g12 Cross Section Parameters

Number of Interactions $(N_i) \propto$ Number of Target Particles (N_t)

Number of Interactions $(N_i) \propto$ Number of Beam Photons (N_b)

$$\therefore N_i = \sigma * N_t * N_b$$

where σ is the Cross-Section/Area or interaction probability

Number of Beam Photons calculated using gflux for Beam Energy Range (A-B) GeV

Number of Target Particles (N_t) = Proton Density of LH2 * Volume of Target

Proton Density = $2 * N_A *$ Density / Molar Mass " = $2 * 6.022 * 10^{23} * 0.0708/2.016 cm^{-3}$ " = $0.423 * 10^{23} cm^{-3}$

Target Volume = Area * Length = $0.1257 * 40 = 5.0265 cm^3$

$$\sigma = \frac{N_E w}{2 N_B N_A \rho L_T} \tag{1}$$

where,

$$\rho = 0.0708 gm.cm^{-3}$$
 , $L_T = 40 cm$, $N_B = 5.782 * 10^{11}$, $N_A = 6.022 * 10^{23}$, $w = 2.016$, $N_E = N_{Events}$ / Acceptance.

Figure: Yield calculation using Elliptically Side-Band Subtracted $\phi - \eta$ Invariant Mass


```
Number of Accepted Events :: 27235
```

Number of Simulated Events :: 9305000

Therefore,

```
Acceptance = 0.0029269
```

```
&
```

 $N_E = 800/(27235/9305000) = 273324.7659 \approx 273325$

Number of photons counted by gflux for data analysed for this analysis :: 21780608861890 $N_B \approx 2.1781 \times 10^{13}$

Therefore,

Cross Section for $p \gamma \rightarrow p \phi \eta$ in g12,

" = $\frac{273325 \times 2.016}{2 \times 2.1781 \times 10^{13} \times 6.022 \times 10^{23} \times 0.0708 \times 40} \approx 7.417 \times 10^{-33} \text{ cm}^2$

g12 Cross Section for $\phi \eta = 7.417$ nano – barns

Given that the expected inefficiency is of the order of 40% from ρ cross-section, the number is very preliminary and far from finalised.

Mukesh Saini (Florida State University)