Boundary Value Problems

Prof. Paul Eugenio
Department of Physics
Florida State University

Apr 18, 2019
Announcements

No More Homework Exercises!

Exam 2
 ◆ No collaborative work allowed
 ◆ Due Friday April 26
Energy Eigenvalues & Eigenvectors of Schrödinger's Equation

- **Schrödinger's Equation**
 - time-independent, one-dimensional

\[
-\frac{\hbar^2}{2m} \frac{d^2 \Psi}{dx^2} + V(x) \Psi = E \Psi
\]

- in units of $\hbar^2/m = 1$

\[
-\frac{1}{2} \frac{d^2 \Psi}{dx^2} = [E - V(x)] \Psi
\]
Solving Schrödinger's Equation

Numerical Procedure

Similar to other 2nd order ODE with known boundary conditions

\[-\frac{1}{2} \frac{d^2 \Psi}{dx^2} = [E - V(x)]\Psi\]

Expand to two 1st order ODE

(1) \[\phi = \frac{d\psi}{dx}\]

(2) \[\frac{d\phi}{dx} = 2[V(x) - E]\psi\]
Solving Schrödinger's Equation

- Find Numerical solutions for $\phi(x)$ & $\psi(x)$

(1) $\frac{d \psi(x)}{dx} = \phi(x)$

$$\psi(x + h) = \psi(x) + h \cdot f_\psi(\psi, \phi, x)$$

(2) $\frac{d \phi(x)}{dx} = 2[V(x) - E]\psi(x)$

$$\phi(x + h) = \phi(x) + h \cdot f_\phi(\psi, \phi, x)$$

Where $f_\psi(\psi, \phi, x)$ and $f_\phi(\psi, \phi, x)$ are obtained using the 4th order Runge-Kutta method.
Solving Schrödinger's Equation

- Find Numerical solutions for $\phi(x) & \psi(x)$

\[(1) \quad \frac{d \psi(x)}{dx} = \phi(x) \]

\[(2) \quad \frac{d \phi(x)}{dx} = 2[V(x) - E]\psi(x) \]

- Implement standard 4th order Runge-Kutta method

- Similar as before except for:
 - The Energy E is unknown
 - $\Psi(x)$ must vanish as x becomes large
 - $\Psi(x)$ must be normalizable

Boundary Conditions
Initial State Conditions

- Exploit Symmetry
 - Symmetric Potential
 - Wave functions are Parity Eigenstates
 - solutions are purely odd or purely even functions
Initial State Conditions

- Exploit Symmetry
 - Symmetric Potential
 - Wave functions are Parity Eigenstates
 - solutions are purely odd or purely even functions
 - Even Parity State Requires
 - $\Psi(x) = \Psi(-x)$
 - $d\Psi(x=0)/dx = 0$
 - $\Psi(x=0) \neq 0$
 - choose $\Psi(x=0) = 1$ and renormalize later
Initially State Conditions

- Exploit Symmetry
 - Symmetric Potential
 - Wave functions are Parity Eigenstates
 - solutions are purely odd or purely even functions
 - Even Parity State Requires
 - $\Psi(x) = \Psi(-x)$
 - $d\Psi(x=0)/dx = 0$
 - $\Psi(x=0) \neq 0$
 - choose $\Psi(x=0) = 1$ and renormalize later
 - Odd Parity State Requires
 - $\Psi(x) = -\Psi(-x)$
 - $\Psi(x=0) = 0$
 - $d\Psi/dx(x=0) \neq 0$
Procedure

1) Pick a value of E

2) Solve for the wave function out to large x
 - Use 4th Order Runge Kutta method
 - Solve for positive x values and use symmetry:
 \[\Psi(-x) = \Psi(x) \quad \text{or} \quad \Psi(-x) = -\Psi(x) \]

3) Determine if boundary conditions match
 i.e. \(\Psi \rightarrow 0 \) as \(x \rightarrow \infty \)
 - If they do not
 - Adjust the value of E and try again

Utilize root-finding techniques!
def waveFunction(fcn, initialState, xValues, deltaX, E):

 Solve for the wave function

 This routine uses the Runge-Kutta 4th order
 method to solve for the values for the
 wave function for a given value of the energy E

 It returns the wave function as an array of
 values with array length equal to len(xValues)

 Note: The wave function is not necessarily an
 eigenfunction. This would only be true
 if the provided energy value "E" happens to be
 an eigenvalue.

 Parameters:

 # make a copy of the initial values
 # so that this function can be repeatedly
 # called with the same initial values
 s = np.copy(initialState)

 psi = []

 for x in xValues:
 psi += [s[0]]

 # evolve the state psi & dPsi/dX
 s += rungKutta4(fcn, s, x, deltaX, E)

 return np.array(psi, float)

This is like finding the
roots of an equation.
find eigenvalue using the secant
root finding method

target = 1e-6

while numpy.abs(E1 - E2) > target:
 # obtain wave function for energy for E1
 psi = waveFunction(SchEq, initialState, xArray, deltaX, E1)
 psiEnd1 = psi[-1]

 # obtain wave function for energy for E2
 psi = waveFunction(SchEq, initialState, xArray, deltaX, E2)
 psiEnd2 = psi[-1]

 # use secant method to obtain new estimates
 # for the energy eigenvalue
 E1, E2 = E2, E2 - psiEnd2 * (E2 - E1) / (psiEnd2 - psiEnd1)

We now have an eigenfunction and eigenvalue
print("Eigen Energy:",E2)

