FSU Nuclear Physics Seminar

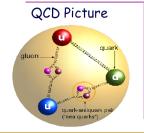
Search for Strangeonium and exotics in Photoproduction using CLAS

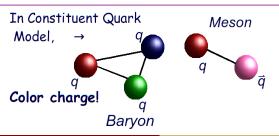
Mukesh Saini

Florida State University, Tallahassee, FL

November 4, 2011

 $\phi \eta, \phi \pi^0 \dots$



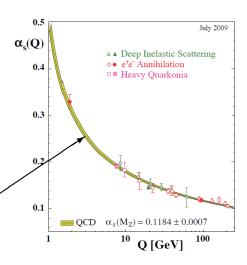

QCD, Standard Model and Hadronic Physics

Quantum chromodynamics (QCD) is theory of the strong interaction (color force).

It describes the interactions of the quarks and gluons making up the hadron

Meson Spectroscopy

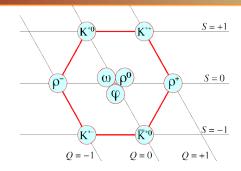
$$ec{J} = ec{L} + ec{S}$$
 $ec{q}$
 $ec{J} = ec{L} + ec{S}$
 $P = (-1)^{L+1}$
 $C = (-1)^{L+S}$


$$\mathbf{J}^{PC}\Big|_{allowed} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 1^{++}, 2^{--}, \dots$$

$$\mathbf{J}^{PC}\Big|_{exotic} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$$

 $\phi \eta, \ \phi \pi^0 \dots$

Quark Model and beyond


- Free quarks and gluons have not been observed in nature due to confinement.
- QCD predicts exotic hadrons beyond the naive quark model [hybrids, glueballs and multi-quark states]
- Mapping of the meson spectra will help us identify exotic unconventional mesons and decays, to further our insight into soft (Non-perturbative)

Known Strangeonia

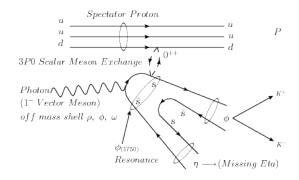
Strangeonia

√ Of the 22 expected resonances, only 7 are well identified

$\eta-\eta'$	ϕ (1020)	<i>h</i> ₁ (1387)
f ₁ (1426)	f ₂ ' (1525)	ϕ (1680)
ϕ_3 (1850)		

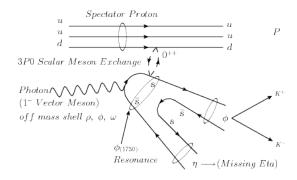
Expected Strangeonia spectrum

			J^{PC}	Name	Mass (MeV)
n=1	L=0	S=0	0-+	η,η'	548,958
		S=1	1	ϕ	1020
	L=1	S=0	1+-	h_1'	1380
		S=1	0++	f_0'	1500
			1++	$f_{1}^{'}$	1530
			2++	f_2^{\prime}	1525
	L=2	S=0	2-+	η_2'	1850
		S=1	1	ϕ_1	1850
			2	ϕ_2	1850
			3	ϕ_3	1854

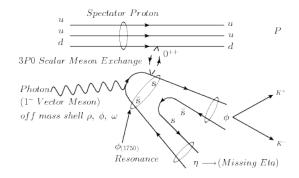

Orbital excitations of (I = 0, ss) meson.

			J^{PC}	Name	Mass (MeV)
n=2	L=0	S=0	0-+	η_s	1415
		S=1	1	ϕ	1680
	L=1	S=0	1+-	h_1	1850
		S=1	0++	f_0	2000
			1++	f_1	1950
			2++	f_2	2000
n=3	L=0	S=0	0-+	η_s	1950
		S=1	1	ϕ	2050

Radial excitations of (I = 0, ss) meson.


Photoproduction - VMD

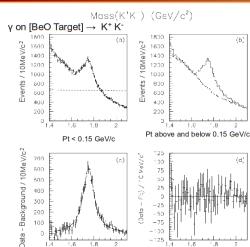
- In hadronic interactions, photon beam can be regarded as a superposition of vector mesons (ρ, ω, ϕ) with an important $s\bar{s}$ component Vector Meson Dominance (VMD).
- $\phi\eta$ channel is the signature decay mode for strangeonium ($s\bar{s}$) states. Interference with non-strange vectors is negligible in this channel.
- $\phi\pi^0$ is an exotic channel due to OZI suppression


