Review of the Paper "Completeness Rules for Spin Observables in Pseudoscalar Meson Photoproduction"

Priyashree Roy FSU Weekly Group Meeting

Weekly Group Meeting August 2015 Introduction Amplitudes and Ambiguities Fun Facts

Image: A matrix of the second seco

3 > < 3

Paper reference - Chiang and Tabakin, PRC 55, 2054 (1997)

Observables in pseudoscalar meson photoproduction -

- ◊ Total 4 amplitudes corresponding to such reactions.
- ♦ 16 observables, denoted as Ω^{α} here. In general N^2 observables for N complex amplitudes. These observables can be measured experimentally.
- ♦ The 16 observables are -
- 4 S type cross section $I(\theta)$ + 3 single spin observables (Σ, T, P) . Σ is related to beam polarization, T is related to target pol., and P is related to recoil pol.
- 4 beam-target (BT) type observables (G, H, E, F)
- 4 beam-recoil (BR) type observables (O_x, O_z, C_x, C_z)
- 4 target-recoil (TR) type observables (T_x, T_z, L_x, L_z)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Paper reference - Chiang and Tabakin, PRC 55, 2054 (1997)

Observables in pseudoscalar meson photoproduction -

- ◊ Total 4 amplitudes corresponding to such reactions.
- \diamond 16 observables, denoted as Ω^{α} here. In general N^2 observables for N complex amplitudes. These observables can be measured experimentally.
- ◊ The 16 observables are -
- 4 S type cross section $I(\theta)$ + 3 single spin observables (Σ, T, P). Σ is related to beam polarization, T is related to target pol., and P is related to recoil pol.
- 4 beam-target (BT) type observables (G, H, E, F)
- 4 beam-recoil (BR) type observables (O_x, O_z, C_x, C_z)
- 4 target-recoil (TR) type observables (T_x, T_z, L_x, L_z)

Paper reference - Chiang and Tabakin, PRC 55, 2054 (1997)

Observables in pseudoscalar meson photoproduction -

- ◊ Total 4 amplitudes corresponding to such reactions.
- ♦ 16 observables, denoted as Ω^{α} here. In general N^2 observables for N complex amplitudes. These observables can be measured experimentally.
- ♦ The 16 observables are -
- 4 S type cross section $I(\theta)$ + 3 single spin observables (Σ, T, P) . Σ is related to beam polarization, T is related to target pol., and P is related to recoil pol.
- 4 beam-target (BT) type observables (G, H, E, F)
- 4 beam-recoil (BR) type observables (O_x, O_z, C_x, C_z)
- 4 target-recoil (TR) type observables (T_x, T_z, L_x, L_z)

Paper reference - Chiang and Tabakin, PRC 55, 2054 (1997)

Observables in pseudoscalar meson photoproduction -

- ◊ Total 4 amplitudes corresponding to such reactions.
- ♦ 16 observables, denoted as Ω^{α} here. In general N^2 observables for N complex amplitudes. These observables can be measured experimentally.
- ♦ The 16 observables are -
- 4 S type cross section $I(\theta)$ + 3 single spin observables (Σ, T, P) . Σ is related to beam polarization, T is related to target pol., and P is related to recoil pol.
- 4 beam-target (BT) type observables (G, H, E, F)
- 4 beam-recoil (BR) type observables (O_x, O_z, C_x, C_z)
- 4 target-recoil (TR) type observables (T_x, T_z, L_x, L_z)

< ロ > < 同 > < 回 > < 回 > .

Paper reference - Chiang and Tabakin, PRC 55, 2054 (1997)

Observables in pseudoscalar meson photoproduction -

- ◊ Total 4 amplitudes corresponding to such reactions.
- ♦ 16 observables, denoted as Ω^{α} here. In general N^2 observables for N complex amplitudes. These observables can be measured experimentally.
- ♦ The 16 observables are -
- 4 S type cross section $I(\theta)$ + 3 single spin observables (Σ, T, P). Σ is related to beam polarization, T is related to target pol., and P is related to recoil pol.
- 4 beam-target (BT) type observables (G, H, E, F)
- 4 beam-recoil (BR) type observables (O_x, O_z, C_x, C_z)
- 4 target-recoil (TR) type observables (T_x, T_z, L_x, L_z)

Amplitudes and Ambiguities

2 Amplitudes and Ambiguities

Image: A matrix of the second seco

∃ > -

Can the 4 amplitudes be uniquely determined from the observables ? How many out of the 16 do we need ?

