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Understanding Hadrons

Matter that we see around us is made up of hadrons
like protons and neutrons. Hadrons are made of quarks
and gluons which interact via the strong force.

Six known quarks, each with a unique ‘flavor’
quantum number.

Broad classification of hadrons:
Baryons: 3 quarks, Mesons: quark-antiquark pairs.

Gluons, the mediators of the strong force, also carry
color charge. They participate in the strong interaction
in addition to mediating it unlike photons in QED.
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Understanding Hadrons
Quantum Chromodynamics (QCD) is the theory of the strong force which de-
scribes quark-gluon interactions. Two peculiar features of the strong force are:

Confinement .. Asymptotic freedom ..

.. at large distances. No free
quarks! Non-perturbative regime.

.. at short distances, as if the
quarks were free.

S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007)

Priyashree Roy, Department of Physics Dissertation Defense, FSU, Tallahassee 3 / 26



Introduction
Data Analysis and Results

Outlook

Strong Interaction
Why Baryon Spectroscopy?
Polarization Observables
The FROST Experiment using CLAS

Baryon Spectroscopy

Open questions in the non-perturbative regime (where QCD is difficult to solve):
How does QCD give rise to excited hadrons?

What is the origin of confinement? How are confinement and chiral
symmetry breaking connected?

What are the relevant degrees of freedom? How do they evolve with energy?
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Baryon Spectroscopy

Open questions in the non-perturbative regime (where QCD is difficult to solve):
How does QCD give rise to excited hadrons?

What is the origin of confinement? How are confinement and chiral
symmetry breaking connected?

What are the relevant degrees of freedom? How do they evolve with energy?

Baryon spectroscopy, a tool to understand the
effective degrees of freedom in excited baryons:
map out the spectrum and study the underlying
pattern.
This dissertation focuses on the spectrum of light
baryons containing u and d quarks.
Symbol: N if I = 1/2, ∆ if I = 3/2.
Nomenclature: Symbol (Mass in MeV/c2) JP
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Light Baryon Spectroscopy

Effective degrees of freedom

Map out the excited states of (light) baryons, identify the underlying
multiplets to get an insight into the effective degrees of freedom.

+ Lattice-QCD computations
(complementary to phenomenological models)
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Understanding the Light Baryon Spectrum

4 5 3 1

2 2 1

NN*

Underlying Pattern: the resonances can be grouped into bands and multiplets.

The level counting in LQCD for each JP in each band is consistent with CQM.

A CQM prediction for N∗ from Lattice-QCD

S. Capstick and N. Isgur, Phys. Rev. D 34 (1986) 2809
R. Edwards et al. Phys. Rev. D 84 074508 (2011)
Picture courtesy V. Bukert (CLAS collaboration meeting 2015)
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Many ‘missing’ states, particularly above 1.7 GeV in W .

A possible explanation: perhaps the static quark-diquark picture is correct?
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Understanding the Light Baryon Spectrum

4 5 3 1

2 2 1

NN*

N(1900)3/2+ (which can be assigned as a member of the quartet of (70, 2+
2 ) ) cannot be

accommodated in the naive quark-diquark picture, both oscillators need to be excited.

No sign of ‘freezing’ in LQCD calculations.
A CQM prediction for N∗ from Lattice-QCD

Bradford et al. (CLAS), PRC 75, 035205 (2007), Observables Cx , Cz from ~γp→ K+~Λ
Fits: BnGa Model, V.A. Nikonov et al., Phy. Lett. B 662, 245 (2008)

(70, 2+2 ) Quartet
N(1880)1/2+ ∗∗
N(1900)3/2+ ∗ ∗ ∗
N(2000)5/2+ ∗∗
N(1990)7/2+ ∗∗
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Vector Meson and Multi-Pion Photoproduction
Alternate explanation suggested from an experimental point-of-view:

Past measurements were mostly done using π
beams. It is predicted that the high-mass
resonances predominantly couple to γ beams.

The high-mass resonances preferably decay to
heavier mesons, e.g. vector mesons (e.g. ω, ρ, φ),
or sequentially decay to multi-particle final states
via intermediate resonances.

The study these reactions also aid in further
investigating poorly-understood properties of
known resonances. Their contributions to these
reactions have mostly remained under-explored.

These factors motivated the analysis of
γp→ pπ+π− and γp→ pω → pπ+π−(π0)
reactions. The former gives information on
N∗ → pρ, and on sequential decays via
intermediate resonances.

