Computational Physics

Solution to Nonlinear Equations

Prof. Paul Eugenio
Department of Physics
Florida State University

Mar. 12, 2019

http://hadron.physics.fsu.edu/ ~eugenio/comphy

Assigned Reading

¢ Read Chapter 6 Section 1-4:
+ Solution of Linear Equations
+ Solution of Nonlinear Equations
¢ Turn-In Questions
* Two questions on material due Mar 26

Solution of Nonlinear Equations

[Finding the zeros ol a function!
¢ Relaxation Method
¢ Binary Search
¢ False Position Method
¢ Newton-Raphson Method

¢ Secant Method

Finding Zeros of Functions

One of the Most Basic Tasks:
Solving Equations Numerically

oF(x)=0 N-Dimensional Case

¢ Generic
¢N-Equations — N-solutions
¢ Distinct, Point-like, Separated

¢ Non-Generic

¢Degenerate
¢ Continuous family of solutions

¢Nonlinear
¢ May have no real solution
¢f(x)=0 One Dimensional Case
¢ Possible to trap a root between bracketing
values, and then hunt it down.

Relaxation Method

¢ Simple iteration of the equation

¢ Drawbacks
¢ equation must be of the form x = f(x)
¢ method often does not converge
¢ method has difficulties finding multiple solutions

Basic Approach

1) Guess an initial value x.. Also choose a solution accuracy.
2) Calculate the value of f(x)
3)if | f(x) - x.| > accuracy

¢ set x. to f(x)

¢ repeat from step 2

Example: x=2-e>*

Relaxation Method

import numpy as np

target = le-10
x =1
xold = float("inf")

while np.abs(x-x0ld)> target

xold = x

X = 2 - np.exp(-x)

print (x)

hpc-login 663% relaxation.py

.63212055883
.80448546585
.83544089392
.84045685534
.84125511391
.84138178281
.84140187354
.84140505985
.84140556519
.84140564533
.84140565804
.84140566006
.84140566038
.84140566043

PHERBERHEBERBRRRR

— f(x) =x
— f(x) = 2 - exp(-x)

‘\
two roots

1 2 3

Sometimes changing the initial guess
can results in finding another root,
but in this case only one root is found

independent of the initial value!

Bracketing & Bisection
(Binary Search)

Finding roots of f(x) =0

¢ If in {a,b}, f(a) & f(b) have opposite signs and
f(x) is continuous then (at least) one root must

exist.

f(x)

\ b
Bracketed
Root

f(x)

Lost Root

w

N

Looks like
a Root

Does not always work

Bracketing & Bisection
Basic Approach

1) Given x_,x,_check that f(x_) and f(x,) have opposite

signs. Also choose a solution accuracy.
2) Calculate the value of the midpoint x =72 (x_+Xx,)

3)
a)iff(x)=0 stop
b)if f(x _)*f(x) >0 replace x_ with value of x_

c)else replace x_ with value of x_
4) if |x_ - x | > accuracy, repeat from step 2

f(x)

Bracketing & Bisection
Basic Approach

1) Given x_,x,_check that f(x_) and f(x,) have opposite

signs. Also choose a solution accuracy.
2) Calculate the value of the midpoint x =72 (x_+Xx,)

3)

a)iff(x)=0 stop
b)if f(x_)*f(x) >0 replace x_ with value of x_

c)else replace x_ with value of x_
4) if |x_ - x | > accuracy, repeat from step 2

f(x)

Bracketing & Bisection
Basic Approach

1) Given x_,x,_check that f(x_) and f(x,) have opposite

signs. Also choose a solution accuracy.
2) Calculate the value of the midpoint x =72 (x_+Xx,)

3)

a)iff(x)=0 stop
b)if f(x_)*f(x) >0 replace x_ with value of x_

c)else replace x_ with value of x_
4) if |x_ - x | > accuracy, repeat from step 2

f(x)

Bracketing & Bisection
Basic Approach

1) Given x_,x,_check that f(x_) and f(x,) have opposite

signs. Also choose a solution accuracy.
2) Calculate the value of the midpoint x =72 (x_+Xx,)

