Thesis Defense

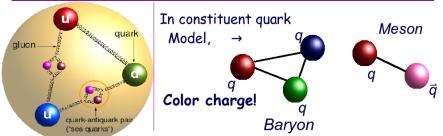
Search For New And Unusual Strangeonia In Photoproduction Using CLAS

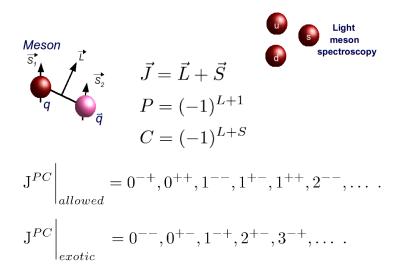
Mukesh S. Saini

Advisor : Dr. Paul Eugenio

Department Of Physics, The Florida State University, Tallahassee, FL

March 4, 2013


Standard Model and Hadrons

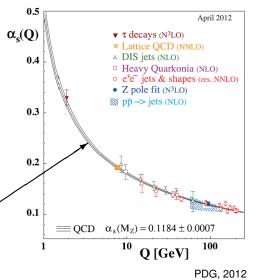


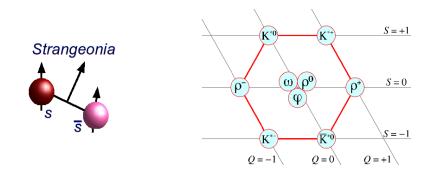
Quantum chromodynamics (QCD) is theory of the strong interaction (color force).

It describes the interactions of the quarks and gluons making up the hadron

QCD Picture

Meson


Classify Mesons


- Physical mesons are the linear superposition of allowed basis states
- Dominance of one of these basis states in this expansion, classifies that state as a quarkonia, exotic, hybrid, glueball, strangeonia ...

Usual	EXOTICA				
Mesons					
Quark	Gluonic	Tetra-	Glue-		
Model	Hybrids	quarks	Balls		
Mesons					
qq	qāg	qāqā	gg		

Mukesh S. Saini (FSU)

- Free quarks and gluons have not been observed in nature due to confinement.
- QCD predicts exotic hadrons beyond the naive quark model [hybrids, glueballs and multi-quark states]
- Mapping of the meson spectra will help us identify exotic unconventional mesons and decays, to further our insight into soft (Non-perturbative)
 QCD

Of the 22 expected resonances, only 7 are well identified

$\eta - \eta'$	ϕ (1020)	<i>h</i> ₁ (1387)
<i>f</i> ₁ (1426)	f ₂ ' (1525)	ϕ (1680)
ϕ_{3} (1850)	?	?

 $\sqrt{}$

			J^{PC}	Name	Mass (MeV)	Radial excitations of
n =2	L=0	S=0	0-+	η_s	1415	(I = 0, sŝ) meson.
		S=1	1	ϕ	1680	
	L=1	S=0	1+-	h_1	1850	-
		S=1	0^{++}	f_0	2000	
			1++	f_1	1950	
			2^{++}	f_2	2000	
n=3	L=0	S=0	0^{-+}	η_s	1950	
		S=1	1	ϕ	2050	
			J^{PC}	Name	Mass (MeV)	Orbital excitations
n=1	L=0	S=0	0^{-+}	η, η'	548,958	of $(I = 0, s\vec{s})$
		C 1	1	1		
		S=1	1	ϕ	1020	mooon
	L=1	S=1 S=0	1+-	$\phi \\ h'_1$	1020 1380	meson.
	L=1		0++	7		meson.
	L=1	S=0	0^{++} 1^{++}	h'_1	1380	meson.
	L=1	S=0	0++	h'_1	1380 1500	meson.

Tables from reference: T. Barnes, N. Black and P. R. Page, Phys. Rev. D 68, 054014 (2003)