Priyashree Roy, Department of Physics Dissertation Defense, FSU, Tallahassee 7 / 26



Introduction
Data Analysis and Results

Outlook

Strong Interaction
Why Baryon Spectroscopy?
Polarization Observables
The FROST Experiment using CLAS

Vector Meson and Multi-Pion Photoproduction
Alternate explanation suggested from an experimental point-of-view:

Past measurements were mostly done using π
beams. It is predicted that the high-mass
resonances predominantly couple to γ beams.

The high-mass resonances preferably decay to
heavier mesons, e.g. vector mesons (e.g. ω, ρ, φ),
or sequentially decay to multi-particle final states
via intermediate resonances.

The study these reactions also aid in further
investigating poorly-understood properties of
known resonances. Their contributions to these
reactions have mostly remained under-explored.

These factors motivated the analysis of
γp→ pπ+π− and γp→ pω → pπ+π−(π0)
reactions. The former gives information on
N∗ → pρ, and on sequential decays via
intermediate resonances.

Priyashree Roy, Department of Physics Dissertation Defense, FSU, Tallahassee 7 / 26



Introduction
Data Analysis and Results

Outlook

Strong Interaction
Why Baryon Spectroscopy?
Polarization Observables
The FROST Experiment using CLAS

Vector Meson and Multi-Pion Photoproduction
Alternate explanation suggested from an experimental point-of-view:

Past measurements were mostly done using π
beams. It is predicted that the high-mass
resonances predominantly couple to γ beams.

The high-mass resonances preferably decay to
heavier mesons, e.g. vector mesons (e.g. ω, ρ, φ),
or sequentially decay to multi-particle final states
via intermediate resonances.

The study these reactions also aid in further
investigating poorly-understood properties of
known resonances. Their contributions to these
reactions have mostly remained under-explored.

These factors motivated the analysis of
γp→ pπ+π− and γp→ pω → pπ+π−(π0)
reactions. The former gives information on
N∗ → pρ, and on sequential decays via
intermediate resonances. Particle Data Group 2016

Priyashree Roy, Department of Physics Dissertation Defense, FSU, Tallahassee 7 / 26



Introduction
Data Analysis and Results

Outlook

Strong Interaction
Why Baryon Spectroscopy?
Polarization Observables
The FROST Experiment using CLAS

Vector Meson and Multi-Pion Photoproduction
Alternate explanation suggested from an experimental point-of-view:

Past measurements were mostly done using π
beams. It is predicted that the high-mass
resonances predominantly couple to γ beams.

The high-mass resonances preferably decay to
heavier mesons, e.g. vector mesons (e.g. ω, ρ, φ),
or sequentially decay to multi-particle final states
via intermediate resonances.

The study these reactions also aid in further
investigating poorly-understood properties of
known resonances. Their contributions to these
reactions have mostly remained under-explored.

These factors motivated the analysis of
γp→ pπ+π− and γp→ pω → pπ+π−(π0)
reactions. The former gives information on
N∗ → pρ, and on sequential decays via
intermediate resonances. Particle Data Group 2016

Priyashree Roy, Department of Physics Dissertation Defense, FSU, Tallahassee 7 / 26



Introduction
Data Analysis and Results

Outlook

Strong Interaction
Why Baryon Spectroscopy?
Polarization Observables
The FROST Experiment using CLAS

Why are Spin Observables Important?

Baryon resonances are broad and overlapping so ‘peak-hunting’ is not a
good way to look for resonances.

Significant background from non-resonant processes which are entangled
with resonant processes.

(Courtesy of Michael Williams)

Atomic Cross Section Baryon Cross Section
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Why are Spin Observables Important?

Polarized measurements in addition to the
unpolarized cross section measurements
necessary to disentangle and reveal the res-
onances with minimum ambiguities.

w/o polarizer w/ polarizer
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Spin Observables for ~γ~p→ pπ+π− & pω @ CLAS

Hall 
A

Hall 
B

Hall 
C

A
cc

el
er

at
o

r

The FROST N∗ Program in Hall B, JLab

Max. e− beam E: ∼ 5.7 GeV

~γ~p→ pω

~γ~p→ pπ+π−

13 spin observables extracted in this analysis
(Analysis approved by the CLAS collaboration)
Data acquired
Final or prelim. results available
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Spin Observables for ~γ~p→ pπ+π− & pω @ CLAS
~γ~p→ pω

~γ~p→ pπ+π−

13 spin observables extracted in this analysis
(Analysis approved by the CLAS collaboration)
Data acquired
Final or prelim. results available