- ♦ It depends on whether these observables depend on each other. If they are completely independent from each other, then to uniquely determine N amplitudes we need 2N 1 observables (to find out the 4 magnitudes and 3 relative phases).
- These 16 observables are linearly independent.
- However they are non-linearly dependent on each other. E.g. -Linear-quadratic equations : $\Sigma = -TP - T_xL_z + L_xT_z$ Quadratic equations : $C_zO_z + O_xC_x - GE - HF = 0$ Square relations : $G^2 + H^2 + E^2 + F^2 = \sigma^2 - \Sigma^2 - T^2 + P^2$
- Due to the non-linear dependence, many solutions for the amplitudes can simultaneously satisfy the polarization observable measurements.

Can the 4 amplitudes be uniquely determined from the observables ? How many out of the 16 do we need ?

- ♦ It depends on whether these observables depend on each other. If they are completely independent from each other, then to uniquely determine N amplitudes we need 2N 1 observables (to find out the 4 magnitudes and 3 relative phases).
- These 16 observables are linearly independent.
- However they are non-linearly dependent on each other. E.g. -Linear-quadratic equations : $\Sigma = -TP - T_xL_z + L_xT_z$ Quadratic equations : $C_zO_z + O_xC_x - GE - HF = 0$ Square relations : $G^2 + H^2 + E^2 + F^2 = \sigma^2 - \Sigma^2 - T^2 + P^2$
- Due to the non-linear dependence, many solutions for the amplitudes can simultaneously satisfy the polarization observable measurements.

Can the 4 amplitudes be uniquely determined from the observables ? How many out of the 16 do we need ?

- ♦ It depends on whether these observables depend on each other. If they are completely independent from each other, then to uniquely determine N amplitudes we need 2N 1 observables (to find out the 4 magnitudes and 3 relative phases).
- These 16 observables are linearly independent.
- However they are non-linearly dependent on each other. E.g. -Linear-quadratic equations : $\Sigma = -TP - T_xL_z + L_xT_z$ Quadratic equations : $C_zO_z + O_xC_x - GE - HF = 0$ Square relations : $G^2 + H^2 + E^2 + F^2 = \sigma^2 - \Sigma^2 - T^2 + P^2$
- Due to the non-linear dependence, many solutions for the amplitudes can simultaneously satisfy the polarization observable measurements.

Can the 4 amplitudes be uniquely determined from the observables ? How many out of the 16 do we need ?

- ♦ It depends on whether these observables depend on each other. If they are completely independent from each other, then to uniquely determine N amplitudes we need 2N 1 observables (to find out the 4 magnitudes and 3 relative phases).
- These 16 observables are linearly independent.
- However they are non-linearly dependent on each other. E.g. -Linear-quadratic equations : $\Sigma = -TP - T_x L_z + L_x T_z$ Quadratic equations : $C_z O_z + O_x C_x - GE - HF = 0$ Square relations : $G^2 + H^2 + E^2 + F^2 = \sigma^2 - \Sigma^2 - T^2 + P^2$
- Due to the non-linear dependence, many solutions for the amplitudes can simultaneously satisfy the polarization observable measurements.

Can the 4 amplitudes be uniquely determined from the observables ? How many out of the 16 do we need ?

- ♦ It depends on whether these observables depend on each other. If they are completely independent from each other, then to uniquely determine N amplitudes we need 2N 1 observables (to find out the 4 magnitudes and 3 relative phases).
- These 16 observables are linearly independent.
- However they are non-linearly dependent on each other. E.g. -Linear-quadratic equations : $\Sigma = -TP - T_x L_z + L_x T_z$ Quadratic equations : $C_z O_z + O_x C_x - GE - HF = 0$ Square relations : $G^2 + H^2 + E^2 + F^2 = \sigma^2 - \Sigma^2 - T^2 + P^2$
- Due to the non-linear dependence, many solutions for the amplitudes can simultaneously satisfy the polarization observable measurements.

So, how many measurements do we need ? And are they any particular set of measurements ?