L=2

S=0

S=1

 2^{-+}

1--

 2^{--}

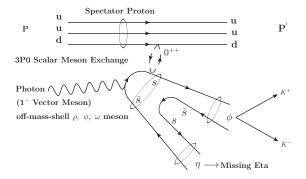
3--

 η'_2

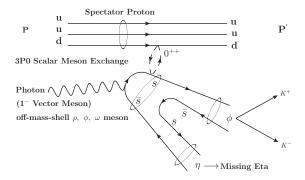
 ϕ_1

 ϕ_2

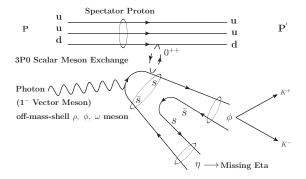
 ϕ_3

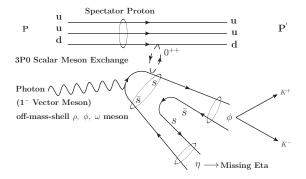

1850

1850

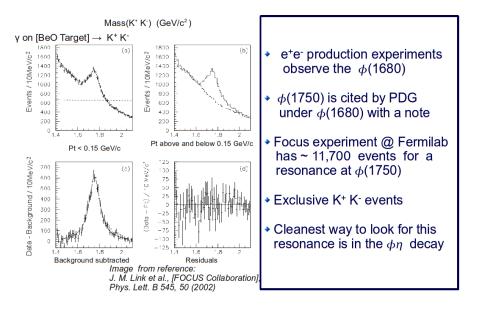

1850

1854


- In hadronic interactions, photon beam can be regarded as a superposition of vector mesons (ρ, ω, φ) with an important s̄s component Vector Meson Dominance (VMD).
- Study of diffractive photoproduction reaction γp → Xp, should lead to observation of many C=(-) ss states.
- $\phi\eta$ channel is the signature decay mode for strangeonium ($s\bar{s}$) states. Interference with non-strange vectors is negligible in this channel.
- $\phi \pi^0$ is an exotic channel due to OZI suppression.


- In hadronic interactions, photon beam can be regarded as a superposition of vector mesons (ρ, ω, φ) with an important s̄s component Vector Meson Dominance (VMD).
- Study of diffractive photoproduction reaction γp → Xp, should lead to observation of many C=(-) ss̄ states.
- $\phi\eta$ channel is the signature decay mode for strangeonium ($s\bar{s}$) states. Interference with non-strange vectors is negligible in this channel.
- $\phi \pi^0$ is an exotic channel due to OZI suppression.

- In hadronic interactions, photon beam can be regarded as a superposition of vector mesons (ρ, ω, φ) with an important s̄s component - Vector Meson Dominance (VMD).
- Study of diffractive photoproduction reaction γp → Xp, should lead to observation of many C=(-) ss states.
- $\phi\eta$ channel is the signature decay mode for strangeonium ($s\bar{s}$) states. Interference with non-strange vectors is negligible in this channel.
- $\phi \pi^0$ is an exotic channel due to OZI suppression.


- In hadronic interactions, photon beam can be regarded as a superposition of vector mesons (ρ, ω, φ) with an important s̄s component - Vector Meson Dominance (VMD).
- Study of diffractive photoproduction reaction γp → Xp, should lead to observation of many C=(-) ss states.
- $\phi\eta$ channel is the signature decay mode for strangeonium ($s\bar{s}$) states. Interference with non-strange vectors is negligible in this channel.
- $\phi \pi^0$ is an exotic channel due to OZI suppression.

- η has a significant $n\bar{n}$ component to it, but $\phi\eta$ and $\phi\eta'$ decay modes can only originate from initial $s\bar{s}$ states.
- "Due to the OZI rule, the observation of a state with a large branching fraction to ηφ, η'φ or φφ and small branches to nonstrange final states can serve as a "smoking gun" for an initial s̄s state." Barnes, Black & Page (Strong decays of Strange Quarkonia).

Why study Strangeonia?

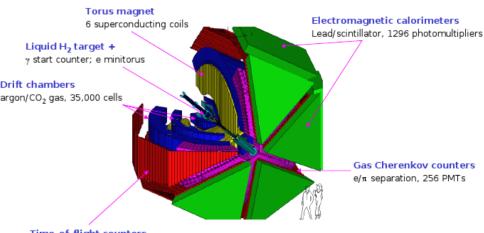
Due to the intermediate mass of the strange quarks, study of the strangeonium states will serve as a bridge between short and large distance behavior of QCD confinement potential, a study of the transition from light quark sector to the HQET.