σtotal = σ0[ 1 − Σ δl cos(2φ)
+Λ cos(α)(−δl H sin(2φ) + δ�F )
−Λ sin(α)(−T + δl P cos(2φ) )
−Λz(−δl G sin(2φ) + δ�E ) ]

δ�(δl) : degree of beam polarization
Λ : degree of target polarization
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The FROST Experiment using CLAS at JLab
Coherent edges: 0.9-2.1 GeV (0.2 GeV wide)
Deg. of linear beam pol., δγ : 40− 60%

Enhancement for 
coherent edge 1.1 GeV 

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
δ�
δe

= 4x− x2

4− 4x+3x2

δe = 87% (av.)

∼ 4π acceptance of
charged particles,
well-suited for
spectroscopy.

g9b run (Mar to Aug, 2010)
Photon Pol.: Linear/Circular
Target: (Nitroxyl) Doped Butanol

(C4H9OH)
Target Pol.: Transverse
W range: 1.4-2.1 GeV (Lin. Data)

1.5-2.5 GeV (Circ. Data)
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The FROzen Spin Target (FROST) Apparatus

Polarizing field = 5 T, T∼ 0.3 K

Dipole holding field = 0.5 T, T∼ 50 mK

Offset angle = 116.1 ± 0.4◦ from xlab

Av. target pol. = 81.0 ± 1.7%

Relaxation time: 3400 hrs w/ beam,
4000 hrs w/o beam

C and CH2 for
background studies
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Data Selection and Analysis

Topologies for pπ+π−:
~γ~p→ pπ+ (missing π−)
~γ~p→ pπ− (missing π+)
~γ~p→ pπ+π− (no missing particle)
The observables are weighted avg. over topologies.

Topology for pω (89% branching fraction):
~γ~p→ pπ+π−(missing π0)
Topology identified using Kinematic fitting.

Standard cuts & corrections: vertex cut, photon
selection, β cuts, E-p corrections.

Event-based method[1] for signal-background
separation.

Event-based maximum likelihood method[2] to fit
angular distributions in φrecoil

lab and extract the
polarization observables.
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Topologies for pπ+π−:
~γ~p→ pπ+ (missing π−)
~γ~p→ pπ− (missing π+)
~γ~p→ pπ+π− (no missing particle)
The observables are weighted avg. over topologies.

Topology for pω (89% branching fraction):
~γ~p→ pπ+π−(missing π0)
Topology identified using Kinematic fitting.

Standard cuts & corrections: vertex cut, photon
selection, β cuts, E-p corrections.

Event-based method[1] for signal-background
separation.

Event-based maximum likelihood method[2] to fit
angular distributions in φrecoil

lab and extract the
polarization observables.

Butanol
Signal
Background
Carbon
Scaled Carbon

Total
Signal
Background

1.6 - 1.7 GeV

1.3 - 1.4 GeV

[1] M. Williams et al., JINST 4 (2009) P10003
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Event-based method[1] for signal-background
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Event-based maximum likelihood method[2] to fit
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polarization observables.

[1] M. Williams et al., JINST 4 (2009) P10003
[2] D G Ireland, CLAS Note 2011-010

Butanol
Signal
Background
Carbon
Scaled Carbon

Total
Signal
Background

1.6 - 1.7 GeV

1.3 - 1.4 GeV
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Results in ~γ~p→ pω
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~γ~p→ pπ+π− Reaction

Published Results in γp→ pω

Spin 
Observable E 

ELSA

E

Beam 
Asym. Σ 
GRAAL,
ELSA 

Polarized SDMEs

ELSA

Unpol. SDMEs

ELSA, CLAS,
SAPHIR, SLAC, 

Daresbury

Spin 
Observable G 

ELSA

Cross Section
CLAS, ELSA,
A2, SAPHIR,

SLAC, 
Daresbury

Isospin filter (sensitive to N∗ only), reduces complexity
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Partial Wave Analysis of γp→ pω Observables

Williams et al., PRC 80, 065208 (2009)
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~γ~p→ pω Reaction
~γ~p→ pπ+π− Reaction

Partial Wave Analysis of γp→ pω Observables

Williams et al., PRC 80 (2009)
Denisenko et al., Phys. Lett. B 755 (2016)

Polarized measurements crucial to understand the t-channel
background: E.g., the BnGa fits above W = 2 GeV with pomeron
exchange only provided good description for σ0, but predicted vanishing
ρ00, E, Σ, G.
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~γ~p→ pω Reaction
~γ~p→ pπ+π− Reaction

Partial Wave Analysis of γp→ pω Observables

Williams et al., PRC 80 (2009)
Denisenko et al., Phys. Lett. B 755 (2016)

The FROST observables will aid in nailing
down the resonant contributions, including the
resonances above 2 GeV:

N(∼ 2.2 GeV)
Uncertain JP :
1/2−, 3/2+, 3/2−, or 5/2+ ??