- ◊ The classic Barker, Donnachie and Storrow (BDS) paper states "5 double spin observables (no four of them should belong to the same set of BT, BR or TR) + the four S type measurements are needed to determine all amplitudes w/o discrete ambiguities" - total 9 carefully chosen observables.
- ◇ This paper says that "The four S types + four appropriately chosen double spin observables suffice to resolve all ambiguities" - total 8 carefully chosen observables.

So, how many measurements do we need ? And are they any particular set of measurements ?

- ◇ The classic Barker, Donnachie and Storrow (BDS) paper states "5 double spin observables (no four of them should belong to the same set of BT, BR or TR) + the four S type measurements are needed to determine all amplitudes w/o discrete ambiguities" - total 9 carefully chosen observables.
- ◊ This paper says that "The four S types + four appropriately chosen double spin observables suffice to resolve all ambiguities" - total 8 carefully chosen observables.

So, how many measurements do we need ? And are they any particular set of measurements ?

- ◇ The classic Barker, Donnachie and Storrow (BDS) paper states "5 double spin observables (no four of them should belong to the same set of BT, BR or TR) + the four S type measurements are needed to determine all amplitudes w/o discrete ambiguities" - total 9 carefully chosen observables.
- ◊ This paper says that "The four S types + four appropriately chosen double spin observables suffice to resolve all ambiguities" - total 8 carefully chosen observables.

Relation between the amplitudes and the observables -

- $\diamond~$ In 4X4 dimension, Gamma (Γ) matrices are used since they are linearly independent.
- \diamond We can either use helicity or transversity basis. The matrices are labelled Γ in the former and $\tilde{\Gamma}$ in the latter basis.
- ♦ All 16 observables can be expressed as - $\Omega^{\alpha} = \frac{1}{2}H_i^*\Gamma_{ij}^{\alpha}H_j = \frac{1}{2}b_i^*\Gamma_{ij}^{\alpha}b_j, \alpha \text{ goes from 1 to 16}$

where, $H_i \rightarrow$ complex helicity amplitude $b_i \rightarrow$ complex transversity amplitudes $\Omega^{\alpha} \rightarrow$ measured observable

Because of its form, this formulation is called "Bilinear Helicity Product".

Relation between the amplitudes and the observables -

- $\diamond~$ In 4X4 dimension, Gamma (Γ) matrices are used since they are linearly independent.
- \diamond We can either use helicity or transversity basis. The matrices are labelled Γ in the former and $\tilde{\Gamma}$ in the latter basis.
- ♦ All 16 observables can be expressed as - $\Omega^{\alpha} = \frac{1}{2}H_i^* \Gamma_{ij}^{\alpha} H_j = \frac{1}{2}b_i^* \Gamma_{ij}^{\alpha} b_j, \alpha \text{ goes from 1 to 16}$

where, $H_i \rightarrow \text{complex}$ helicity amplitude $b_i \rightarrow \text{complex}$ transversity amplitudes $\Omega^{\alpha} \rightarrow \text{measured}$ observable

Because of its form, this formulation is called "Bilinear Helicity Product".

Relation between the amplitudes and the observables -

- $\diamond~$ In 4X4 dimension, Gamma (Γ) matrices are used since they are linearly independent.
- \diamond We can either use helicity or transversity basis. The matrices are labelled Γ in the former and $\tilde{\Gamma}$ in the latter basis.

♦ All 16 observables can be expressed as - $\Omega^{\alpha} = \frac{1}{2}H_i^* \Gamma_{ij}^{\alpha} H_j = \frac{1}{2}b_i^* \Gamma_{ij}^{\alpha} b_j, \alpha \text{ goes from 1 to 16}$

where, $H_i \rightarrow$ complex helicity amplitude $b_i \rightarrow$ complex transversity amplitudes $\Omega^{\alpha} \rightarrow$ measured observable

Because of its form, this formulation is called "Bilinear Helicity Product".

