Thesis Defense

Search For New And Unusual Strangeonia In Photoproduction Using CLAS[†]

Mukesh S. Saini

Advisor : Dr. Paul Eugenio Department Of Physics, The Florida State University, Tallahassee, FL

March 12, 2013

[†]Research funded by the US Department of Energy (DOE)

Mukesh S. Saini (FSU)

- Meson Spectroscopy
- Experiment
- Data Selection
- Strangeonium Analysis
- Summary

Standard Model and Hadrons

Quantum chromodynamics (QCD) is theory of the strong interaction (color force).

It describes the interactions of the quarks and gluons making up the hadron

QCD Picture

- Free quarks and gluons have not been observed in nature due to confinement.
- QCD predicts exotic hadrons beyond the naive quark model [hybrids, glueballs and multi-quark states]
- Mapping of the meson spectra will help us identify exotic unconventional mesons and decays, to further our insight into soft (Non-perturbative)
 QCD

Mesor St		$egin{array}{c} ar{J} & ar$	$\vec{F} = \vec{L} + \vec{S}$ $\vec{P} = (-1)^{L+1}$ $\vec{T} = (-1)^{L+S}$	u d	spec	Light neson stroscopy	
$\mathbf{J}^{PC}\Big _{allowed} = 0^{-+}, 0^{++}, 1^{}, 1^{+-}, 1^{++}, 2^{}, \dots$							
$\mathbf{J}^{PC}\Big _{exotic} = 0^{}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$							
Usual Mesons			EXO	TICA			
Quark Model Mesons	Gl Hy	uonic ⁄brids	Tetra-quarks	Glu	e-Balls		
$q\bar{q}$	qāg		qāqā	gg			
Mukesh S. Saini (FSU)		ŀ	lyCLAS Strangeonia			March 12, 2013	

 \checkmark Of the 22 expected resonances from ${}^{3}P_{0}$ model predictions, only 7 candidates identified

$\eta - \eta'$	ϕ (1020)	<i>h</i> ₁ (1380) [†]
<i>f</i> ₁ (1420)	f ₂ ' (1525)	ϕ (1680)
ϕ_{3} (1850)	?	?

[†] Not Included in the PDG Summary Tables.

			J^{PC}	Name	Mass (MeV)	Radial excitations of
n =2	L=0	S=0	0^{-+}	η_s	1415	(I = 0, sŝ) meson.
		S=1	1	ϕ	1680	
	L=1	S=0	1+-	h_1	1850	
		S=1	0^{++}	f_0	2000	
			1++	f_1	1950	
			2^{++}	f_2	2000	
n=3	L=0	S=0	0^{-+}	η_s	1950	
		S=1	1	ϕ	2050	
						=
			J^{PC}	Name	Mass (MeV)	Orbital excitations
n=1	I = 0					
	1-0	S=0	0-+	η,η'	548,958	of $(1 = 0, s\bar{s})$
	L=0	S=0 S=1	0-+ 1	$\eta, \eta' \phi$	548,958 1020	of (I = 0, sŝ)
	L=0 L=1	$\begin{array}{c} S=0\\ S=1\\ S=0 \end{array}$	0^{-+} $1^{}$ 1^{+-}	η, η' ϕ h'_1	548,958 1020 1380	of (I = 0, ss) meson.
	L=0 L=1	S=0 $S=1$ $S=0$ $S=1$	0^{-+} $1^{}$ 1^{+-} 0^{++}	$\begin{array}{c} \eta, \eta' \\ \phi \\ h'_1 \\ f'_0 \end{array}$	548,958 1020 1380 1500	of (I = 0, sŝ) meson.
	L=0 L=1	S=0 $S=1$ $S=1$ $S=1$	$ \begin{array}{r} 0^{-+} \\ 1^{} \\ 1^{+-} \\ 0^{++} \\ 1^{++} \end{array} $	$\begin{array}{c} \eta, \eta' \\ \phi \\ h'_1 \\ f'_0 \\ f'_1 \\ \end{array}$	548,958 1020 1380 1500 1530	of (I = 0, sŝ) meson.
	L=0	$\frac{S=0}{S=1}$ $\frac{S=0}{S=1}$	$ \begin{array}{c} 0^{-+} \\ 1^{} \\ 0^{++} \\ 1^{++} \\ 2^{++} \end{array} $	$\begin{array}{c} \eta, \eta' \\ \phi \\ h'_1 \\ f'_0 \\ f'_1 \\ f'_2 \end{array}$	548,958 1020 1380 1500 1530 1525	of (I = 0, sŝ) meson.