Photoproduction - VMD

- In hadronic interactions, photon beam can be regarded as a superposition of vector mesons (ρ, ω, ϕ) with an important $s\bar{s}$ component Vector Meson Dominance (VMD).
- $\phi\eta$ channel is the signature decay mode for strangeonium ($s\bar{s}$) states. Interference with non-strange vectors is negligible in this channel.
- $\phi \pi^0$ is an exotic channel due to OZI suppression

Photoproduction - VMD

- In hadronic interactions, photon beam can be regarded as a superposition of vector mesons (ρ, ω, ϕ) with an important $s\bar{s}$ component Vector Meson Dominance (VMD).
- $\phi\eta$ channel is the signature decay mode for strangeonium ($s\bar{s}$) states. Interference with non-strange vectors is negligible in this channel.
- $\phi\pi^0$ is an exotic channel due to OZI suppression.


Strangeonia

- η has a significant $n\bar{n}$ component to it, but $\phi\eta$ and $\phi\eta'$ decay modes can only originate from initial $s\bar{s}$ states.
- "Due to the OZI rule, the observation of a state with a large branching fraction to $\eta\phi$, $\eta'\phi$ or $\phi\phi$ and small branches to nonstrange final states can serve as a "smoking gun" for an initial $s\bar{s}$ state." Barnes, Black & Page (Strong decays of Strange Quarkonia).

Why study Strangeonia?

 Due to the intermediate mass of the strange quarks, study of the strangeonium states will serve as a bridge between short and large distance behavior of QCD confinement potential, a study of the transition from light quark sector to the HQET.

ϕ (1680) / X (1750)

-75

- e⁺e⁻ production experiments observe the $\phi(1680)$
- $\phi(1750)$ is cited by PDG under ϕ (1680) with a note
- Focus experiment @ Fermilab has ~ 11,700 events for a resonance at $\phi(1750)$
- Exclusive K⁺ K⁻ events
- Cleanest way to look for this resonance is in the $\phi \eta$ decay

Residuals

Background subtracted

200 100

Road-Map

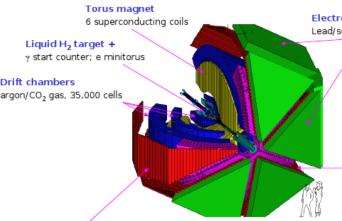
- Select 3 charged tracks identified as Proton, K⁺, K⁻
- Apply Energy-Momentum conservation to all the known four-vectors
- Calculate the missing mass four-vector and hence the invariant mass of the missing particle
- Select η or π^0 in this missing mass distribution
- Add four-vectors for K⁺K⁻ to get their invariant mass and hence identify the φ meson
- Select events for the two channels by selecting the respective mesons in the final state

Final State 1.
$$\gamma + p \rightarrow p + \phi + [\eta]$$

Final State 2. $\gamma + p \rightarrow p + \phi + [\pi^0]$

Jefferson Lab

• CEBAF


Continuous Electron Beam Accelerator Facility, hosted at

Thomas Jefferson National Accelerator Facility, Newport News, Virginia

- CEBAF delivers e⁻ beams to the 3 Halls, polarised upon request in 5 passes with e⁻ Energies up-to 6 GeV (1.2 x 5)
- Hall-B is the smallest experimental Hall with the largest detector "CLAS"
- Major upgrades at CEBAF and the Halls for the 12 GeV upgrade as well as addition of a new Hall-D which will house GLUEX created with meson spectroscopy as the primary purpose
- Plans for upgrade of CLAS to CLAS12 for the 12 GeV program at JLAB, with new detector components added and reusing the old where possible

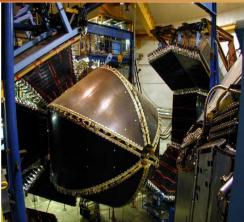
CLAS subsystems

CEBAF Large Acceptance Spectrometer

Electromagnetic calorimeters

Lead/scintillator, 1296 photomultipliers

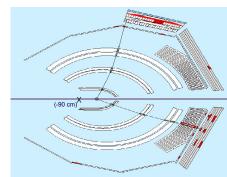
Gas Cherenkov counters

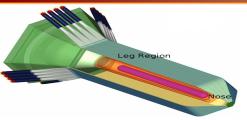

e/π separation, 256 PMTs

Time-of-flight counters

plastic scintillators, 516 photomultipliers

CLAS



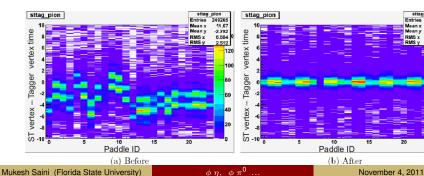

- Skeletal superconducting Toroidal Magnets for CLAS.
- CLAS detector during assembly.