Relation between the amplitudes and the observables -

- $\diamond~$ In 4X4 dimension, Gamma (Γ) matrices are used since they are linearly independent.
- \diamond We can either use helicity or transversity basis. The matrices are labelled Γ in the former and $\tilde{\Gamma}$ in the latter basis.
- ♦ All 16 observables can be expressed as - $\Omega^{\alpha} = \frac{1}{2}H_i^*\Gamma_{ij}^{\alpha}H_j = \frac{1}{2}b_i^*\Gamma_{ij}^{\alpha}b_j, \alpha \text{ goes from 1 to 16}$

where, $H_i \rightarrow$ complex helicity amplitudes $b_i \rightarrow$ complex transversity amplitudes $\Omega^{\alpha} \rightarrow$ measured observable

Because of its form, this formulation is called "Bilinear Helicity Product".

Introduction Amplitudes and Ambiguities Fun Facts

Question 2 - What are discrete ambiguities and the relations between amplitudes and observables ?

Relation between the amplitudes and the observables - an example -

$$G = \frac{1}{2}b_i^* \tilde{\Gamma}_{ij}^3 b_j$$

= $(b_1^* \ b_2^* \ b_3^* \ b_4^*) \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$

 $= Im(-b_1b_3^* - b_2b_4^*)$

Discrete ambiguities -

- ♦ This paper assumes that we always measure the 4 S type observables, $(I(\theta), \Sigma, T, P)$. They are also labelled as $(\Omega^1, \Omega^4, \Omega^{10}, \Omega^{12})$. $\Omega^m = b_i^* \tilde{\Gamma}_{ij}^m b_j, m = 1, 4, 10, 12$
- Then, if there exists any linear or antilinear transformation such that these observables remain invariant under the transformation, then the amplitudes can't be uniquely determined.
- <u>Linear transformation L</u>: $b'_i = L_{ij}b_j$. If L commutes with the Γ matrices that are related to the measured observables, i.e.,

$$\tilde{\Gamma}^{\alpha}L = L\tilde{\Gamma}^{\alpha},$$

then the observables will remain unchanged under this transformation.

• Antilinear transformation A:
$$b'_i = A_{ij}B^*_j$$
. If A satisfies
 $(A^{\dagger}\tilde{\Gamma}^{\alpha}A)^T = \tilde{\Gamma}^{\alpha}$

then the observables will remain unchanged under this transformation.

Discrete ambiguities -

- ♦ This paper assumes that we always measure the 4 S type observables, $(I(\theta), \Sigma, T, P)$. They are also labelled as $(\Omega^1, \Omega^4, \Omega^{10}, \Omega^{12})$. $\Omega^m = b_i^* \tilde{\Gamma}_{ij}^m b_j, m = 1, 4, 10, 12$
- ◊ Then, if there exists any linear or antilinear transformation such that these observables remain invariant under the transformation, then the amplitudes can't be uniquely determined.
- <u>Linear transformation L</u>: $b'_i = L_{ij}b_j$. If L commutes with the Γ matrices that are related to the measured observables, i.e., $\tilde{\Gamma}^{\alpha}L = L\tilde{\Gamma}^{\alpha}$,

then the observables will remain unchanged under this transformation.

• Antilinear transformation A :
$$b'_i = A_{ij}B^*_j$$
. If A satisfies
 $(A^{\dagger}\tilde{\Gamma}^{\alpha}A)^T = \tilde{\Gamma}^{\alpha}$

then the observables will remain unchanged under this transformation.

Discrete ambiguities -

- ♦ This paper assumes that we always measure the 4 S type observables, $(I(\theta), \Sigma, T, P)$. They are also labelled as $(\Omega^1, \Omega^4, \Omega^{10}, \Omega^{12})$. $\Omega^m = b_i^* \tilde{\Gamma}^m_{ij} b_j, m = 1, 4, 10, 12$
- ◊ Then, if there exists any linear or antilinear transformation such that these observables remain invariant under the transformation, then the amplitudes can't be uniquely determined.
- <u>Linear transformation L</u>: $b'_i = L_{ij}b_j$. If L commutes with the Γ matrices that are related to the measured observables, i.e.,

$$\tilde{\Gamma}^{\alpha}L = L\tilde{\Gamma}^{\alpha},$$

then the observables will remain unchanged under this transformation.

• Antilinear transformation A : $b'_i = A_{ij}B^*_j$. If A satisfies $(A^{\dagger}\tilde{\Gamma}^{\alpha}A)^T = \tilde{\Gamma}^{\alpha}$

hen the observables will remain unchanged under this transformation.