3)

a)iff(x)=0 stop
b)if f(x_)*f(x) >0 replace x_ with value of x_

c)else replace x_ with value of x_
4) if |x_ - x | > accuracy, repeat from step 2

f(x)

Bracketing & Bisection
Basic Approach

1) Given x_,x,_check that f(x_) and f(x,) have opposite

signs. Also choose a solution accuracy.
2) Calculate the value of the midpoint x =72 (x_+Xx,)

3)

a)iff(x)=0 stop
b)if f(x_)*f(x) >0 replace x_ with value of x_

c)else replace x_ with value of x_
4) if |x_ - x | > accuracy, repeat from step 2

f(x)

example: f(x) =2 -e* - X

Bisection Method

e f{x) =2- ekp(-x} - X

target = le-10
xa = float(sys.argv[l])
xb float(sys.argv[2])
while np.abs(xa - xb) > targets /| . /|
X = (xa + xb)/2 P 5 L A R PR NS BN
if f(x)*f(xa) > O:
Xa = X
else:
Xb = x
print (x)

3ol

-3.5

both roots are easy to find

hpc-login 663% bisection.py -2 -1 hpc-login 663% bisection.py 1 2
-1.14619322057 1.84140566044

False Position Method

¢ Improve rate of convergence by using
iInformation about the values of the function
¢ Assume the function is linear between X & X,

+ use the linear zero intersection L(x __) =0 to
estimate f(x __) =0

f(x)

False Position Method
Basic Approach

1) Given x_,X_ check that f(x_) and f(x_) have opposite signs. Also choose a

solution accuracy.
2) Calculate the slope m and intercept b
m = (f(x,)- f(x_))/(x,- x_), b= f(x)-mx_
3) Determine linear x__ = - b/m

a)iff(x _)=0 stop

b)if f(x __)*f(x) >0 replace x_ with x__

Cc) else replace x, with x__
4) if [x - x__| > accuracy, repeat from step 2

ro

ro

f(x)

False Position Method
Basic Approach

1) Given x_,X_ check that f(x_) and f(x_) have opposite signs. Also choose a

solution accuracy.
2) Calculate the slope m and intercept b
m = (f(x,)- f(x_))/(x,- x_), b= f(x)-mx_
3) Determine linear x__ = - b/m

a)iff(x _)=0 stop

b)if f(x __)*f(x) >0 replace x_ with x__

Cc) else replace x_ with x__
4) if [x - x__| > accuracy, repeat from step 2

—

ro

ro

f(x)

False Position Method
Basic Approach

1) Given x_,X_ check that f(x_) and f(x_) have opposite signs. Also choose a

solution accuracy.
2) Calculate the slope m and intercept b
m = (f(x,)- f(x_))/(x,- x_), b= f(x)-mx_
3) Determine linear x__ = - b/m

a)iff(x _)=0 stop

b)if f(x __)*f(x) >0 replace x_ with x__

Cc) else replace x, with x__
4) if [x - x__| > accuracy, repeat from step 2

—

ro

ro

f(x)

example: f(x) = 2

— f(x) =2 - exp(-x) - X

False Position Method

target = le-10

xa = float(sys.argv[1l])

xb = float(sys.argv[2])
xInt,xInt0Old = xa,float("inf")

while np.abs(xInt - xIntOld) > target:
xIntOld = xInt
= (f(xb) - f(xb)) / (xb - xa)
yInt = f(xa) - m*xa
xInt = -yInt/m
if f(xInt)*f(xa) > O:
Xa = xXInt
else:
xb = xInt
print (xInt)

both roots are easy to find

hpc-login 663% falseposition.py -2 -1 hpc-login 663% falseposition.py 1 2
-1.14619322057 1.84140566044

Newton-Raphson Method

aka Newton's Method

¢ Most Commonly Used Root-Finding Routine
¢ Uses only one starting point but needs the derivative
of the function
¢ Calculates f(x__.) & f'(x__.)