g12 - HyCLAS

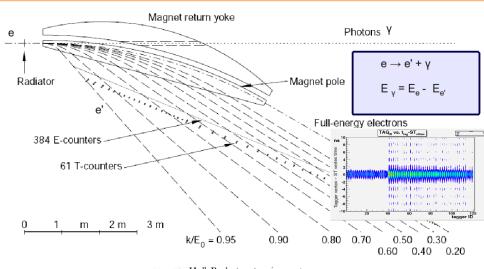
- 44.2 Days of beam-time over 70 days, 1st April to 9th June, 2008
- Beam current \rightarrow 60-65 nA ; $E_e \rightarrow$ 5.71 GeV ; DAQ Rate \rightarrow 8 KHz
- 26.2 billion triggers; Main Trigger \rightarrow 2 prong or more with $E_{\gamma} \ge 4.4$ GeV. 3 prong with no MOR ...
- 126 TB of raw data
- 250 TB of reconstructed data
- 68 pb⁻¹ of photo-production data
- Analysis over 95% of data available

Start Counter – Tags the start time for a track

- Incorporates the independent sector based tracking of CLAS
- g12 pulled ST 90cm back from the center of CLAS to increase acceptance for low t, forward going particles
- ST crucial for picking the right photon and Particle ID

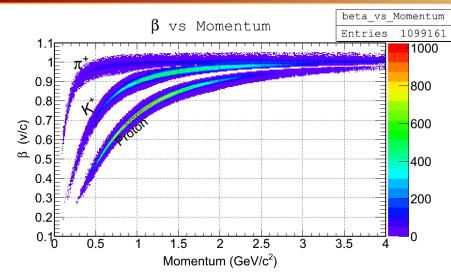

300 250

200


150

100

15 / 47



Tagger - Tags the Energy and the Timing for the incoming photon

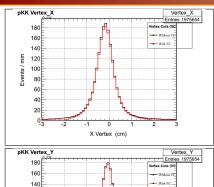
B Photon-tagging system.

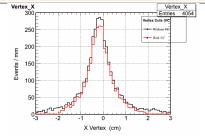
Separate your kaons from your pions

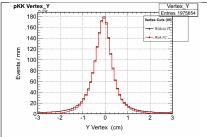
Particle Identification

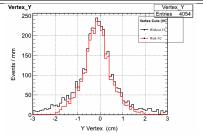
PART Bank

- Proton
- K-

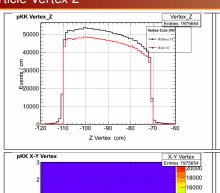

Meson ID

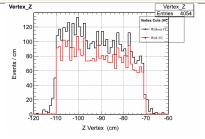

- ϕ Invariant Mass reconstructed from K^+ & K^-
- To Identify ϕ , Select 1010 MeV \leq IM(K^+ K^-) \leq 1030 MeV
- η Calculated from Missing Mass as "Beam + Target Proton K^+ K^- "
- To identify η , Select 510 MeV < MM < 580 MeV

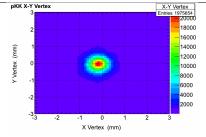

Cuts


- Event vertex time within 1.002 ns of the Start Counter vertex time
- All particles have the the difference between their measured and calculated beta (with PART bank PID) less than 0.05
- Event vertex is required to be within the Target