Final State $\gamma + p \rightarrow p + \phi + [\eta]$

State		Decay Width Theory MeV/c ²	Decay Width Expt. MeV/c ²
<i>φ</i> (1680)	2S	$\Gamma_{theory} = 378$ $\Gamma_{\phi\eta} = 44$	Γ_{expt} = 150 \pm 50
φ(2050)	3S	$\Gamma_{theory} = 378$ $\Gamma_{\phi\eta} = 21$	Γ_{expt} = unknown
h ₁ (1850)	2P	$\Gamma_{theory} = 193$ $\Gamma_{\phi \eta} = 33$	Γ_{expt} = unknown
φ ₃ (1854)	1D	$\Gamma_{theory} = 104$ $\Gamma_{\phi\eta} = 3$	$\Gamma_{expt} = 87^{+28}_{-23}$
φ ₂ (1850)	1D	$\Gamma_{theory} = 214$ $\Gamma_{\phi\eta} = 53$	Γ _{expt} = unknown
φ(1850)	1D	$\Gamma_{theory} = 652$ $\Gamma_{\phi\eta} = 29$	Γ_{expt} = unknown
h ₃ (2200)	1F	Γ _{theory} = 249 Γ _{φη} = 5	Γ _{expt} = unknown

Theoretical predictions for the strangeonium states expected to be observed in the $\phi \eta$ invariant mass distribution from the reference - T. Barnes, N. Black and P. R. Page, Phys. Rev. D 68, 054014 (2003).

Jefferson Lab



CEBAF:

Continuous Electron Beam Accelerator Facility, hosted at Thomas Jefferson National Accelerator Facility, Newport News, Virginia

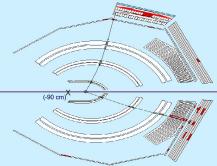
- CEBAF delivers e⁻ beams to the 3 Halls, polarised upon request in 5 passes with e⁻ Energies up-to 6 GeV (1.2 x 5)
- Hall-B is the smallest experimental Hall with the largest detector "CLAS"
- Major upgrades at CEBAF and the Halls for the 12 GeV upgrade as well as addition of a new Hall-D which will house GLUEX created with meson spectroscopy as the primary purpose
- Plans for upgrade of CLAS to CLAS12 for the 12 GeV program at JLAB, with new detector components added and reusing the old where possible

CEBAF Large Acceptance Spectrometer

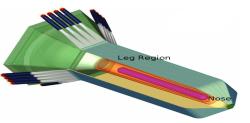
Time-of-flight counters plastic scintillators, 516 photomultipliers

Mukesh S. Saini (FSU)

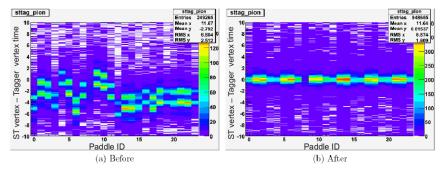
CLAS

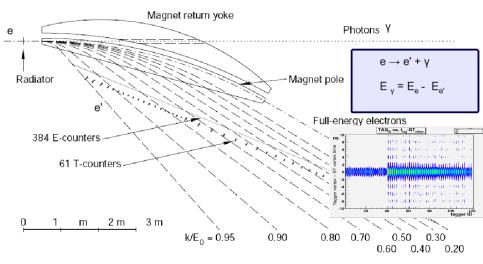


 Skeletal superconducting Toroidal Magnets for CLAS.


CLAS detector during assembly.

g12 - HyCLAS


- ▶ 44.2 Days of beam-time over 70 days, 1st April to 9th June, 2008
- ▶ Beam current \rightarrow 60-65 nA ; $E_e \rightarrow$ 5.71 GeV ; DAQ Rate \rightarrow 8 KHz
- ► 26.2 billion triggers; Main Trigger → 2 prong or more with E_γ ≥ 4.4 GeV, 3 prong with no MOR ...
- 126 TB of raw data
- 250 TB of reconstructed data
- ▶ 68 *pb*⁻¹ of photo-production data


Start Counter – Tags the start time for a track

- Incorporates the independent sector based tracking of CLAS
- g12 pulled ST 90cm back from the center of CLAS to increase acceptance for low t, forward going particles
- ST crucial for picking the right photon and Particle ID

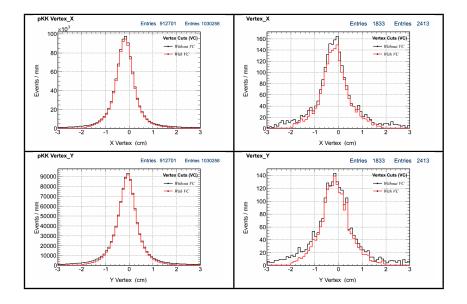
Tagger - Tags the Energy and the Timing for the incoming photon