Discrete ambiguities -

- ♦ This paper assumes that we always measure the 4 S type observables, $(I(\theta), \Sigma, T, P)$. They are also labelled as $(\Omega^1, \Omega^4, \Omega^{10}, \Omega^{12})$. $\Omega^m = b_i^* \tilde{\Gamma}^m_{ij} b_j, m = 1, 4, 10, 12$
- ◊ Then, if there exists any linear or antilinear transformation such that these observables remain invariant under the transformation, then the amplitudes can't be uniquely determined.
- <u>Linear transformation L</u>: $b'_i = L_{ij}b_j$. If L commutes with the Γ matrices that are related to the measured observables, i.e.,

$$\tilde{\Gamma}^{\alpha}L = L\tilde{\Gamma}^{\alpha},$$

then the observables will remain unchanged under this transformation.

• <u>Antilinear transformation A</u>: $b'_i = A_{ij}B^*_j$. If A satisfies $(A^{\dagger}\tilde{\Gamma}^{\alpha}A)^T = \tilde{\Gamma}^{\alpha}$

then the observables will remain unchanged under this transformation.

Discrete ambiguities example -

- ♦ Assume that we measure (G, F) (BT type), (O_z, C_x) (BR type) and T_x (TR type) on top of the 4 S type measurements.
- In this case, there exists a transformation, $b'_i = \tilde{\Gamma}^6_{ij} b^*_j$, $b'^*_i = b_j \tilde{\Gamma}^{6*}_{ij}$ such that the above mentioned 9 observables remain unchanged. For instance,

 $G = \frac{1}{2} b_i^* \Gamma_{ij}^* b_j$ = $\frac{1}{2} b_m \tilde{\Gamma}_{im}^{6*} \tilde{\Gamma}_{ij}^3 \tilde{\Gamma}_{jk}^6 b_k^*$ = $\frac{1}{2} b_m (\tilde{\Gamma}^{6\dagger} \tilde{\Gamma}^3 \tilde{\Gamma}^6)_{km}^T b_k^*$ Since $(\tilde{\Gamma}^{6\dagger} \tilde{\Gamma}^3 \tilde{\Gamma}^6)^T = \tilde{\Gamma}^3$, Antilinear transformation therefore, $G = \frac{1}{2} b_i^* \tilde{\Gamma}_{ij}^3 b_j$

i.e., both b'_i and b_i solutions for the transversity amplitudes give the same observable G. The same is true for F, O_z, C_x, T_x , leading to an ambiguity.

• Note : the BDS rule is proved wrong here !

Discrete ambiguities example -

- ♦ Assume that we measure (G, F) (BT type), (O_z, C_x) (BR type) and T_x (TR type) on top of the 4 S type measurements.
- In this case, there exists a transformation, $b'_i = \tilde{\Gamma}^6_{ij}b^*_j$, $b'^*_i = b_j\tilde{\Gamma}^{6*}_{ij}$ such that the above mentioned 9 observables remain unchanged. For instance,

 $G = \frac{1}{2} b'_{i}^{*} \tilde{\Gamma_{ij}}^{3} b'_{j}$ = $\frac{1}{2} b_m \tilde{\Gamma}^{6*}_{im} \tilde{\Gamma}^{3}_{ij} \tilde{\Gamma}^{6}_{jk} b^{*}_{k}$ = $\frac{1}{2} b_m (\tilde{\Gamma}^{6\dagger} \tilde{\Gamma}^{3} \tilde{\Gamma}^{6})^{T}_{km} b^{*}_{k}$ Since $(\tilde{\Gamma}^{6\dagger} \tilde{\Gamma}^{3} \tilde{\Gamma}^{6})^{T} = \tilde{\Gamma}^{3}$, Antilinear transformation therefore, $G = \frac{1}{2} b^{*}_{i} \tilde{\Gamma}^{3}_{ij} b_{j}$

i.e., both b'_i and b_i solutions for the transversity amplitudes give the same observable G. The same is true for F, O_z, C_x, T_x , leading to an ambiguity.

• Note : the BDS rule is proved wrong here !