Particle Vertex 1

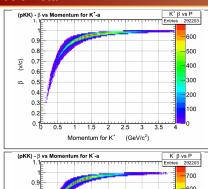


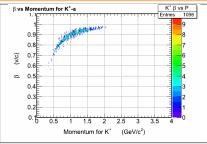


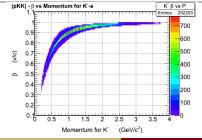


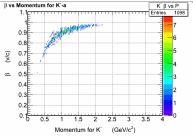


Particle Vertex 2

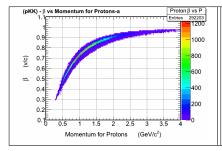


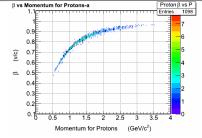




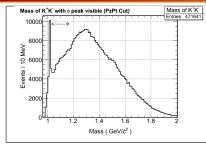


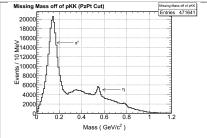
Particle Beta 1

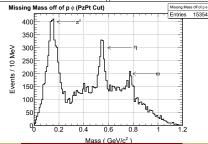




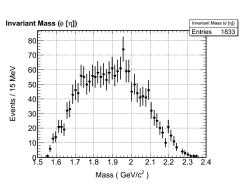
Particle Beta 2

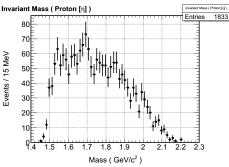


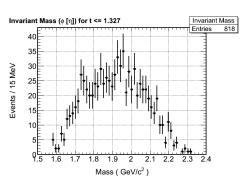


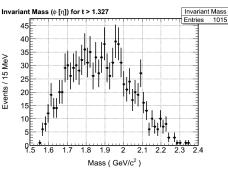

Observations

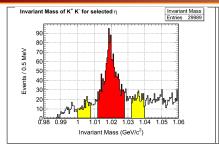
- Vertex and Timing Distributions look reasonable
- Beta for *Proton*, *K*⁺ & *K*[−] have no cross-contamination bands
- PID and Cuts employed work reasonably well

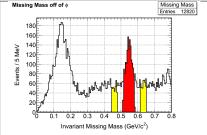

Selection of $KK \rightarrow \phi$ Data



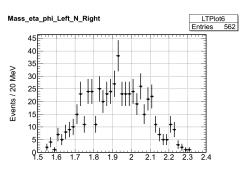


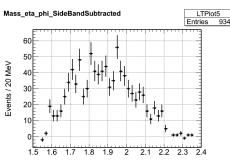

proton ϕ η Invariant Masses



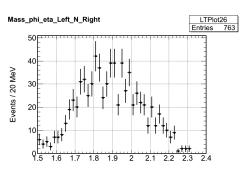

Momentum transfer dependence of $\phi - \eta$ data

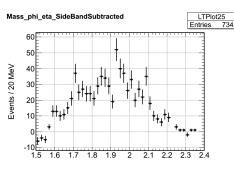
ϕ & η Side-Bands

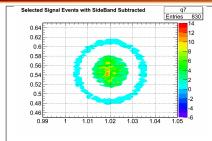


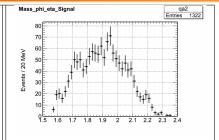


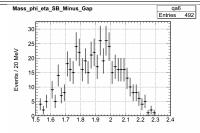
Side-Band Observations:

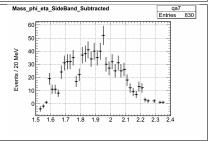

- \bullet ϕ width is 4 MeV and the peak is at 1020 MeV. .
- ullet η width is 17 MeV and the peak is at 547 MeV.
- Signal region is chosen to be peak $\pm 2\sigma$.
- ullet $\phi
 ightarrow$ 1012 1028 MeV, $\eta
 ightarrow$ 513 581 MeV
- Gap of 1σ is used between signal and sideband to minimize loss of ϕ 's.
- Gap of 2σ is used between signal and sideband to minimize loss of η 's.


Subtract events of the sidebands of ϕ from $\phi-\eta$ distribution

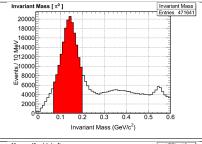


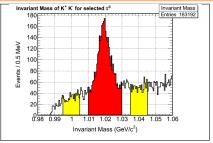

Subtract events of the sidebands of η from $\phi - \eta$ distribution

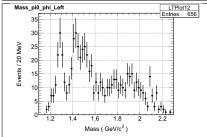


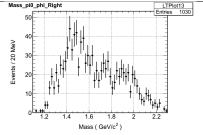


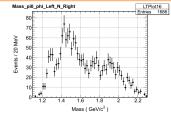
Subtract events of the sidebands of η & ϕ from $\phi - \eta$ distribution