Tables from reference: T. Barnes, N. Black and P. R. Page, Phys. Rev. D 68, 054014 (2003)

S=1

1--

 2^{--}

3--

 ϕ_1

 ϕ_2

 ϕ_3

1850

1850

1854

Why Study Strangeonia?

Due to the intermediate mass of the strange quarks, study of the strangeonium states will serve as a bridge between short and large distance behavior of QCD confinement potential, a study of the transition from light quark sector to the HQET

How To Study Strangeonia

- "Due to the OZI rule, the observation of a state with a large branching fraction to ηφ, η'φ or φφ and small branches to nonstrange final states can serve as a "smoking gun" for an initial s̄s state." Barnes, Black & Page (Strong decays of Strange Quarkonia)
- Open strangeness decay modes (KK, KK*) for initial s̄s are susceptible to being confused with nn̄, where n ∈ {u, d}, which can also decay via KK, KK*
- φη and φη' decay modes are most likely to originate from an initial ss
 state, even though η has nn
 component

- In hadronic interactions, [γ ⇔ {ρ, ω, φ}] with an important ss̄ component Vector Meson Dominance (VMD)
- Study of diffractive photoproduction reaction γ p → p φ η, should lead to observation of many C=-1 s̄s states
- If the decay products of a meson have a φ meson with another mostly strange meson like η, OZI rule dictates that initial state be ss

- In hadronic interactions, [γ ⇔ {ρ, ω, φ}] with an important ss̄ component Vector Meson Dominance (VMD)
- Study of diffractive photoproduction reaction γ p → p φ η, should lead to observation of many C=-1 s̄s states
- If the decay products of a meson have a φ meson with another mostly strange meson like η, OZI rule dictates that initial state be s̄s

- In hadronic interactions, [γ ⇔ {ρ, ω, φ}] with an important s̄s component Vector Meson Dominance (VMD)
- Study of diffractive photoproduction reaction γ p → p φ η, should lead to observation of many C=-1 s̄s states
- If the decay products of a meson have a φ meson with another mostly strange meson like η, OZI rule dictates that initial state be ss

History - ϕ (1680) / X (1750)

FOCUS Experiment

- ► e⁺e⁻ annhilation observe φ(1680) in KK* decay
- Photoproduction experiments observe a resonance at 1750 MeV/c² in X(1750) → K⁺K⁻
- Earlier photoproduction results had low statistics ~ few 100 events
- FOCUS@Fermilab has 11,700 X(1750) → K⁺K⁻
- ► FOCUS studied $KK : KK^*$ branching ratio and claimed $X(1750) \neq \phi(1680)$
- ► If $X(1750) \in \{s\bar{s}\}$, cleanest way to observe it will be $X \to \phi \eta$

Strangeonia Status

Strangeonium State		Predicted Decay Width Theory MeV/c ²
ϕ (1680)	2S	$\Gamma_{theory}=378$ $\Gamma_{\phi\eta}=44$
ϕ (2050)	3S	$\Gamma_{theory} = 378$ $\Gamma_{\phi\eta} = 21$
<i>h</i> ₁ (1850)	2P	$\Gamma_{theory} = 193$ $\Gamma_{\phi\eta} = 33$
ϕ_3 (1854)	1D	$\Gamma_{theory} = 104$ $\Gamma_{\phi\eta} = 3$
ϕ_2 (1850)	1D	Γ_{theory} = 214 $\Gamma_{\phi\eta}$ = 53
ϕ (1850)	1D	$\Gamma_{theory} = 652$ $\Gamma_{\phi\eta} = 29$
h ₃ (2200)	1F	$\Gamma_{theory} = 249$ $\Gamma_{\phi\eta} = 5$