23. Hall B photon-tagging system.

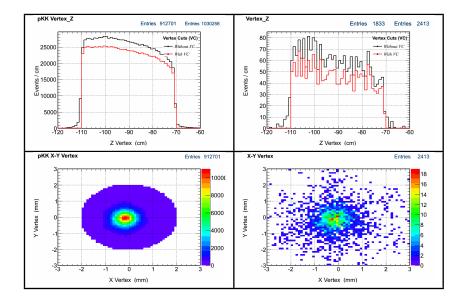
$\gamma + \boldsymbol{\rho} \rightarrow \boldsymbol{\rho} + \boldsymbol{\phi} + [\eta]$

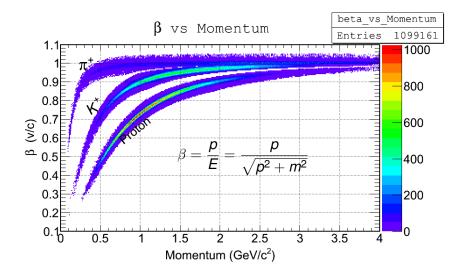
- Select 3 charged tracks identified as Proton, K^+ , K^-
- Apply Energy-Momentum conservation to all the known four-vectors
- Calculate the missing mass four-vector and hence the invariant mass of the missing particle
- Select η in this missing mass distribution
- ► Add four-vectors for K⁺K⁻ to get their invariant mass and hence identify the - φ - meson
- Reconstruct the invariant mass for (*φη*) using the above selected *φ* & *η* mesons

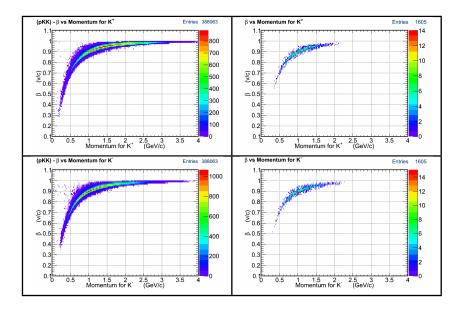
PART Bank	nk			
 Pro K⁺ K⁻ 				

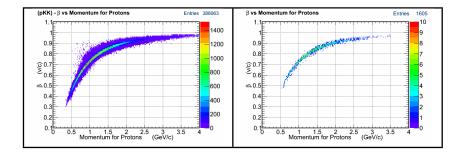

Meson ID

- ϕ Invariant Mass reconstructed from K^+ & K^-
- ▶ To Identify ϕ , Select 1010 MeV \leq IM(K^+ K^-) \leq 1030 MeV
- η Calculated from Missing Mass as "Beam + Target Proton $K^+ K^-$ "
- To identify η , Select 510 MeV \leq MM \leq 580 MeV

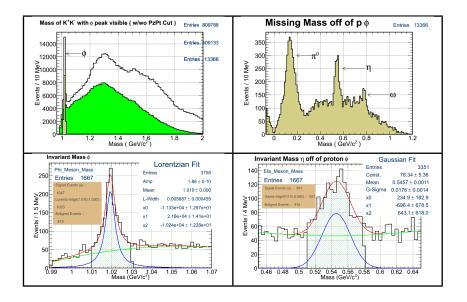

Cuts


- Event vertex time within 1.002 ns of the Start Counter vertex time
- All particles have the difference between their measured and calculated 'β' (with PART bank PID) less than 0.05
- Event vertex is required to be within the Target


Particle Vertex 1


Vertex Distribution for Z and X-Y plane

Data Quality



Observations

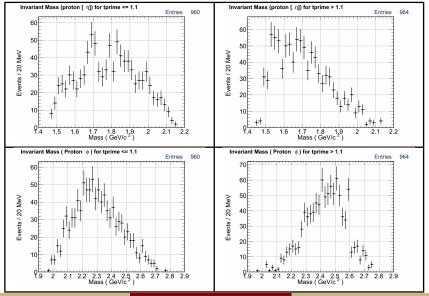
- Vertex and Timing Distributions are acceptable
- β for *Proton*, $K^+ \& K^-$ have no cross-contamination bands
- PID and Cuts employed work reasonably well

γ + proton \rightarrow proton + ϕ + η

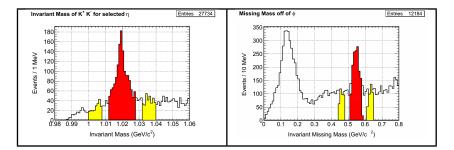
γ + proton \rightarrow proton + K^+ + K^- + $[\eta]$