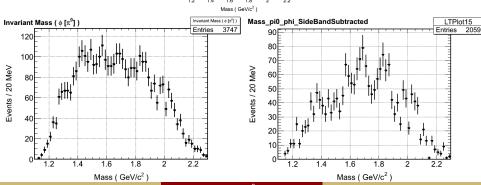


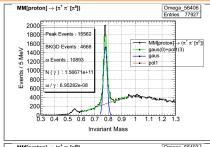


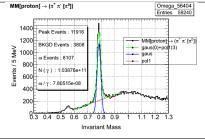


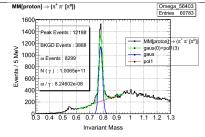


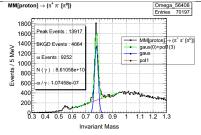




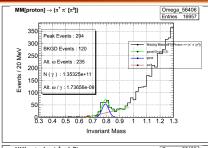


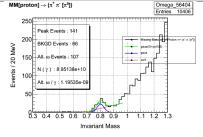

ϕ π^0 Sideband Subtraction

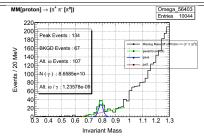


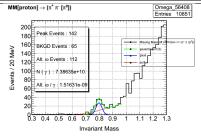


ω - yield fits

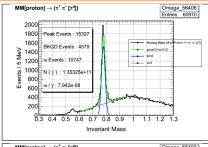


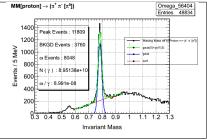


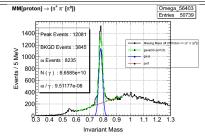


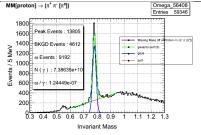


ω - yield fits for γ \geq 4.4 GeV

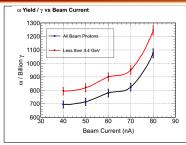


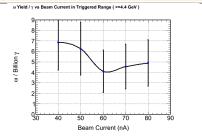


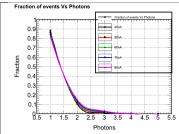


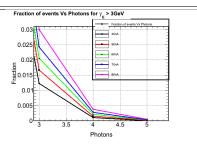


ω - yield fits for γ < 4.4 GeV









ω - yield plots

g12 Cross Section Cheat Sheet

Number of Interactions $(N_i) \propto \text{Number of Target Particles } (N_t)$

Number of Interactions $(N_i) \propto$ Number of Beam Photons (N_b)

$$\therefore$$
 $N_i = \sigma * N_t * N_b$

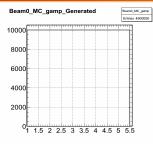
where σ is the Cross-Section/Area or interaction probability

Number of Beam Photons calculated using gflux for Beam Energy Range (A-B) GeV

Number of Target Particles (N_t) = Proton Density of LH2 * Volume of Target

Proton Density = $2 * N_A * Density / Molar Mass$ = $2 * 6.022 * 10^{23} * 0.0708 / 2.016 cm^{-3}$

$$= 2*0.022*10^{-2}*0.0708/2.010$$
$$= 0.423*10^{23} cm^{-3}$$


Target Volume = Area * Length = $0.1257 * 40 = 5.0265 cm^3$

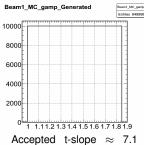
$$\sigma = \frac{N_E w}{2 N_B N_A \rho L_T} \tag{1}$$

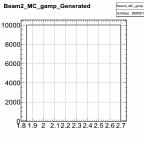
where.

$$\rho = 0.0708 gm.cm^{-3}$$
 , $L_T = 40 cm$, $N_B = 5.782 * 10^{11}$, $N_A = 6.022 * 10^{23}$, $w = 2.016$, $N_F = N_{Events}$ / Acceptance.

Simulated **Events**

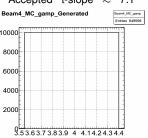
Beam3 MC gamp Generated

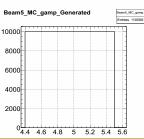

10000


8000

6000

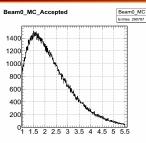
4000

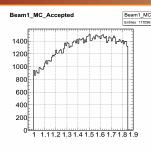

2000



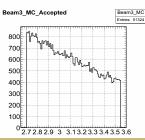
10000 8000 6000

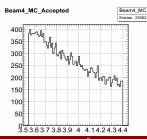
Entries 850002

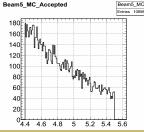

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 Mukesh Saini (Florida State University)

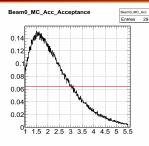

 $\phi \eta$, $\phi \pi^0$...