Experimentally Observed States

- Only 2 of these claimed ss
 observed
 - In e^+e^- exp. $\phi(1680) \rightarrow KK^*$ $\Gamma_{measured} = 150 \pm 50 \text{ MeV/c}^2$
 - In pK^- exp. $\phi_3(1850) \rightarrow K^+K^ \Gamma_{measured} = 87^{+28}_{-23} \text{ MeV/c}^2$
- All existing ss observations in open strangeness decay modes
- Lack of observed ss states implies lots of potential for physics discovery

- Theoretical predictions for $s\bar{s}$ expected to be observed in the ϕ η invariant mass distribution from

the reference - T. Barnes, N. Black and P. R. Page, Phys. Rev. D 68, 054014 (2003)

Mukesh S. Saini (FSU)

HyCLAS Strangeonia

March 12, 2013

11/39

Jefferson Lab

CEBAF:

Continuous Electron Beam Accelerator Facility, hosted at Thomas Jefferson National Accelerator Facility, Newport News, Virginia

- CEBAF delivers e⁻ beams to the 3 Halls, polarised upon request in 5 passes with e⁻ Energies up-to 6 GeV (1.2 x 5)
- Hall-B is the smallest experimental Hall with the largest detector "CLAS"
- Major upgrades at CEBAF and the Halls for the 12 GeV upgrade as well as addition of a new Hall-D which will house GLUEX created with meson spectroscopy as the primary purpose

CEBAF Large Acceptance Spectrometer

plastic scintillators, 516 photomultipliers

Mukesh S. Saini (FSU)

CLAS

 Skeletal superconducting Toroidal Magnets for CLAS.

CLAS detector during assembly.

g12 - HyCLAS

- ▶ 44.2 Days of beam-time over 70 days, 1st April to 9th June, 2008
- ▶ Beam current \rightarrowtail 60-65 nA ; $E_e \rightarrowtail$ 5.71 GeV ; DAQ Rate \rightarrowtail 8 KHz
- ► 26.2 billion triggers; Main Trigger → 2 prong or more with E_γ ≥ 4.4 GeV, 3 prong with no MOR ...
- 126 TB of raw data
- 250 TB of reconstructed data
- ► 68 *pb*⁻¹ of photoproduction data

Detector Calibrations

- Start Counter
- Mukesh Saini - Mukesh Saini

- Tagger
 - Time Of Flight Craig Bookwalter
- Drift Chamber Diane Schott
- Reconstruction Johann Goetz

Start Counter – Tags the start time for a track

- Incorporates the independent sector based tracking of CLAS
- g12 pulled ST 90cm back from the center of CLAS to increase acceptance for low t, forward going particles
- ST crucial for picking the right photon and Particle ID

Start Counter calibrated by Mukesh Saini

Mukesh S. Saini (FSU)

Tagger - Tags the Energy and the Timing for the incoming photon

Hall B photon-tagging system.

Tagging system calibrated by Mukesh Saini

Mukesh S. Saini (FSU)

Meson Selection Rules

Particle Selection

- ▶ 3 charged particle tracks detected in CLAS Proton, K⁺, K⁻
- Apply energy-momentum conservation $\gamma_{\mu} + P_{\mu} = P'_{\mu} + K^+_{\mu} + K^-_{\mu} + MM_{\mu}$
- Select η in the missing mass distribution
- Reconstruct the invariant mass for ($\phi\eta$) using the above selected $\phi \& \eta$ mesons

Meson ID

- ▶ To Identify ϕ , Select 1010 MeV \leq IM(K^+ K^-) \leq 1030 MeV
- ▶ To identify η , Select 510 MeV \leq MM \leq 580 MeV

Cuts

- Event vertex time within 1.002 ns of the Start Counter vertex time
- All particles have the difference between their measured and calculated 'β' less than 0.05
- Event vertex is required to be within the Target

Vertex Distribution for Z and X-Y plane

Mukesh S. Saini (FSU)

Data Quality

Observations

- Vertex and Timing Distributions are acceptable
- β for *Proton*, $K^+ \& K^-$ have no cross-contamination bands
- PID and Cuts employed work reasonably well

γ + proton \mapsto proton + ϕ + η

γ + proton \mapsto proton + K⁺ + K⁻ + [η]