(日)

Discrete ambiguities example -

- ♦ Assume that we measure (G, F) (BT type), (O_z, C_x) (BR type) and T_x (TR type) on top of the 4 S type measurements.
- In this case, there exists a transformation, $b'_i = \tilde{\Gamma}^6_{ij}b^*_j$, $b'^*_i = b_j\tilde{\Gamma}^{6*}_{ij}$ such that the above mentioned 9 observables remain unchanged. For instance,

 $G = \frac{1}{2} b'^{*}_{i} \tilde{\Gamma_{ij}}^{3} b'_{j}$ = $\frac{1}{2} b_m \tilde{\Gamma}^{6*}_{im} \tilde{\Gamma}^{3}_{ij} \tilde{\Gamma}^{6}_{jk} b^{*}_{k}$ = $\frac{1}{2} b_m (\tilde{\Gamma}^{6\dagger} \tilde{\Gamma}^{3} \tilde{\Gamma}^{6})^{T}_{km} b^{*}_{k}$ Since $(\tilde{\Gamma}^{6\dagger} \tilde{\Gamma}^{3} \tilde{\Gamma}^{6})^{T} = \tilde{\Gamma}^{3}$, Antilinear transformation therefore, $G = \frac{1}{2} b^{*}_{i} \tilde{\Gamma}^{3}_{ij} b_{j}$

i.e., both b'_i and b_i solutions for the transversity amplitudes give the same observable G. The same is true for F, O_z, C_x, T_x , leading to an ambiguity.

• Note : the BDS rule is proved wrong here !

< ロ > < 同 > < 回 > < 回 > .

Sets of Observables that Resolve all Ambiguities

- ◊ The authors believe that all other transformations can be constructed from the L and A transformations that they have discussed in the paper.
- Based on the L and A transformations discussed in the paper, they claim that 8 carefully chosen observables resolve all ambiguities. See "observables.pdf" for that.

Sets of Observables that Resolve all Ambiguities

- ◊ The authors believe that all other transformations can be constructed from the L and A transformations that they have discussed in the paper.
- Based on the L and A transformations discussed in the paper, they claim that 8 carefully chosen observables resolve all ambiguities. See "observables.pdf" for that.

Introduction Amplitudes and Ambiguities Fun Facts

Image: A matrix of the second seco

3 > < 3

- \diamond The Γ matrices corresponding to the 4 S-type measurements are diagonal. Hence, these measurements are functions of the magnitudes of the amplitudes only.
- Fierz relations they are a convenient tool to give relations and bounds on observables. Some interesting facts that they show are -
- If we know the 4 S-type observables and 3 double-spin observables from any one set (BT, BR or TR) then the 4th observable in that set is redundant and can be calculated from them.
- The Fierz relations also show that the magnitude of the single spin observables (Σ, T, P) should be ≤ 1.0.

- The Γ matrices corresponding to the 4 S-type measurements are diagonal. Hence, these measurements are functions of the magnitudes of the amplitudes only.
- Fierz relations they are a convenient tool to give relations and bounds on observables. Some interesting facts that they show are -
- If we know the 4 S-type observables and 3 double-spin observables from any one set (BT, BR or TR) then the 4th observable in that set is redundant and can be calculated from them.
- The Fierz relations also show that the magnitude of the single spin observables (Σ, T, P) should be ≤ 1.0.

- The Γ matrices corresponding to the 4 S-type measurements are diagonal. Hence, these measurements are functions of the magnitudes of the amplitudes only.
- Fierz relations they are a convenient tool to give relations and bounds on observables. Some interesting facts that they show are -
- If we know the 4 S-type observables and 3 double-spin observables from any one set (BT, BR or TR) then the 4th observable in that set is redundant and can be calculated from them.
- The Fierz relations also show that the magnitude of the single spin observables (Σ, T, P) should be ≤ 1.0 .

- The Γ matrices corresponding to the 4 S-type measurements are diagonal. Hence, these measurements are functions of the magnitudes of the amplitudes only.
- Fierz relations they are a convenient tool to give relations and bounds on observables. Some interesting facts that they show are -
- If we know the 4 S-type observables and 3 double-spin observables from any one set (BT, BR or TR) then the 4th observable in that set is redundant and can be calculated from them.
- The Fierz relations also show that the magnitude of the single spin observables (Σ, T, P) should be ≤ 1.0 .