Baryon Spectroscopy: Polarization Observables in Vector-Meson Photoproduction at JLab

Priyashree Roy

Florida State University

STATE OF THE STATE

Nuclear Physics Seminar

11/20/2015

Outline

1 Introduction

- Motivation
- Polarization Observables
- The FROST Experiment using CLAS

2 Data Selection and Analysis

- Results
- $p\omega$ Reaction, Single Polarization Observables
- $p\pi^+\pi^-$ Reaction, Single Polarization Observables

3 Summary and Outlook

A (10) < A (10) </p>

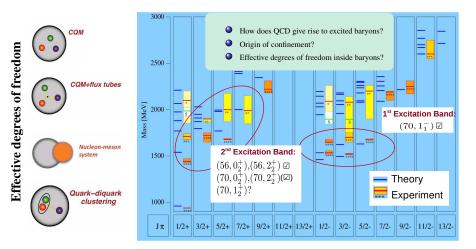
Motivation Polarization Observables The FROST Experiment using CLAS

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Motivation
- Polarization Observables
- The FROST Experiment using CLAS


Data Selection and Analysis

- Results
- $p\omega$ Reaction, Single Polarization Observables
- $p\pi^+\pi^-$ Reaction, Single Polarization Observables

3 Summary and Outlook

Motivation Polarization Observables The FROST Experiment using CLAS

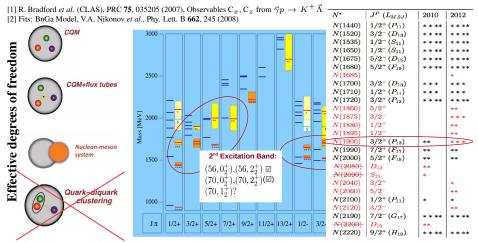
Why Baryon Spectroscopy?

S. Capstick and N. Isgur, Phys. Rev. D 34 (1986) 2809

・ロト ・ 同ト ・ ヨト ・

Motivation Polarization Observables The FROST Experiment using CLAS

Why Baryon Spectroscopy?


[1] R. Bradford <i>et al.</i> (CLAS), PRC 75 , 035205 (2007), Observables C_x , C_z from $\vec{\gamma}_P \rightarrow K^+$ [2] Fits: BnGa Model, V.A. Nikonov <i>et al.</i> , Phy. Lett. B 662 , 245 (2008)	Λ <u></u>	$ J^{I}$
	N(1440)	1/
C_{x} , C_{z} Fits without N(1900)3/2 ⁺ resonance	N(1520)	3/
C_x, C_z This without $N(1900)5/2$ Tesofiance	N(1535)	1/
	N(1650)	1/
	N(1675)	5/
└└────└└─────└└──────────────────────	N(1680)	5/
	N(1685)	
	N(1700)	3/
	N(1710)	1/
	N(1720)	3/
	N(1860)	5/
	N(1875)	3/
cosθ _κ	N(1880)	1/
COSO _K	N(1895)	1/
2 D Pottor Fit Popults with $N(1000)^2/2^{\pm}$	(N(1900))	3/
C_{v}, C_{z} Better Fit Results with N(1900)3/2 ⁺ !	N(1990)	7/
	N(2000)	5/
	N(2080)	D
	-N(2090)	S_1
- \````\$`\$` ¥`∃` {`````\$`\$` ``	N(2040)	3/
	N(2060)	5/
	N(2100)	1/
	N(2120)	3/
	N(2190)	7/
	N(2200)	D
cosθ _k	N(2220)	9/

	N^*	$J^{P}(L_{2I,2J})$	2010	2012
	N(1440)	$1/2^+(P_{11})$	* * **	* * **
	N(1520)	$3/2^{-}(D_{13})$	* * **	* * **
	N(1535)	$1/2^{-}(S_{11})$	* * **	* * **
	N(1650)	$1/2^{-}(S_{11})$	* * **	****
	N(1675)	$5/2^{-}(D_{15})$	****	****
	N(1680)	$5/2^{+}(F_{15})$	* * **	* * **
	N(1685)			*
	N(1700)	$3/2^{-}(D_{13})$	***	***
	N(1710)	$1/2^+(P_{11})$	***	***
	N(1720)	$3/2^+(P_{13})$	* * **	* * **
	N(1860)	$5/2^{+}$		**
	N(1875)	$3/2^{-}$		***
	N(1880)	$1/2^+$		**
	N(1895)	$1/2^{-}$		**
<	N(1900)	$3/2^+(P_{13})$	**	***
	N(1990)	$7/2^+ (F_{17})$	**	**
	N(2000)	$5/2^+(F_{15})$	**	**
	N(2080)	D_{13}	**	
	-N(2090)	S_{11}	*	
	N(2040)	$3/2^+$		*
	N(2060)	$5/2^{-}$		**
	N(2100)	$1/2^{+}(P_{11})$	*	*
	N(2120)	$3/2^{-}$		**
	N(2190)	$7/2^{-}(G_{17})$	* * **	****
	-N(2200)	D_{15}	**	
	N(2220)	$9/2^+(H_{19})$	* * **	* * **

イロト イ理ト イヨト イヨト

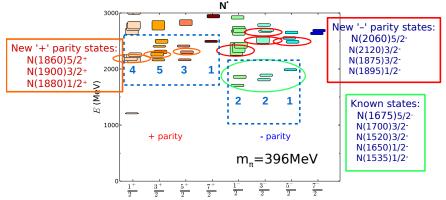
Motivation Polarization Observables The FROST Experiment using CLAS


Why Baryon Spectroscopy?