Selection Based On Kinematics Using t'

Mandelstam's t =
$$|P_{\gamma}^{\mu} - P_{X}^{\mu}|^2 = |P_{target}^{\mu} - P_{recoil}^{\mu}|^2$$

 $t' = t - t_{min}$, where $t_{min} =$ Minimum Four-Momentum Transfer Squared

Required For Resonance Production

Mukesh S. Saini (FSU)

Mukesh S. Saini (FSU)

Side-Band Observations:

- η width is 17 MeV and the peak is at 547 MeV
- Signal region is chosen to be peak $\pm 2\sigma$
- $\phi \rightarrow$ 1012 1028 MeV, $\eta \rightarrow$ 513 581 MeV
- Gap of 1σ is used between signal and sideband to minimize loss of ϕ 's
- Gap of 2σ is used between signal and sideband to minimize loss of η 's

Elliptical Sideband Selection

$$\left(\frac{\mathbf{x} - \phi_{\text{mass}}}{\frac{\phi \text{ mass range}}{2}}\right)^2 + \left(\frac{\mathbf{y} - \eta_{\text{mass}}}{\frac{\eta \text{ mass range}}{2}}\right)^2 = 1$$

ϕ mass	1.0195 GeV/c ²
ϕ mass range selected	0.0019 GeV/c ²
ϕ sideband mass gap selected	$\sqrt{3}$ × 0.0019 GeV/c ²
ϕ sideband mass range selected	2 imes 0.0019 GeV/c ²
η mass	0.5478 GeV/c ²
η mass range selected	0.070 GeV/c ²
η sideband mass gap selected	$\sqrt{3} imes$ 0.070 GeV/c ²
η sideband mass range selected	2 imes 0.070 GeV/c ²

$$\begin{array}{lcl} \displaystyle \frac{N_{target}}{V} & = & 2 \times N_{avogadro} \times \frac{\rho_{target}}{A_{H_2}} \\ \\ \displaystyle \frac{N_{observed}}{Acceptance} & = & \sigma \times N_{incident} \times N_{target} \\ \\ \displaystyle \sigma & = & \frac{N_{observed} \times A_{H_2}}{2 \times N_{incident} \times N_{avogadro} \times \rho_{target} \times L_{target} \times Acceptance} \end{array}$$

where,

N _{target}	is	the number of target protons that on average lie in the path of the incoming beam photons,
N _{observed}	is	the number of observed events in the experiment, aka the yield,
Ptarget	is	the density of the LH_2 used in the experiment,
N _{incident}	is	the integrated flux (total number) of the incoming beam photons that were incident on the target to achieve the observed yield,
L _{target}	is	the length of the target cell,
Acceptance	is	derived from the simulations of the reaction phase space for the experiment and represents the corrections due to the finite acceptance of the detector.

Cross Section

Measured Yield of ϕ η events	909 ± 45
Reconstruction inefficiency at 60 nA	16%
ST inefficiency per charged track	6%
Branching ratio $\phi \to K^+ K^-$	$48.5\%\pm0.5\%$
Corrected Yield of $\phi \eta$ events	2686 ± 133
E_{γ} Flux (10 ¹³)	$\textbf{2.18} \pm \textbf{0.17}$
Overall phase space $\overline{\phi} \ \eta$ MC Acceptance	1.26%
Systematic error - $\phi \eta$ simulations	7.9%
Systematic error - Sideband Subtraction	0.8%
Systematic error - PID	1.3%
Systematic error - Photon Flux Normalisation	7.9 %
Systematic error - Miscellaneous	0.26%
Conservative total systematic error	12.5%

Cross section - $\sigma_{X \to \phi \eta}$ for $E_{\gamma} \in \{4.40, 5.45\}$

Mukesh S. Saini (FSU)

HyCLAS Strangeonia

March 12, 2013 31 / 39

BackGround Estimate For Feldman-Cousins Method

Feldman-Cousins Method

- Establishing discovery requires rejecting the background only hypothesis
- ► Particle physics experiments 3σ signal significance \rightarrow evidence, 5σ signal significance \rightarrow discovery
- FeldmanCousins method a frequentist approach, uses relative frequency of an event