¢ Uses the tangent line's zero crossing L (x _)=0 to
estimate f(x __)=0

(x) X, =x -1(x)/1'(x)

X

X = -b/m (x-intercept)
2

x,=x, -1(x)/1'x,)

Newton's Method

¢ Most Commonly Used Root-Finding Routine
¢ Uses only one starting point but needs the derivative
of the function
¢ Calculates f(x__.) & f'(x__.)

¢ Uses the tangent line's zero crossing L (x _)=0 to
estimate f(x __)=0

(x) X, =x -1(x)/1'(x)

example: f(x) =2 -e* - X

Newton's Method
def f(x): +o

—_ f(x) =2 -exp(-x) - x

return 2 - np.exp(-x) - Qymm“jmwmémmmguwmzm

ol /N

def dfdx(x):
return np.expml (-X)

ol N

target = le-10 iymmm;mmmgmmmimmm;mmmgmmm_
x = float(sys.argv[l])
xlast = float("inf")

I A S S S S A

while np.abs(x - xlast) > target: Y AT S SN S
xlast = x s
x = xlast - f(xlast)/dfdx(xlast) -2
print (x)

both roots are easy to find

Wwith initial x = -1.0 # With initial x = 1.0
hpc-login 663% newton.py -1 hpc-login 663% newton.py 1
-1.14619322062 1.84140566044

Newton-Raphson Method

Drawbacks of the method

f(x)

Newton-Raphson & Fractals

| B |

Also works for
Complex Functions (FOR FREEEE!))
1.5

L

Complex Plane J* | %

Plot only only the initial
f(Z) =0 zZ which converge to

guess

the specific solution z_

f(z)=2"-1=0
Roots:

n
T

7= 1 Z:ei2ni/3
b

Region of
Convergence

4 N
Newton-Raphson Method

Z,, =Z- (zj3 -1) /(3zj2)

]+

imaginary

=
n

Red points show the

Look for Convergence convergence to the solution

Y D z =1

Convergence depends on

n_n

initial "z" guess

Secant Method

¢ Newton's/False Position Method without a known
derivative
+#Uses only two starting points, x, & x,, which need not

bracket the solution
¢ Uses Newton's method with an approximation for f'(x)

B f(x;) frix) = f(xi)_f<xi—1>
A xi_f'(xi> - v X;i 7 X

Secant Method for guessing the root location

X;— X

f(x;)—f(x;y)

X, = x,—f(x;)

example: f(x) =2 -e* - X

Secant Method

def f(x):
return 2 - np.exp(-x) -

def slope(y,x1,x2):
return (y(x2)-y(x1l))/(x2-x1)

target = le-10

xa = float(sys.arvg[l])
xb = float(sys.arvg[2])

while np.abs(xa-xb) > target:

x = xXb — f(xb) / slope(f, xa, xb)

xXxa, Xb = xb, x
print (x)

1.0

—_ f(x) =2 -exp(-x) - x

M“mmmgm”mgmmm@mmm:m

ol /N
oslo /N]
ol SN
ool N
Y I SRS S S S SO S

30 M

-3.5

-2

both roots are easy to find

With initial a,b = -0.1,-0.5

hpc-login 663% secant.py -0.1 -0.5
-1.14619322062

With initial a,b = 0.1,0.5

hpc-login 663% secant.py 0.1 0.5
1.84140566044

Using Python eval() & exec()

The eval () allows one to execute arbitrary strings as Python code. It
accepts a source string and returns an object.

>>> X = 1

>>> eval("x + 3")

4

>>> eval("'hello' + "py'™)
'hellopy

>>> result = eval("2 + 4 - 3 * 3")
>>> print(result)

-3

>>> f = eval("lambda x: x/2")
>>> print(f(11))

5.5

The exec() allows one to execute a dynamically created statement. It
accepts a source string but does not return an object.

>>> exec("a =x " + "+ 10")
>>> print(a)
11

>>>
>>>

>>> exec("def g(x):"
>>> print(g(11l))
22

Exercise 7 Due TUESDAY
March 26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