Selection Based On Kinematics

Mandelstam's t =
$$|P_{\gamma}^{\mu} - P_{X}^{\mu}|^2 = |P_{target}^{\mu} - P_{recoil}^{\mu}|^2$$


Mukesh S. Saini (FSU)

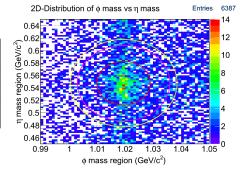
Strangeonia Survey

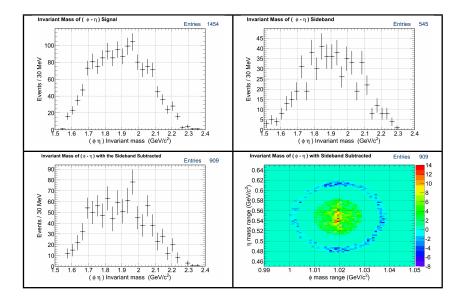

Selection Based On Kinematics

 $t' = t - t_{min}$, where $t_{min} = Excess$ Momentum Transfer Squared

Over The Minimum Required For Resonance Production

Mukesh S. Saini (FSU)

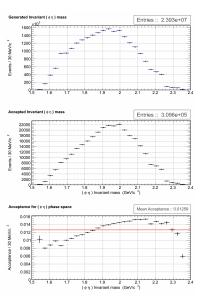

Side-Band Observations:


- ϕ width is 4 MeV and the peak is at 1020 MeV. .
- η width is 17 MeV and the peak is at 547 MeV.
- Signal region is chosen to be peak $\pm 2\sigma$.
- $\phi \rightarrow$ 1012 1028 MeV, $\eta \rightarrow$ 513 581 MeV
- Gap of 1σ is used between signal and sideband to minimize loss of ϕ 's.
- Gap of 2σ is used between signal and sideband to minimize loss of η 's.

Elliptical Sideband Selection

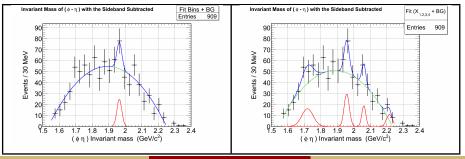
$$\left(\frac{x - \phi_{\text{mass}}}{\frac{\phi \text{ mass range}}{2}}\right)^2 + \left(\frac{y - \eta_{\text{mass}}}{\frac{\eta \text{ mass range}}{2}}\right)^2 = 1$$

1.0195 GeV/c ²
0.0019 GeV/c ²
$\sqrt{3}$ $ imes$ 0.0019 GeV/c ²
2× 0.0019 GeV/c ²
0.5478 GeV/c ²
0.070 GeV/c ²
$\sqrt{3}$ $ imes$ 0.070 GeV/c ²
2 imes 0.070 GeV/c ²

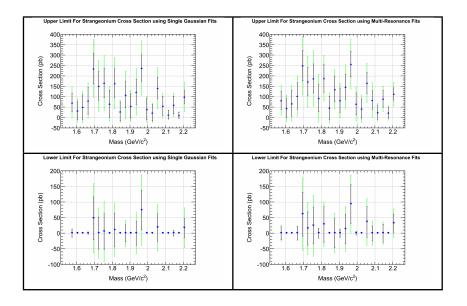


$$\begin{array}{lcl} \displaystyle \frac{N_{target}}{V} & = & 2 \times N_{avogadro} \times \frac{\rho_{target}}{A_{H_2}} \\ \\ \displaystyle \frac{N_{observed}}{Acceptance} & = & \sigma \times N_{incident} \times N_{target} \\ \\ \displaystyle \sigma & = & \frac{N_{observed} \times A_{H_2}}{2 \times N_{incident} \times N_{avogadro} \times \rho_{target} \times L_{target} \times Acceptance} \end{array}$$

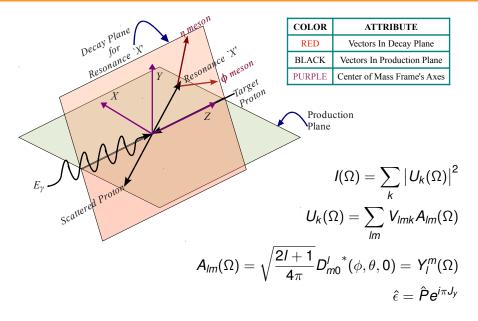
where,


N _{target}	is	the number of target protons that on average lie in the path of the incoming beam photons,
N _{observed}	is	the number of observed events in the experiment, aka the yield,
Ptarget	is	the density of the LH_2 used in the experiment,
Nincident	is	the integrated flux (total number) of the incoming beam photons that were incident on the target to achieve the observed yield,
L _{target}	is	the length of the target cell,
Acceptance	is	derived from the simulations of the reaction phase space for the experiment and represents the corrections due to the finite acceptance of the detector.