 Perform multiple experiments and number of positive results determines probability
 of that result
- It uses only the observed number of events and the estimated background count to calculate the confidence limits
- The fixed-unknown-true value will fall within the confidence interval in 90% of the repeats of the same experiment

Mukesh S. Saini (FSU)

Strangeonium Cross Section Confidence Limits

Mukesh S. Saini (FSU)

- The two known and expected resonances φ(1680) and φ₃(1850) were not observed in the φ η invariant mass spectrum
- ► Largest cross section upper limit for strangeonium decay ' $s\bar{s} \rightarrow \phi \eta$ '
 - 1695 MeV/c² 250 pb
 - 1965 MeV/c² 250 pb
- ► Calculated lower limits for $s\bar{s} \rightarrow \phi \eta$ consistent with zero

- Omega spectrometer measured X(1750) $\rightarrow K^+K^-$ photoproduction cross section at $E_{\gamma} = 45 \text{ GeV/c}^2$ to be 8 \pm 3 nb
- ▶ ${}^{3}P_{0}$ model predicts the branching ratio of $K^{+}K^{-}$: $\phi \eta$ to be 2 : 1
- Extrapolating using froissart bound, the state is expected at least at a level of 1 nb
- ▶ If photoproduced X(1750) $\rightarrow K^+K^- \in \{s\bar{s}\}$, Our analysis would have observed the state in $\phi \eta$ at a level well above 250 pb
- The analysis thus supports FOCUS's claim that $X(1750) \neq \phi(1680)$

- The two known and expected resonances φ(1680) and φ₃(1850) were not observed in the φ η invariant mass spectrum
- ► Largest cross section upper limit for strangeonium decay ' $s\bar{s} \rightarrow \phi \eta$ '
 - 1695 MeV/c² 250 pb
 - 1965 MeV/c² 250 pb
- ► Calculated lower limits for $s\bar{s} \rightarrow \phi \eta$ consistent with zero

- Omega spectrometer measured X(1750) $\rightarrow K^+K^-$ photoproduction cross section at $E_\gamma = 45 \text{ GeV}/c^2$ to be 8 ± 3 nb
- ${}^{3}P_{0}$ model predicts the branching ratio of $K^{+}K^{-}$: $\phi \eta$ to be 2 : 1
- Extrapolating using froissart bound, the state is expected at least at a level of 1 nb
- ▶ If photoproduced X(1750) $\rightarrow K^+K^- \in \{s\bar{s}\}$, Our analysis would have observed the state in $\phi \eta$ at a level well above 250 pb
- The analysis thus supports FOCUS's claim that $X(1750) \neq \phi(1680)$

- The two known and expected resonances φ(1680) and φ₃(1850) were not observed in the φ η invariant mass spectrum
- ► Largest cross section upper limit for strangeonium decay ' $s\bar{s} \rightarrow \phi \eta$ '
 - 1695 MeV/c² 250 pb
 - 1965 MeV/c² 250 pb
- ► Calculated lower limits for $s\bar{s} \rightarrow \phi \eta$ consistent with zero

- Omega spectrometer measured X(1750) $\rightarrow K^+K^-$ photoproduction cross section at $E_{\gamma} = 45 \text{ GeV}/c^2$ to be 8 ± 3 nb
- ${}^{3}P_{0}$ model predicts the branching ratio of $K^{+}K^{-}$: $\phi \eta$ to be 2 : 1
- Extrapolating using froissart bound, the state is expected at least at a level of 1 nb
- ▶ If photoproduced X(1750) $\rightarrow K^+K^- \in \{s\bar{s}\}$, Our analysis would have observed the state in $\phi \eta$ at a level well above 250 pb
- The analysis thus supports FOCUS's claim that $X(1750) \neq \phi(1680)$

- The two known and expected resonances φ(1680) and φ₃(1850) were not observed in the φ η invariant mass spectrum
- Largest cross section upper limit for strangeonium decay ' $s\bar{s} \rightarrow \phi \eta$ '
 - 1695 MeV/c² 250 pb
 - 1965 MeV/c² 250 pb
- ► Calculated lower limits for $s\bar{s} \rightarrow \phi \eta$ consistent with zero