N(> 2.1 GeV) 7/2−?
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~γ~p→ pω Reaction
~γ~p→ pπ+π− Reaction

Beam Asymmetry Σ in ~γp→ pω
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Λ : degree of target pol.

ω reconstructed from π+π−(π0)
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Beam Asymmetry Σ in ~γp→ pω
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FROST results agree well with

previously published results except

for GRAAL 15.

First-time high quality

measurements at

Eγ ∈ [1.5, 2.1] GeV. Large Σ

indicate significant s- and/or

u-contributions at these energies.

ω reconstructed from π+π−(π0)
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~γ~p→ pω Reaction
~γ~p→ pπ+π− Reaction

First Measurements of Target Asymmetry T in γ~p→ pω
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δ�(δl) : degree of beam pol.
Λ : degree of target pol.The two experimental results on target

asym. T from FROST agree well.
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Results

Results in ~γ~p→ pπ+π−
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~γ~p→ pπ+π− Reaction

Published Results in ~γ~p→ pπ+π−

Allow the study of sequential decays of intermediate N∗ and also N∗ → pρ decay
but the large hadronic background makes it challenging.
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~γ~p→ pω Reaction
~γ~p→ pπ+π− Reaction

Published Results in ~γ~p→ pπ+π−

Polarization observables database rather sparse in the past. Moreover, existing
models do not describe the data well.

Strauch et al., PRL 95, 162003 (2005); Krambrich et al., PRL 103, 052002 (2009)
Ahrens et al., EPJ A 34, 11 (2007)

σ3/2 − σ1/2

I�
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~γ~p→ pω Reaction
~γ~p→ pπ+π− Reaction

Beam Asymmetry Is in ~γp→ pπ+π−
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Example: 1.30 < Eγ < 1.40 GeV (Total Eγ range covered: 0.7 - 2.1 GeV)

Good agreement between experiments

I =I0{δl[Issin(2β) + Iccos(2β)]}
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~γ~p→ pω Reaction
~γ~p→ pπ+π− Reaction

First Measurements of Target Asym. Px,y in γ~p→ pπ+π−
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Example: 0.8 < Eγ < 0.9 GeV (Total Eγ range covered: 0.7 - 2.1 GeV)

FROST g9b (lin. pol. beam) Solid curves : Fourier fit ( n < 3 )

3-dim. phase space: (Eγ , φ∗π+ , cosθ∗π+ )

I = I0[1 + Λcos(α)Px + Λsin(α)Py]
Λ : degree of target pol.

W. Roberts and T. Oed, PRC 71, 055201 (2005)
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First Measurements of Pc
x in ~γ~p→ pπ+π−
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Asym. = δlΛ{sin2β(Ps
xcosα+ Ps

ysinα) +
cos2β(Pc

xcosα+ Pc
ysinα)}

δl(Λ) : degree of beam (target) pol.
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Summary
Photoproduction of vector mesons and multi-pion final states:

essential to discover new resonances and better understand the

known resonances.

Many first-time measurements from CLAS-FROST for ~γ~p→ pω

(Σ (for Eγ > 1.7 GeV), T , H , P , F ) and ~γ~p→ pπ+π− (Is,c, Px,y ,

P s,cx,y): they will significantly augment the world database of

polarization observables in photoproduction.

The high-quality FROST results are expected to put tight constraints on data
interpretation tools, immensely aiding in determining contributing N∗ with minimal

ambiguities.

Our findings from FROST on the N∗ members, together with the findings on the strange

members (e.g. from PANDA at GSI, BES at Beijing, GlueX at JLab) of the multiplets will

complete the study of the light baryon spectrum. This will give more insight into the

phenomenon of color confinement in the system of light quarks.
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Summary

Several papers in preparation:
P. Roy, V. Crede et al., “Measurement of the Beam Asymmetry for
the ω Photoproduction off the Proton from the FROST Experiment,”
paper ready for collaboration review.