Cross Section



Yield of $\phi \eta$ events	909
Detector Corrected Yield of $\phi \eta$ events	1303
Scale factor for the branching ratio	2.0619 (48.5%)
Branching Ratio Corrected Yield of $\phi~\eta$ events	2686
E_{γ} Flux	2.1781×10^{13}
Generated phase space MC Events	23930000
Accepted MC Events	309650
Overall phase space MC ($\phi \eta$) Acceptance	1.259%
Ptarget	0.0708 <u>gm</u> <u>cm³</u>
A _{H2}	2.016
N _{Avogadro}	6.022 ×10 ²³
L _{target}	40 cm
$\sigma_{X \to \phi \eta}$	4.04 nano-barns
Corrected $\sigma_{X \to \phi \eta}$	5.79 nano-barns
Statistical error on $\sigma_{X \to \phi \eta}$	0.287 nano-barns
Systematic error on $\sigma_{X \to \phi \eta}$	1.158 nano-barns


- Establishing discovery requires rejecting the background only hypothesis
- Particle Phyics Experiments 3σ signal significance \rightarrow evidence, 5σ signal significance \rightarrow discovery
- FeldmanCousins method a frequentist approach use relative frequency of an event -Perform multiple experiments and number of positive results determines probability of that result
- It uses only the observed number of events and the estimated background count to calculate the confidence limits
- The fixed-unknown-true value of the cross section being measured will lie within the confidence interval in 90% of the repeats of the same experiment.

Mukesh S. Saini (FSU)

Partial Wave Analysis

whe

$$|\bar{p}\epsilon PJM
angle = heta(m) \left\{ |\bar{p}PJM
angle + \epsilon P(-1)^{J-M} |\bar{p}PJ-M
angle
ight\}$$
re,

$$\theta(m) = \frac{1}{\sqrt{2}} \text{ for } m > 0; \ \theta(m) = \frac{1}{2} \text{ for } m = 0;
\theta(m) = 0 \text{ for } m < 0.$$

Reflectivity (ϵ) / Naturality (N) for a particle, in this case, by definition is:

$$\epsilon = N = P(-1^J)$$

hence the following holds true,

Natural parity exchange $\epsilon = 1$; $J^P = 0^+, 1^-, 2^+, \dots$ Unnatural parity exchange $\epsilon = -1$; $J^P = 0^-, 1^+, 2^-, \dots$

As an added advantage, states of different reflectivities / naturalities do not interfere.

Mukesh S. Saini (FSU)

Strangeonia Survey

$${}^{\epsilon}U_{k}(\Omega) = \sum_{lm} \epsilon V_{lmk} \sqrt{\frac{2l+1}{4\pi}} {}^{\epsilon}D_{m0}^{l}{}^{*}(\phi,\theta,0)$$
$$I(\Omega) = \sum_{\epsilon k} |{}^{\epsilon}U_{k}(\Omega)|^{2} = |{}^{+}U_{1}(\Omega)|^{2} + |{}^{-}U_{1}(\Omega)|^{2} + |{}^{+}U_{2}(\Omega)|^{2} + |{}^{-}U_{2}(\Omega)|^{2}$$
$$\mathcal{M} = \sum_{\epsilon k} \langle K^{+}K^{-}\eta p | \hat{T}_{d}^{\phi \to K^{+}K^{-}} |\phi \eta p \rangle \langle \phi \eta p | \hat{T}_{d}^{X \to \phi \eta} | X_{\alpha} p \rangle \langle X_{\alpha} p | \hat{T}_{p} | \gamma p \rangle$$

$$\sum_{\alpha,\phi} \underbrace{(\mathbf{x},\mathbf{x},\mathbf{y},\mathbf{p}) \cdot \mathbf{d}}_{Decay - A_{\alpha}(\tau)} \underbrace{(\mathbf{x},\mathbf{x},\mathbf{y},\mathbf{p}) \cdot \mathbf{d}}_{Production - V_{\alpha}} \underbrace{I(\tau) \propto \sum_{k} \left| \sum_{\alpha} V_{k\alpha} A_{\alpha}(\tau) \right|^{2}}_{\alpha \ \forall \ \{J, P, C, M, L, I, (w, \Gamma)\}}$$

where,

$$J = Total angular momentum of resonance 'X'$$

$$P = Parity of the resonance 'X'$$

C = Charge conjugation parity for the resonance 'X'