- Omega spectrometer measured X(1750) $\rightarrow K^+K^-$ photoproduction cross section at $E_{\gamma} = 45 \text{ GeV}/c^2$ to be 8 ± 3 nb
- ${}^{3}P_{0}$ model predicts the branching ratio of $K^{+}K^{-}$: $\phi \eta$ to be 2 : 1
- Extrapolating using froissart bound, the state is expected at least at a level of 1 nb
- ▶ If photoproduced X(1750) $\rightarrow K^+K^- \in \{s\bar{s}\}$, Our analysis would have observed the state in $\phi \eta$ at a level well above 250 pb
- The analysis thus supports FOCUS's claim that $X(1750) \neq \phi(1680)$

- The two known and expected resonances φ(1680) and φ₃(1850) were not observed in the φ η invariant mass spectrum
- Largest cross section upper limit for strangeonium decay ' $s\bar{s} \rightarrow \phi \eta$ '
 - 1695 MeV/c² 250 pb
 - 1965 MeV/c² 250 pb
- ► Calculated lower limits for $s\bar{s} \rightarrow \phi \eta$ consistent with zero

- Omega spectrometer measured X(1750) $\rightarrow K^+K^-$ photoproduction cross section at E_γ = 45 GeV/c² to be 8 ± 3 nb
- ${}^{3}P_{0}$ model predicts the branching ratio of $K^{+}K^{-}$: $\phi \eta$ to be 2 : 1
- Extrapolating using froissart bound, the state is expected at least at a level of 1 nb
- ▶ If photoproduced X(1750) $\rightarrow K^+K^- \in \{s\bar{s}\}$, Our analysis would have observed the state in $\phi \eta$ at a level well above 250 pb
- The analysis thus supports FOCUS's claim that $X(1750) \neq \phi(1680)$

Partial Wave Analysis Primer

Minimal PWA Waveset

Displayed fits are for φ η data binned in 100 MeV bins - then rebinned again in 100 MeV bins with an offset of 50 MeV - color coded by green and blue

Data four-vectors used for PWA were kinematically fitted to a missing η

Extended maximum likelihood method was implemented using minuit to maximize the likelihood of describing the decay angular distributions using the waveset shown

Mukesh S. Saini (FSU)

Minimal PWA Waveset

- Displayed fits are for φ η data binned in 100 MeV bins then rebinned again in 100 MeV bins with an offset of 50 MeV color coded by green and blue
- Data four-vectors used for PWA were kinematically fitted to a missing n

Extended maximum likelihood method was implemented using minuit to maximize the likelihood of describing the decay angular distributions using the waveset shown

Mukesh S. Saini (FSU)

Minimal PWA Waveset

- Displayed fits are for φ η data binned in 100 MeV bins then rebinned again in 100 MeV bins with an offset of 50 MeV color coded by green and blue
- Data four-vectors used for PWA were kinematically fitted to a missing n
- Extended maximum likelihood method was implemented using minuit to maximize the likelihood of describing the decay angular distributions using the waveset shown

Mukesh S. Saini (FSU)

Acceptance Corrected Minimal PWA J^{PC} Plots

- \blacktriangleright 2 – wave is stable; but not much stronger than any other JPC
- No JPC is singularly preferred in the PWA analysis; PWA inconclusive about the makeup of the observed spectra

- $\blacktriangleright\,$ We acquired the world's largest photoproduction dataset for $\phi\,\eta$
 - 909 \pm 45 ϕ η events
- First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for $\mathsf{E}_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi(1680)$
 - Largest cross section upper limit is observed to be 250 pb
- Strangeonia photoproduction cross sections measured in their golden decay mode $\phi \eta$ are much lower than expected
 - Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues.

- \blacktriangleright We acquired the world's largest photoproduction dataset for $\phi~\eta$
 - 909 \pm 45 ϕ η events
- First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for E $_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi(1680)$
 - Largest cross section upper limit is observed to be 250 pb
- Strangeonia photoproduction cross sections measured in their golden decay mode $\phi \eta$ are much lower than expected
 - Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues.