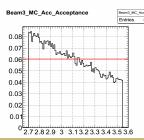

November 4, 2011

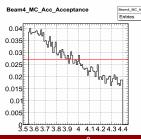

37 / 47

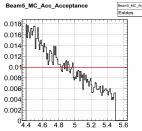

Accepted ρ Events

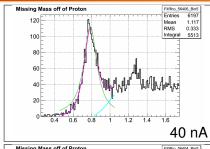


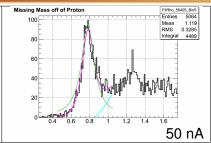


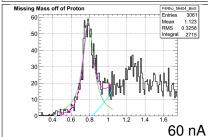


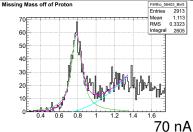

Acceptance for



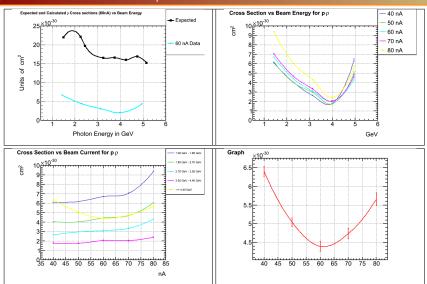


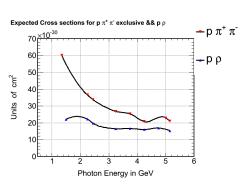


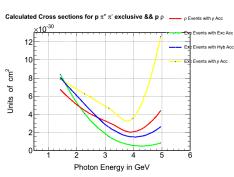




ρ - events in triggered range for 40 - 70 nA

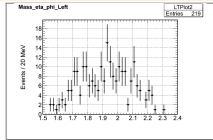


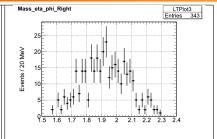


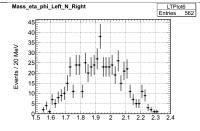


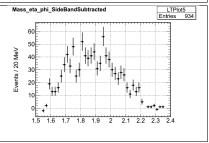
Expected and Calculated ρ Cross Sections

$p \pi^+ \pi^- \& \rho$ Cross Section as a function of Beam Energy for 60 nA

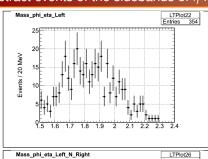

Summary for Strangeonium Analysis

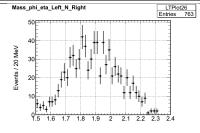

- Complete final skimmed dataset is available for analysis
- We have taken a preliminary look at the preferred signature decay mode for strangeonia
- ullet Preliminary Moments analysis has been finished and the PWA analysis for $\phi-\eta$ channel is in progress
- We are trying approaches like side-band subtractions and kinematic fitter to get a better handle on our observations
- Monte Carlo simulations have been done and detector acceptance for different decays are being studied concurrently
- More decay channels for strangeonia like KK*, K*K* and φη → K⁺K⁻π⁺π⁻[π⁰] are being incorporated
- I have scattered pieces of literature written down and intend to collate them into parts of my thesis
- Finish writing by the end of this semester

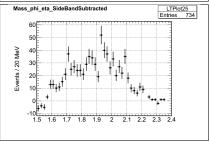

Summary for yield analysis


- Unless gflux numbers were off by orders of Magnitude earlier, which we have verified they are not, any gflux fix cannot account for more than 25% difference in Yield/Cross Sections
- Any error in this study related to counting ρ's had erred on the side of over-counting, so the Cross Sections you saw were the most optimistic ones given our anomaly
- Reason for this yield anomaly has to come from the data reconstruction or the MC acceptance or the trigger inefficiency
- ullet The fix made to gflux data for g12 increased the number of good intervals and hence the number of good photons by \approx 20%, and It didn't change the total number of photons
- ullet The new Cross Section values should now be lowered by pprox 20% as the study only took good intervals into account for counting the number of photons and never threw any event out based on such intervals
- The most optimistic Cross Section was obtained for ρ events for which g12 was off by a factor of \sim 3 at low energies and \sim 4 in the triggered energy range for production Beam Current of 60nA

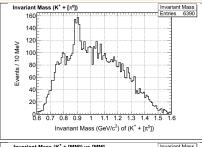
ϕ SBS

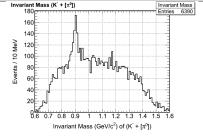


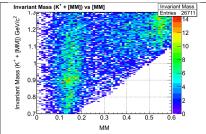


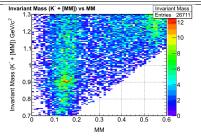


Subtract events of the sidebands of η from $\phi - \eta$ distribution









Check for K*+

