-login 663% secant.py 0.1 0.5
1.84140566044




Using Python eval() & exec()

The eval () allows one to execute arbitrary strings as Python code. It
accepts a source string and returns an object.

>>> X = 1

>>> eval("x + 3")

4

>>> eval("'hello' + "py'™)
'hellopy

>>> result = eval("2 + 4 - 3 * 3")
>>> print(result)

-3

>>> f = eval("lambda x: x/2")
>>> print( f(11) )

5.5

The exec() allows one to execute a dynamically created statement. It
accepts a source string but does not return an object.

>>> exec( "a =x " + "+ 10" )
>>> print(a)
11

>>>
>>>

>>> exec("def g(x):"
>>> print( g(11l) )
22




Exercise 7 Due TUESDAY
March 26
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