P. Roy, V. Crede et al., “Measurement of Single and Double
Polarization Asymmetries in ω Photoproduction from FROST,” in
preparation.

Paper on BnGa Partial Wave Analysis of the new FROST data, in
preparation.

Z. Akbar, P. Roy, V. Crede et al.,“Measurement of the Helicity
Asymmetry in ω/η → π+π−π0 Photoproduction,” paper ready for
collaboration review.

Several papers on the polarization observables for π+π−

photoproduction off the proton.
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CLAS Experiment Details Continued

(1) Electron beam current: 5− 14 nA
(2) Electron beam energy: 3.082 GeV (circ. + lin.), 5.078 GeV (circ.)
(3) Gold foil of 10−4 radiation length thickness used for
creating circularly-polarized photons from longitudinally-polarized electrons.
Longitudinally-polarized electrons created by circularly-polarizing the laser
using 2 Pockel cells prior to irradiating the GaAs photocathode.
(4) Diamond radiator of thickness 50µm to produce lin. pol. photons.
The divergence of the e− beam in the crystal increases with thickness.
More divergence leads to broader coherent peaks and a lower degree of polarization.

(1) E-T plane resolution: 110 ps
(2) Photon tagging resolution: ∆(E)/E = 0.1%
(3) Start counter resolution: 290 ps at the straight section, 320 ps at the nose
(4) TOF resolution: 80 ps for short counters, 160 ps for the long counters
(5) Average time resolution for reconstructed electrons in CLAS: 150 ps
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The Horizontal Dilution Refrigerator

Below 0.8 K, the 3He-4He mixture sepa-
rated into two phases:
3He rich (specific heat = 22 J/(mol K)),
3He poor (specific heat = 106 J(mol K)).

Due to the difference in the specific heat,
3He absorbs heat from its surrounding
while traveling from the concentrated
phase to the dilute phase.
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Photoproduction Cross Section
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Photon Selection Cuts
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∆(t) = tevent − tγ
∼ 5 candidate photons per event on average.
Cuts applied:
1) |∆(t)| < 1 ns
2) Only 1 candidate photon in the same RF bucket and all
tracks of the event originate from the same tagged photon
(88− 90% events).
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β cut

β - measured β) = calculated π (β ∆
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βcal = pDC√
pDC

2+m2

βmeas = vTOF

c

∆β = βcal − βmeas

Pions

Proton
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Event Statistics after Various Cuts
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Event-Based Qfactor Method with Likelihood Fits
Pictorial depiction

of NN search

s

mass of candidate 
(or 'seed') event

s+b

QV (Q-value)
= s/(s+b)

A multivariate analysis - For each event ("seed event"), find N nearest
neighbors in N−D kinematic phase space (e.g. λ, θHEL, φHEL, cos(θp)c.m.,
φprecoilc.m. for ω analysis). Plot mass distribution of the N + 1 events and fit.
Since N is small (300), use ML method to fit the mass distribution.
L =

∏
i

[fSignal(mi, α) + fBkg(mi, β)]

Qseed−event = fSignal(m0,α
best)

[fSignal(m0,αbest)+fBkg(m0,βbest)]
, m0- seed event’s mass.
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Fenyman Diagrams for 2-pion Photoproduction
Image Source: J. Ahrens et al., EPJ A 34, 11 (2007).
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Published Results in ~γ~p→ pπ+π−

p

a

Θ .m.

Z

x

Y

b
1

k b
2

Allow the study of sequential decays of intermediate N∗ and also N∗ → pρ
decay but the large hadronic background makes it challenging.

Reaction described using 2 planes (5 kinematic variables)→ more spin
observables than in single-meson photoproduction using polarized beam
and target.

2 beam-pol. observables: Is, Ic

Unlike only one (Σ observable) in
single-meson photoproduction.

Is vanishes, Ic survives.

W. Roberts and T. Oed, PRC 71, 055201 (2005)
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First Measurements of F in ~γ~p→ pω
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δ�(δl) : degree of beam pol.
Λ : degree of target pol.

Double-polarization observable F
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First Measurements of H in ~γ~p→ pω
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δ�(δl) : degree of beam pol.
Λ : degree of target pol.

Double-polarization observable H
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First Measurements of P in ~γ~p→ pω
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δ�(δl) : degree of beam pol.
Λ : degree of target pol.

