Search for New and Unusual Strangeonia in Photoproduction using CLAS

Mukesh Saini

Florida State University, Tallahassee, FL

April 17, 2009

Mukesh Saini, Florida State University

STATE ISA

Prospectus Presentation

April 17. 2009

- Introduction
 - Meson Spectroscopy
 - Strangeonia
- Experiment
 - CEBAF & CLAS
 - HyCLAS & g12
 - Calibrations
- Analysis
- Summary

Quantum chromodynamics (QCD) is theory of the strong interaction (color force).

It describes the interactions of the quarks and gluons making up the hadron

Search for Strangeonia in HyCLAS Quark Model and beyond

- Free quarks and gluons have not been observed in nature due to confinement
- QCD predicts exotic hadrons beyond the naive quark model [hybrids, glueballs and multi-quark states]
- Mapping of the meson spectra will help us identify exotic unconventional mesons and decays, to further our insight into soft (Non-perturbative) QCD

Search for Strangeonia in HyCLAS Meson Spectroscopy

Search for Strangeonia in HyCLAS Flux-Tube Model

Lattice QCD inspired model that couples **gluonic** degrees of freedom with **quark** degrees of freedom

The expulsion of the QCD vacuum from the region between a quark-antiquark pair. The tube joining the two quarks reveals the positions in space where the vacuum action is maximally expelled and corresponds to the famous "flux tube" of QCD.

- http://www.physics.adelaide.edu.au/cssm/research/lattice.htm

$$_{muarks}J^{PC}\otimes_{flux-tube}J^{PC}=1^{--},1^{++}$$

$$_{quarks}J^{PC} \otimes_{flux-tube}J^{PC} = 0^{-+}, 1^{-+}, 2^{-+}, 0^{+-}, 1^{+-}, 2^{+-}$$

Search for Strangeonia in HyCLAS Strangeonia

- Of the 22 expected resonances, only 7 are well identified
 - η-η'
 φ (1020)
 h₁ (1386)
 - f₁ (1426) f₂' (1525) • φ (1680)
 - $\phi_{_3}$ (1854)

Search for Strangeonia in HyCLAS Why study Strangeonia?

- QCD is well tested at high mass meson states. Perturbative QCD, quarks essentially free (α_s << 1).
 It works reasonably well in the charmonium sector and above.
- Perturbative QCD breaks down at the low mass scale. QCD is non-linear in this non-perturbative regime (α_s ~ 1). We have to resort to specific hadronic models now.
- Because of the intermediate mass of the strange quarks, study of strangeonium states will serve as a bridge between short and large distance behavior of QCD confinement potential.

Search for Strangeonia in HyCLAS $\phi(1680)/\phi(1750)$

Search for Strangeonia in HyCLAS Proposed Analysis

$$\gamma p \rightarrow p K^+ K^- [x]$$

I will analyse inclusive p K⁺ K⁻ final state for exotica and strangeonia

- From g12 dataset 3 track events with an additional missing neutral particle will be selected
- From the invariant mass of K^+ K^- , an intermediate ϕ meson will be identified
- This gives us access to $\phi \eta$, $\phi \pi^0$ and possibly $\phi \omega$ states via missing mass using energy-momentum conservation
- φ(1680)/φ(1750) resonance will be investigated

Photoproduction

Vector Meson Dominance

Search for Strangeonia in HyCLAS $\phi \, \pi^0 \, / \, \phi \, \omega$

- We expect to observe in the data, decays into states like $\varphi \pi^0$ and possibly $\varphi \omega$ which are OZI-suppressed and hence exotic
- This signals Physics beyond the conventional quark model.

* OZI rule: if two states can be completely separated by cutting across one gluon line the process is OZI-suppressed.

S

0000

Φ

Search for Strangeonia in HyCLAS Jefferson Lab

CEBAF: Continuous Electron Beam Accelerator Facility @ Thomas Jefferson National Accelerator Facility, Newport News, Virginia.