 $N(1900)3/2^+$ cannot be accommodated in the naive quark-diquark picture, both oscillators need to be excited.^{[1],[2]}

Motivation Polarization Observables The FROST Experiment using CLAS

Baryon Spectrum with LQCD


- - - LQCD manifests broad features of $SU(6) \otimes O(3)$ symmetry. New states accommodated in LQCD calculations (ignoring mass scale) with J^P values consistent with CQM.

・ロト ・ 同ト ・ ヨト ・

Motivation Polarization Observables The FROST Experiment using CLAS

Baryon Spectrum with LQCD

More predicted states than experimentally observed. Lot more yet to be learnt!

- - - LQCD manifests broad features of $SU(6) \otimes O(3)$ symmetry. New states accommodated in LQCD calculations (ignoring mass scale) with J^P values consistent with CQM.

Motivation

Study of N^* to Vector Meson Decay Modes

Vector meson decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

Particle J^P	overal	Statu l πN	γN	$N\eta$	Νσ	$N\omega$	ΛK	ΣK	Νρ	$\Delta \pi$
N(1700) 3/2 ⁻	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060) 5/2^{-}$	**	**	**	*				**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^{-}$	**	**	**				**			**
$N(2190) 7/2^{-}$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^{-}$	****	****								
$N(2600) 11/2^{-1}$	***	***								
$N(2700) 13/2^+$	**	**								

Particle Data Group 2014

(日)

Motivation

Study of N^* to Vector Meson Decay Modes

Vector meson decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- Baryon spectrum is inadequately understood ۲ particularly at W > 1.7 GeV where vector mesons and multi-pion final states are the dominant contributors to the photoproduction cross section.

р		Statu								
Particle J^P	overa	$11 \pi N$	γN	$N\eta$	Νσ	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$N(1700) 3/2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060) 5/2^{-}$	**	**	**	*				**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^{-}$	**	**	**				**			**
$N(2190) 7/2^{-}$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^{-}$	****	****								
$N(2600) 11/2^{-}$	***	***								
$N(2700) 13/2^+$	**	**								

Particle Data Group 2014

(日)

Motivation

Study of N^* to Vector Meson Decay Modes

Vector meson decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- Baryon spectrum is inadequately understood ۲ particularly at W > 1.7 GeV where vector mesons and multi-pion final states are the dominant contributors to the photoproduction cross section.
- For a better understanding of known resonances, it is essential to study their vector meson decay modes.

D		Statu								1
Particle J^P	overa	$11 \pi N$	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	Nρ	$\Delta \pi$
$N(1700) 3/2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060) 5/2^{-}$	**	**	**	*				**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^{-}$	**	**	**				**			**
$N(2190) 7/2^{-}$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^{-}$	****	****								
$N(2600) 11/2^{-}$	***	***								
$N(2700) 13/2^+$	**	**								
						1				1

Particle Data Group 2014

(日)

Motivation

Study of N^* to Vector Meson Decay Modes

Vector meson decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- Baryon spectrum is inadequately understood particularly at W > 1.7 GeV where vector mesons and multi-pion final states are the dominant contributors to the photoproduction cross section.
- For a better understanding of known resonances, it is essential to study their vector meson decay modes.
- This talk will focus on $\gamma p \rightarrow p\omega \rightarrow p\pi^+\pi^-(\pi^0)$ and $\gamma p \rightarrow p\pi^+\pi^$ reactions. The latter will give information on $N^* \rightarrow p\rho$ decay mode.

P		Statu								
Particle J^P	overa	$11 \pi N$	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$N(1700) 3/2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060) 5/2^{-}$	**	**	**	*				**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^{-}$	**	**	**				**			**
$N(2190) 7/2^{-}$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^{-}$	****	****								
$N(2600) 11/2^{-}$	***	***								
$N(2700) 13/2^+$	**	**								
. , ,										

Particle Data Group 2014

(日)

Motivation Polarization Observables The FROST Experiment using CLAS

Why are Spin Observables Important?

Without Polarizer

With Polarizer

Motivation Polarization Observables The FROST Experiment using CLAS

Why are Spin Observables Important?

Without Polarizer

With Polarizer

(日)

Polarization observables essential for determination of scattering amplitudes with minimal ambiguities \rightarrow reveal 'hidden' baryon resonances.