L = Angular momentum between the ϕ and the η meson

- 1 = Angular momentum between the decay products of ϕ
- (w, Γ) = Mass and width parameter for the Breit-Wigner

Mukesh S. Saini (FSU)

Strangeonia Survey

Extended Maximum Likelihood Method

$$\mathcal{L} \propto \left[\frac{\bar{n}^{n}}{n!}e^{-n}\right]\prod_{i}^{n}\left[\frac{l(\tau_{i})}{\int l(\tau)\eta(\tau)pqd\tau}\right]$$
$$\bar{n} \propto \int l(\tau)\eta(\tau)pq(d\tau)$$

$$\begin{aligned} \ln \mathcal{L} & \propto \quad \sum_{i}^{n} \ln(l(\tau_{i})) - \int l(\tau)\eta(\tau) p q d\tau \\ & \propto \quad \sum_{k \in \alpha \alpha'} \ln(\ ^{\epsilon} V_{\alpha k} \ ^{\epsilon} V_{\alpha' k}^{*} \ ^{\epsilon} A_{\alpha}(\tau_{i}) \ ^{\epsilon} A_{\alpha'}^{*}(\tau_{i})) - \eta_{X} (\sum_{k \in \alpha \alpha'} \ ^{\epsilon} V_{\alpha k} \ ^{\epsilon} V_{\alpha' k}^{*} \ ^{\epsilon} \psi_{\alpha \alpha'}^{\mathfrak{a}}) \end{aligned}$$

$$\eta_X = \frac{\text{MC Events Accepted}}{\text{Raw MC Events Generated}}$$

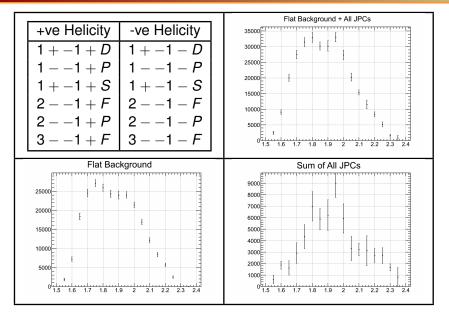
$${}^{\epsilon}\psi^{a}_{\alpha\alpha'} = \frac{1}{N_{a}}\sum_{i}^{N_{a}} {}^{\epsilon}A_{\alpha}(\tau_{i}) {}^{\epsilon}A^{*}_{\alpha'}(\tau_{i})$$

$$N = \sum_{k \in \alpha \alpha'} {}^{\epsilon} V_{\alpha k} {}^{\epsilon} V_{\alpha' k}^* {}^{\epsilon} \psi_{\alpha \alpha'}'$$

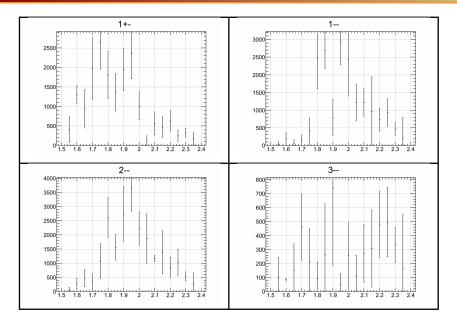
where,

L is the likelihood function,

n is the number of events observed,


-n is the average number of events observed if the experiment was ran multiple times,

 $\eta(\tau)$ is the finite experimental acceptance as determined by the Monte Carlo simulations,


- $pqd\tau$ is the lorentz invariant phase space element for the involved kinematics,
- ${}^{\epsilon}\psi^{a}_{\alpha\alpha'}$ is the normalization integral calculated from phase space MC simulation for N_a accepted events.

Mukesh S. Saini (FSU)

Minimal PWA Waveset

Acceptance Corrected Minimal PWA JPC PLots

Mukesh S. Saini (FSU)