- Operated for U.S. DOE by JSA, LLC.
- CEBAF delivers e⁻ beams to the 3 Halls. Polarised if requested.
 5-pass beam. Energies up-to 6 GeV (1.2 x 5).
- Hall-B is the smallest experimental Hall with the largest detector "CLAS".

Search for Strangeonia in HyCLAS CLAS subsystems

CEBAF Large Acceptance Spectrometer

Time-of-flight counters plastic scintillators, 516 photomultipliers

Prospectus Presentation

Search for Strangeonia in HyCLAS Tracking

g12 used modified CLAS geometry to increase acceptance in the forward region for low t events.

Prospectus Presentation

 Skeletal superconducting Toroidal Magnets for CLAS.

◆ CLAS detector during assembly.

g12 Data Summary

Commissioned : April 1, 2008 Completed : June 9, 2008

Production Triggers

- 44.2 Days of beam-time over 70 calendar days
- Beam current ~ 60-65 nA, DC Occupancy ~ 3%
- ◆ E^e = 5.71 GeV, DAQ Rate ~ 8 KHz
- 26.2 billion triggers, 68 pb^{-1} of data
 - ▶ 2 prong, No Level 2 Trigger, $E^{\gamma} \ge 4.4 \ GeV$
 - EC * CC
 - 3 prong with no MOR, etc.
- 1 billion triggers, 1.9 pb^{-1} of single sector data
- 126 TB of raw data on tape

Search for Strangeonia in HyCLAS Calibrations

As part of my contribution to the experiment, I am responsible for calibrating the Tagger and the Start counter.

- Tagger tags the beam photon in CLAS with its energy and time using energy-momentum conservation for e⁻.
- Start Counter helps find the right photon for the event as it is the closest of all detectors to the Target.

Fig. 23. Hall B photon-tagging system.

Tagger Calibration

Tagger Calibrations

This plot shows that a hit in the start counter picks the right RF bucket. If timing for one of the counter was misaligned, it would show up here.

Search for Strangeonia in HyCLAS Tagger run by run Calibration

Tagger Calibrations

• Resolution remains more or less constant except for low current runs and runs after 56653 when we had a trigger change.

Search for Strangeonia in HyCLAS Start Counter

- Incorporates the independent sector based tracking of CLAS
- Covers the whole azimuthal (ϕ)
- g12 had ST pulled back from the center of CLAS to increase acceptance for low t, forward going particles
- ST is crucial for picking the right photon as well as Particle ID due to its proximity to the target

ST Alignment

- On the left is the plot of the time distribution of events in the 24 paddles before the iterative calibration process
- A month later with all paddles aligned and in time

Search for Strangeonia in HyCLAS ST Run by Run Calibration

ST Resolution

- Resolution remains approx. constant through run-periods except for
- low current runs and runs after 56653 when we had a trigger change.

Particle ID using TOF

Search for Strangeonia in HyCLAS Preliminary Analysis

$$\gamma p \rightarrow p K^+ K^- [x]$$

- Few % of g12 data was recently processed for physics and calibrations
- 3 track events with an additional missing neutral particle were selected
- From the invariant mass of K^+ K^- , an intermediate ϕ meson was identified
- Missing mass in these inclusive events was calculated using energy-momentum conservation

- **Data reconstruction** \rightarrow tracking \rightarrow particle identification
- Select events with a proton, K⁺ & K⁻
- Apply cuts on the event such that
 - Event vertex inside the target
 - Beam photon energy > 4.4 GeV
 - Time of the beam photon within ±1ns of a ST hit
 - Cuts on transverse missing momentum to identify peripheral meson production

Missing mass for $\gamma \ p \rightarrow p \ K^+ \ K^- \ [X]$

Search for Strangeonia in HyCLAS $\varphi Events$

Prospectus Presentation

- Strangeonia is quite an interesting and important sector to look at. It will give us an insight into Non-perturbative QCD regime
- g12 has a huge dataset that will be soon calibrated, processed and available for analysis. Run by run calibration has been more or less stabilised
- From preliminary analysis, we see hints of decay states for strangeonia φ n and exotics φ π^0 and φ w. Results look promising

Search for Strangeonia in HyCLAS Tracking