Double-polarization observable P
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Beam Asymmetry Ic in ~γp→ pπ+π−
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FROST (preliminary)

Fourier cosine fit to g8b

C. Hanretty et al. , CLAS-g8b run
(in preparation for publication) BnGa fits to Ic, CLAS-g8b run

Example: 1.30 < Eγ < 1.40 GeV

Good agreement between experiments
I =I0{δl[Issin(2β) + Iccos(2β)]}
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Systematic Errors
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Why are Spin Observables Important?

C
x
, C

z

cos
K

C
x
, C

z

cos
K

[1] R. Bradford et al. (CLAS), PRC 75, 035205 (2007), Observables Cx , Cz from ~γp→ K+~Λ
[2] Fits: BnGa Model, V.A. Nikonov et al., Phy. Lett. B 662, 245 (2008)

Fits without N(1900)3/2+ resonance

Better Fit Results with N(1900)3/2+!

Currently 17N∗ and 10 ∆∗

with at least (∗∗∗) rating.
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Scattering Amplitudes in γp→ pπ+π− and γp→ pω
γp→ pπ+π− reaction: Roberts and Oed, PRC 71, 055201 (2015)

8 independent helicity amplitudes after parity invariance operation.

Need 15 carefully selected observables at each kinematic bin for fully
determining the helicity amplitudes.

A complete measurement will require certain single, double and triple
polarization observables in addition to the differential cross section.

γp→ pω reaction: Pichowsky et al., PRC 53 (1996)

12 independent helicity amplitudes after parity invariance.

8 single spin, 51 double spin, 123 triple spin and 108 quadrupole spin (γ, p, p
′
,

vector and tensor pol. of ω) observables after parity conservation.

Need 23 carefully selected observables for determining the helicity amplitudes.

A complete experiment doesn’t seem plausible, but it is useful to extract
experimental observables to extract useful dynamical information.
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Multiplets in the 2nd excitation band of N ∗

V. Crede and W. Roberts, Rept.Prog.Phys. 76 (2013)

SU(6) (flavor + spin), O(3) : orthogonal group of rotations
6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A
56 = 104 ⊕ 82, (4 = 2(3

2 ) + 1)
70 = 102 ⊕ 84 ⊕ 82 ⊕ 12

20 = 82 ⊕ 14

Why is 20plet inconsistent with the static quark-diquark picture?
The static diquark: 6⊗ 6 = 21⊕ 15
The symmetry of diquark requires it to be 21 since the color Ψis antisymmetric.
The static diquark +the third quark: 21⊗ 6 = 56⊕ 70, i.e. no 20plet!

Only two N∗states with 1-star rating have been assigned to the 20plet.
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Light Baryon Spectroscopy

Naming light baryons: Symbol (Mass in MeV/c2) JP

Baryon with 0 s quark: N if I = 1/2, ∆ if I = 3/2.

With 1 s quark: Λ if I = 0, Σ if I = 1.

With 2 s quarks: Ξ. It has I = 1/2.

With 3 s quarks: Ω. It has I = 0.
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Light Baryon Spectroscopy

The ground state of light
baryons can be grouped in
multiplets.

Baryons with JP = 1
2

+

in an octet.

Baryons with JP = 3
2

+

in a decuplet.

All of them have been experi-
mentally observed.

Baryon octet Baryon decuplet
pn

, 3

3

-

-

-

Naming light baryons: Symbol (Mass in MeV/c2) JP

Baryon with 0 s quark: N if I = 1/2, ∆ if I = 3/2.

With 1 s quark: Λ if I = 0, Σ if I = 1.

With 2 s quarks: Ξ. It has I = 1/2.

With 3 s quarks: Ω. It has I = 0.
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A CQM Prediction for the N ∗ Spectrum
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The Unbinned Maximum Likelihood Method (MLM)

The φlab asymmetry was manifested as modulations.

E.g. Asymmetry, A = Nω(⇒,+)−Nω(⇒,−)
Nω(⇒,+)+Nω(⇒,−)

Data integrated over all kinematic bins.
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The Unbinned Maximum Likelihood Method (MLM)

The φlab asymmetry was manifested as modulations.

Polarization observables were extracted by fitting the modulations using
unbinned MLM. Advantage: no loss of information due to binning.

−lnL = −
N total∑
i=1

wi ln (P (event i) ) , A =
(npol1 − npol2)

(npol1 + npol2)
,

where P (event i) =

{
1
2 (1 + A), for pol1 ,
1
2 (1 − A), for pol2 (orthogonal to pol1).

A was a function of the polarization observable. Minimizing −lnL gave the
most likely value of the observable.
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