Finding the Eigenvalues

Use root finding methods to find the eigenvalues.

\[V(x) = |x| \]

E = 0.6
E = 0.81
E = 1.0
Computational limitations

Divergence & Precision

Finite Square Well Potential

\[V(x) = 100 \quad \text{for} \quad |x| > 1 \]
\[V(x) = 0 \quad \text{for} \quad |x| \leq 1 \]

<table>
<thead>
<tr>
<th>(E)</th>
<th>(\Psi(\text{at large } x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.073079478</td>
</tr>
<tr>
<td>2</td>
<td>2.143708206</td>
</tr>
<tr>
<td>1.5</td>
<td>-2.009692411</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.075195312</td>
<td>-2.015385741</td>
</tr>
<tr>
<td>1.075439453</td>
<td>2.000674759</td>
</tr>
<tr>
<td>1.075683594</td>
<td>2.14053205</td>
</tr>
<tr>
<td>1.075661523</td>
<td>-2.094250445</td>
</tr>
<tr>
<td>1.075622559</td>
<td>2.124420855</td>
</tr>
<tr>
<td>1.075592041</td>
<td>-2.021076074</td>
</tr>
<tr>
<td>1.0756073</td>
<td>2.045394572</td>
</tr>
<tr>
<td>1.07559967</td>
<td>-2.06349405</td>
</tr>
</tbody>
</table>

The energy eigenvalue is 1.075

Only use array values in the VALID range
Solve for positive x and extend to negative x

Extend arrays to negative values, ordering final array values from negative to positive
if parity == even:
 psi = np.append(psi[::-1], psi[1:])
else:
 psi = np.append(-psi[::-1], psi[1:])

x = np.append(-x[::-1], x[1:])

plot as points not lines
\[\int_{-\infty}^{\infty} \psi^*(x) \psi(x) \, dx \approx \text{psi.dot(psi)} \times \text{deltaX} \]

Normalize wavefunction
print("<psi|psi>:", psi.dot(psi) * deltaX)
Norm = np.sqrt(psi.dot(psi) * deltaX)
print("Renormalizing by:", Norm)
psi = psi/Norm
print("<psi|psi>:", psi.dot(psi) * deltaX)
Normalizations & Expectation

Values

\[\int_{-\infty}^{\infty} \psi^*(x) \psi(x) dx \approx \text{psi.dot(psi)} \times \text{deltaX} \]

Normalize wavefunction
print("<\psi|\psi>: ", psi.dot(psi) * deltaX)
Norm = np.sqrt(psi.dot(psi) * deltaX)
print("Renormalizing by: ", Norm)
psi = psi/Norm
print("<\psi|\psi>: ", psi.dot(psi) * deltaX)

\[\int_{-\infty}^{\infty} \psi^*(x) x^2 \psi(x) dx \approx \text{psi.dot(x^2 * psi)} \times \text{deltaX} \]

Calculate expectation value <x^2>
print("<\psi|x^2|\psi>: ", psi.dot(x^2 * psi) * deltaX)

<\psi|\psi>: 1.62723311703
Renormalizing by: 1.27563047825
<\psi|\psi>: 1.0

\langle x^2 \rangle = \int_{-\infty}^{\infty} \psi^*(x) x^2 \psi(x) dx \approx \text{psi.dot(x^2 * psi)} \times \text{deltaX}

Calculate expectation value <x^2>
print("<\psi|x^2|\psi>: ", psi.dot(x^2 * psi) * deltaX)

<\psi|x^2|\psi>: 0.469491618962
\[\langle p^2 \rangle = \int_{-\infty}^{\infty} \psi^*(x)(-\frac{d^2}{dx^2})\psi(x)\,dx \]

Operator\[p^2\] = \(-\frac{d^2}{dx^2}\) (hbar=1)
\(\langle p^2 \rangle\) = integral\[\psi^*(-\frac{d^2}{dx^2})\psi,\,dx\]
#
Use the central difference for 2nd derivative
\(f''(x) = \frac{[f(x+dx) - 2f(x) + f(x-dx)]}{dx^2}\)

\[
ppPsi = \text{numpy.zeros}(\text{len}(psi) - 2)
\]
for \(i\) in \(\text{range}(\text{len}(ppPsi))\):
 \(ppPsi[i] = -(psi[i+2] -2.0*psi[i+1] + psi[i]) / \text{deltaX}^2\)

trim arrays to match the size of ppPsi
psi = psi[1:-1]
x = x[1:-1]

print("\langle psi|p^2|psi\rangle: ", psi.dot(ppPsi) * deltaX)

using Schrodinger's Equation:
\(p^2 \Psi = -\frac{d^2\Psi}{dX^2} = 2(E - V(x))\psi\)

for \(i\) in \(\text{range}(\text{len}(x))\):
 \(ppPsi[i] = 2.0*(E - V(x[i])) \times psi[i]\)

print("\langle psi|p^2|psi\rangle: ", psi.dot(ppPsi) * deltaX)

\langle psi|p^2|psi\rangle: 3.535532
\langle psi|p^2|psi\rangle: 3.535533

not necessarily the same
Schroedinger’s Equation with $V(x) = |x|$
Final Exercise: Mini-Exam 2

Energy Eigenvalues & Eigenvectors of Schrödinger's Equation

Using the procedures illustrated in the previous slides, implement a program to solve Schrödinger's equation.

Using your WaveFunction program numerically solve Schrödinger’s equation for several given potential energies.

Due Friday Apr 26