Search for Strangeonia in Photoproduction using CLAS

Mukesh Saini

Florida State University, Tallahassee, FL

February 14, 2010

APS April Meeting 2010

Search for Strangeonia in HyCLAS Strangeonia

Of the 22 expected resonances, only 7 are well identified

- η-η'
 φ (1020)
 h₁ (1386)
- $f_1(1426)$ $f_2'(1525)$ $\phi(1680)$
- φ₃ (1854)

Expected Strangeonia spectrum

			J^{PC}	Name	Mass (MeV)
n=2	L=0	S=0	0^{-+}	η_s	1415
		S=1	1	ϕ	1680
	L=1	S=0	1^{+-}	h_1	1850
		S=1	0^{++}	f_0	2000
			1^{++}	f_1	1950
			2^{++}	f_2	2000
n=3	L=0	S=0	0^{-+}	η_s	1950
		S=1	1	ϕ	2050

- Radial excitations of (I = 0, รรี) meson.

			J^{PC}	Name	Mass (MeV)	
n=1	L=0	S=0	0-+	η,η'	548,958	
		S=1	1	ϕ	1020	
	L=1	S=0	1+-	h_1'	1380	
		S=1	0++	f_0'	1500	
			1^{++}	f_1^{\prime}	1530	Orbital excitations
			2^{++}	f_2'	1525	of $(l = 0 \text{ ss})$
	L=2	S=0	2^{-+}	$\eta_2^{'}$	1850	1 0 (1 = 0, 33)
		S=1	1	ϕ_1	1850	meson.
			2	ϕ_2	1850	
			3	ϕ_3	1854	

APS April Meeting 2010

Search for Strangeonia in HyCLAS Why study Strangeonia?

- QCD is well tested at high mass meson states. Perturbative QCD, quarks essentially free (α_s << 1).
 It works reasonably well in the charmonium sector and above.
- Perturbative QCD breaks down at the low mass scale. QCD is non-linear in this non-perturbative regime (α_s ~ 1). We have to resort to specific hadronic models now.
- Because of the intermediate mass of the strange quarks, study of strangeonium states will serve as a bridge between short and large distance behavior of QCD confinement potential.

Photoproduction

Vector Meson Dominance

Search for Strangeonia in HyCLAS $\phi(1680)/\phi(1750)$

Search for Strangeonia in HyCLAS Jefferson Lab

CEBAF: Continuous Electron Beam Accelerator Facility @ Thomas Jefferson National Accelerator Facility, Newport News, Virginia.

- Operated for U.S. DOE by JSA, LLC.
- CEBAF delivers e⁻ beams to the 3 Halls. Polarised if requested.
 5-pass beam. Energies up-to 6 GeV (1.2 x 5).
- Hall-B is the smallest experimental Hall with the largest detector "CLAS".

CLAS

 Skeletal superconducting Toroidal Magnets for CLAS.

CLAS detector during assembly.

February 14

Search for Strangeonia in HyCLAS g12 Data Summary

Commissioned : April 1, 2008 Completed : June 9, 2008

- 44.2 Days of beam-time over 70 calendar days
- Beam current ~ 60-65 nA
- E_e = 5.71 GeV, DAQ Rate ~ 8 KHz
- ◆ 26.2 billion triggers, 68 pb⁻¹ of data
 - → 2 prong or more, $E_v \ge 4.4 \ GeV$
 - 3 prong with no MOR, etc.
- 126 TB of raw data on tape

Preliminary plots from $\sim 1/3^{rd}$ of g12 data

Search for Strangeonia in HyCLAS Analysis & Event Selection

*
$$\gamma \quad p \rightarrow p \quad \varphi \quad (\eta/\pi^0)$$

* $\varphi \quad \rightarrow K^+ K^-$
* $\eta \mid \pi^0$ identified by missing mass

Standard Cuts

- 3 charged tracks
- Proton, K⁺, K⁻
- Beam Energy > 4.4 GeV
- Event Vertex (|x| < 1cm, |y| < 1cm, -70cm < z < -110cm)</p>
- |Photon time Event vertex time| < 1 ns

Beta Cut

• |TOF β – Calculated β | < 0.01

$\gamma p \rightarrow p K^+ K^- [X]$

Mass(p [η])

Cuts (ϕ , η) \rightarrow Mass (K⁺ K⁻) < 1.050 GeV/c², 0.500 GeV/ c^2 < Missing Mass < 0.600 GeV/ c^2

• Invariant mass for events with a φ meson and an eta meson identified through cuts on missing mass

APS April Meeting 2010

 $\gamma p \rightarrow p \phi [\pi^0]$

Cuts (ϕ , π^0) \rightarrow Mass ($K^{\scriptscriptstyle +}$ $K^{\scriptscriptstyle -}$) $\,<\,$ 1.050 $\,$ GeV/c^2 , 0.090 $\,$ GeV/c^2 $\,<\,$ Missing Mass $\,<\,$ 0.190 $\,$ GeV/c^2

 Invariant mass for events with a ϕ meson and a π^0 meson identified through cuts on missing mass

APS April Meeting 2010

Search for Strangeonia in HyCLAS Things to do

- Momentum corrections
- Monte-Carlo simulations
- Tagger energy corrections
- Acceptance corrections
- Use EC to clean up Data

Plot from η-π⁰ analysis from g12 by Diane Schott (FIU)

Mukesh Saini, Florida State University

APS April Meeting 2010

- Strangeonia is quite an interesting and important sector to look at. It will give us an insight into Non-perturbative QCD regime.
- g12 has a huge data set that has been calibrated, is being processed and is now available for analysis.
- From preliminary analysis, we observe $\gamma p \rightarrow p \phi \eta$, which is an ideal channel for observation of strangeonia.