- \blacktriangleright We acquired the world's largest photoproduction dataset for $\phi~\eta$
 - 909 \pm 45 ϕ η events
- ► First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for E $_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi(1680)$
 - Largest cross section upper limit is observed to be 250 pb
- Strangeonia photoproduction cross sections measured in their golden decay mode $\phi \eta$ are much lower than expected
 - Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues.

- \blacktriangleright We acquired the world's largest photoproduction dataset for $\phi~\eta$
 - 909 \pm 45 ϕ η events
- ► First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for E $_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi$ (1680)
 - Largest cross section upper limit is observed to be 250 pb
- Strangeonia photoproduction cross sections measured in their golden decay mode $\phi \eta$ are much lower than expected
 - Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues.

- \blacktriangleright We acquired the world's largest photoproduction dataset for $\phi~\eta$
 - 909 \pm 45 ϕ η events
- First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for E $_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi$ (1680)
 - Largest cross section upper limit is observed to be 250 pb
- Strangeonia photoproduction cross sections measured in their golden decay mode φ η - are much lower than expected
 - Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues...

- \blacktriangleright We acquired the world's largest photoproduction dataset for $\phi~\eta$
 - 909 \pm 45 ϕ η events
- ► First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for E $_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi(1680)$
 - Largest cross section upper limit is observed to be 250 pb
- ► Strangeonia photoproduction cross sections measured in their golden decay mode $\phi \eta$ are much lower than expected
 - · Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues...

- \blacktriangleright We acquired the world's largest photoproduction dataset for $\phi~\eta$
 - 909 \pm 45 ϕ η events
- ► First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for E $_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi$ (1680)
 - Largest cross section upper limit is observed to be 250 pb
- ► Strangeonia photoproduction cross sections measured in their golden decay mode $\phi \eta$ are much lower than expected
 - · Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues...

- \blacktriangleright We acquired the world's largest photoproduction dataset for $\phi~\eta$
 - 909 \pm 45 ϕ η events
- ► First cross section measurement for ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - 5.8 \pm 0.3 (stat) \pm 0.72 (sys) nb for E $_{\gamma} \in \{4.40, 5.45\}$
- ► No statistically significant resonant structure observed in $\phi \eta$ invariant mass distribution
- First calculations of upper limits on ' $\gamma p \rightarrow p X \rightarrow p \phi \eta$ '
 - Upper limit for $\phi(1680)$ 140 pb
 - Upper limit for $\phi_3(1850)$ 60 pb
 - Upper limit for X(1750) supports X(1750) $\notin \{s\bar{s}\} \neq \phi$ (1680)
 - Largest cross section upper limit is observed to be 250 pb
- ► Strangeonia photoproduction cross sections measured in their golden decay mode $\phi \eta$ are much lower than expected
 - Assumptions of this analysis are suspect
 - Strangeonia are rarer than expected; more statistics needed
 - Search for strangeonia continues...

To FSU Physics And Everyone Who Came

Thank You!

$$|\bar{p}\epsilon PJM\rangle = \theta(m) \left\{ |\bar{p}PJM\rangle + \epsilon P(-1)^{J-M} |\bar{p}PJ-M\rangle \right\}$$

where,

$$\begin{array}{rcl} \theta(m) & = & \displaystyle \frac{1}{\sqrt{2}} \mbox{ for } m > 0 \ ; \ \theta(m) & = & \displaystyle \frac{1}{2} \ \mbox{ for } m = 0 \ ; \\ \theta(m) & = & \displaystyle 0 \ \mbox{ for } m < 0 \ . \end{array}$$

Reflectivity (ϵ) / Naturality (N) for a particle, in this case, by definition is:

$$\epsilon = N = P(-1^J)$$

hence the following holds true,

Natural parity exchange
$$\epsilon = 1$$
; $J^P = 0^+, 1^-, 2^+, \dots$
Unnatural parity exchange $\epsilon = -1$; $J^P = 0^-, 1^+, 2^-, \dots$

As an added advantage, states of different reflectivities / naturalities do not interfere.

