Spin and Parity Measurement of $\Lambda(1405)$ Baryon -Review of a CLAS Publication

Priyashree Roy FSU Weekly Group Meeting

Weekly Group Meeting

08/18/2014

Outline

- 2 Basic Principles
- 3 Experimental Setup and Analysis

イロト イ理ト イヨト イヨ

Introduction

Paper reference - K. Moriya *et al.*, PRL 112, 082004 (2014). Note : selected as a PRL "Editor's Suggestion"

The $\Lambda(1405)$ baryon -

- $\diamond~$ The first excited state of the family of Λ hyperons (baryons with 1 s quark.)
- ♦ Elusive nature 3 quark state or hybrid ?
- ♦ Theories that predict the nature of this hyperon assume that it has $J^P = \frac{1}{2}^-$, based on quark model. But at least one model predicts "+" parity.
- ♦ Spin and parity of this hyperon have never been studied in the past due to experimental challenges like hard to create it(since mass < $N\overline{K}$), and it must be produced spin polarized.

Outline

3 Experimental Setup and Analysis

イロト イ理ト イヨト イヨ

Determining Spin (J) and Parity (P)

 $\gamma p \to K^+\Lambda, \Lambda \to \Sigma^+\pi^- \to p\pi^0\pi^-$

Spin determination-

- $\diamond~$ The decay angular distribution of $\Sigma^+\pi^-$ is solely dependent on J.
- For spin $\frac{1}{2}$, the decay will be isotropic. But it can also be isotropic if Λ is unpolarized. Hence, polarization of Λ is essential.

Parity determination-

- ♦ If $J=\frac{1}{2}$ then, for unpol. beam-target, pol. \overrightarrow{P} of Λ is restricted to be out of the production plane.

Outline

Experimental Setup and Analysis

4 Result

Image: A matrix and a matrix

3 > < 3

Experimental Setup and Analysis

Run group - CLAS run g11a with unpolarized photon beam, target at JLab.

Kinematic range chosen for dominant $\Sigma^+\pi^-$ decay: 2.55 < W < 2.85 GeV, 0.6< $\cos(\theta)_{c.m.}^{K^+}$ <0.9

 \overrightarrow{Q} determined from weak decay asymmetry in the decay $\Sigma^+
ightarrow p \pi^0$

No event-based background separation. Applied a $\Sigma^+\pi^-$ mass cut of 1.30 - 1.45 GeV, where the spectrum is dominated by $\Lambda(1405)$. Estimated background ~ 16%

Analysis

Here, $\cos(\theta_{\Sigma^+})$ is the polar angle of Σ^+ in the Λ rest frame. Z axis - normal to the production plane.

- ♦ For $J = \frac{1}{2}$, the above angular distribution should be isotropic, given Λ was polarized.
- ◊ For higher J, the distribution will be anisotropic.
- To account for angular variation due to CLAS acceptance, the data was fitted with Monte Carlo which also included the angular distribution for various spin hypothesis.
- $\diamond~$ Unweighted MC polarization of Σ^+ not considered.
- ◇ Result good agreement between data and MC for J=1/2[™] → 4[™] → 4[™]

Analysis

Here, $\cos(\theta_p)$ is the polar angle of p in the Σ^+ rest frame. Z axis - direction of Λ 's polarization.

Parity determination-

- $\diamond \ I(\theta_p) \propto (1 + Q_z cos(\theta_p)).$
- $\diamond~$ So, fitting the data with unweighted MC (i.e. not weighting it with $Q_z)$ didn't work well.
- ♦ Fitting the data with weighted MC gave us Q_z for each $cos(\theta_{\Sigma^+})$ bin.

Analysis

Parity determination(continued ..)-

- $\diamond \ Q_z$ turned out to be independent of the decay polar angle $heta_{\Sigma^+}$
- ♦ Result: P = -1. $J^P = \frac{1}{2}^+$ and $\frac{3}{2}^-$ were excluded.

(日)

Outline

2 Basic Principles

3 Experimental Setup and Analysis

イロト イ押ト イヨト イヨト

Result

$$J^P$$
 of $\Lambda(1405) = \frac{1}{2}^-$ was confirmed.

A by-product of this analysis was getting the Λ polarization, since $P = Q_z$ for $J^P = \frac{1}{2}$. It came out to be 45%.

イロト イ押ト イヨト イヨト