Mukesh S. Saini (FSU)

$${}^{\epsilon}U_{k}(\Omega) = \sum_{lm} \epsilon V_{lmk} \sqrt{\frac{2l+1}{4\pi}} {}^{\epsilon}D_{m0}^{l}{}^{*}(\phi,\theta,0)$$

$$I(\Omega) = \sum_{\epsilon k} |{}^{\epsilon}U_{k}(\Omega)|^{2} = |{}^{+}U_{1}(\Omega)|^{2} + |{}^{-}U_{1}(\Omega)|^{2} + |{}^{+}U_{2}(\Omega)|^{2} + |{}^{-}U_{2}(\Omega)|^{2}$$

$$\mathcal{M} = \sum_{\alpha,\phi} \underbrace{\langle K^{+}K^{-} \eta p | \hat{T}_{d}^{\phi \to K^{+}K^{-}} |\phi \eta p \rangle \langle \phi \eta p | \hat{T}_{d}^{X \to \phi\eta} | X_{\alpha} p \rangle}_{Decay - A_{\alpha}(\tau)} \underbrace{\langle X_{\alpha} p | \hat{T}_{p} | \gamma p \rangle}_{Production - V_{\alpha}}$$

$$I(\tau) \propto \sum_{k} |\sum_{\alpha} V_{k\alpha} A_{\alpha}(\tau)|^{2}$$

$$\alpha \forall \{J, P, C, M, L, l, (w, \Gamma)\}$$

where,

$$P = Parity of the resonance 'X'$$

- C = Charge conjugation parity for the resonance 'X'
- M = Z-projection of the total angular momentum
- L = Angular momentum between the ϕ and the η meson
- 1 = Angular momentum between the decay products of ϕ
- (w, Γ) = Mass and width parameter for the Breit-Wigner

Mukesh S. Saini (FSU)

Extended Maximum Likelihood Method

$$\mathcal{L} \propto \left[\frac{\bar{n}^{n}}{n!}e^{-n}\right]\prod_{i}^{n}\left[\frac{l(\tau_{i})}{\int l(\tau)\eta(\tau)pqd\tau}\right]$$
$$\bar{n} \propto \int l(\tau)\eta(\tau)pq(d\tau)$$

$$\begin{aligned} \ln \mathcal{L} & \propto \quad \sum_{i}^{n} \ln(l(\tau_{i})) - \int l(\tau)\eta(\tau) p q d\tau \\ & \propto \quad \sum_{k \in \alpha \alpha'} \ln(\ ^{\epsilon} V_{\alpha k} \ ^{\epsilon} V_{\alpha' k}^{*} \ ^{\epsilon} A_{\alpha}(\tau_{i}) \ ^{\epsilon} A_{\alpha'}^{*}(\tau_{i})) - \eta_{X} (\sum_{k \in \alpha \alpha'} \ ^{\epsilon} V_{\alpha k} \ ^{\epsilon} V_{\alpha' k}^{*} \ ^{\epsilon} \psi_{\alpha \alpha'}^{\mathfrak{a}}) \end{aligned}$$

$$\eta_{X} = \frac{\text{MC Events Accepted}}{\text{Raw MC Events Generated}}$$

$${}^{\epsilon}\psi^{a}_{\alpha\alpha'} = \frac{1}{N_{a}}\sum_{i}^{N_{a}} {}^{\epsilon}A_{\alpha}(\tau_{i}) {}^{\epsilon}A^{*}_{\alpha'}(\tau_{i})$$

$$N = \sum_{k \in \alpha\alpha'} {}^{\epsilon}V_{\alpha k} {}^{\epsilon}V^{*}_{\alpha' k} {}^{\epsilon}\psi^{r}_{\alpha\alpha'}$$

where,

L is the likelihood function,

n is the number of events observed,

-n is the average number of events observed if the experiment was ran multiple times,

 $\eta(\tau)$ is the finite experimental acceptance as determined by the Monte Carlo simulations,

 $pqd\tau$ is the lorentz invariant phase space element for the involved kinematics,

 ${}^{\epsilon}\psi^a_{\alpha\alpha'}$ is the normalization integral calculated from phase space MC simulation for Na accepted events.

Mukesh S. Saini (FSU)

γ + proton \rightarrow proton + ϕ + π^0

γ + proton \rightarrow proton + K^+ + K^- + $[\pi^0]$

K* Events