Motivation Polarization Observables The FROST Experiment using CLAS

Why are Spin Observables Important?

Without Polarizer

With Polarizer

E.g.,

$$\sigma_{\text{total}} = \sigma_{\text{unpol.}} [1 - \delta_l \sum \cos(2\phi) + \Lambda_x (-\delta_l \mathbf{H} \sin(2\phi) + \delta_{\odot} \mathbf{F}) - \Lambda_y (-\mathbf{T} + \delta_l \mathbf{P} \cos(2\phi)) - \Lambda_z (-\delta_l \mathbf{G} \sin(2\phi) + \delta_{\odot} \mathbf{E}) + \dots]$$

 $\delta_{\odot}(\delta_l)$: degree of beam pol. Λ : degree of target pol.

Motivation Polarization Observables The FROST Experiment using CLAS

Why are Spin Observables Important?

[1] R. Bradford <i>et al.</i> (CLAS), PRC 75 , 035205 (2007), Observables C_x, C_z from $\vec{\gamma}p \rightarrow K^+ \vec{\Lambda}$			
[2] Fits: BnGa Model, V.A. Nikonov <i>et al.</i> , Phy. Lett. B 662 , 245 (2008)	N^*	$J^P \left(L_{2I,2J} \right)$	2010
	N(1440)	$1/2^+(P_{11})$	* * **
C ₂ , C ₂ Fits without $N(1900)3/2^+$ resonance	N(1520)	$3/2^{-}\left(D_{13} ight)$	* * **
	N(1535)	$1/2^{-}(S_{11})$	* * **
	N(1650)	$1/2^{-}(S_{11})$	* * **
	N(1675)	$5/2^{-}(D_{15})$	* * **
	N(1680)	$5/2^{+}(F_{15})$	* * **
	N(1685)	a (a= (D)	
	N(1700) N(1710)	$3/2^{-}(D_{13})$	***
│ │ <u>│ </u>	N(1710) N(1720)	$1/2^+ (P_{11}) \ 3/2^+ (P_{13})$	***
	N(1720) N(1860)	$5/2^+$ (1 13) $5/2^+$	****
	N(1800) N(1875)	3/2-	
2220	N(1870) N(1880)	$1/2^+$	
cosθ			
K	N(1895)	1/2=	1
ĸ	N(1895) N(1900)	$\frac{1/2^{-}}{3/2^{+}(P_{13})}$	**
ĸ		$3/2^+(P_{13})$	**
ĸ	N(1900)	$3/2^+ (P_{13})$ $7/2^+ (F_{17})$	
ĸ	N(1900) N(1990)	$3/2^+(P_{13})$	**
$\frac{c_{x}, c_{z}}{1 \left[\frac{1}{5} - \frac{5}{5} - \frac{5}{2} \right] \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{2} \frac{1}{5} \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{5} \frac{1}{5} $	N(1900) = N(1990) = N(2000)	$3/2^+ (P_{13}) = 7/2^+ (F_{17}) = 5/2^+ (F_{15})$	**
ĸ	$\frac{N(1900)}{N(1990)}$ $\frac{N(2000)}{N(2080)}$	$\begin{array}{c} 3/2^+ \left(P_{13} \right) \\ 7/2^+ \left(F_{17} \right) \\ 5/2^+ \left(F_{15} \right) \\ D_{13} \end{array}$	**
$\frac{c_{x}, c_{z}}{1 \left[\frac{1}{5} - \frac{5}{5} - \frac{5}{2} \right] \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{2} \frac{1}{5} \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{5} \frac{1}{5} $	$\frac{N(1900)}{N(1990)}$ $\frac{N(2000)}{N(2080)}$ $\frac{N(2080)}{N(2090)}$	$\begin{array}{c} 3/2^+ \left(P_{13} \right) \\ 7/2^+ \left(F_{17} \right) \\ 5/2^+ \left(F_{15} \right) \\ D_{13} \\ S_{11} \end{array}$	**
$\frac{c_{x}, c_{z}}{1 \left[\frac{1}{5} - \frac{5}{5} - \frac{5}{2} \right] \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{2} \frac{1}{5} \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{5} \frac{1}{5} $	$\frac{N(1900)}{N(1990)}$ $\frac{N(2000)}{N(2080)}$ $\frac{N(2090)}{N(2090)}$ $N(2040)$	$\begin{array}{c} 3/2^+ \left(P_{13} \right) \\ 7/2^+ \left(F_{17} \right) \\ 5/2^+ \left(F_{15} \right) \\ D_{13} \\ S_{11} \\ 3/2^+ \end{array}$	**
$C_{x}, C_{z} \text{Better Fit Results with N(1900)3/2+!}$ $1 \begin{array}{c} c_{x}, c_{z} \text{Better Fit Results with N(1900)3/2+!} \\ \hline \phi_{x}, \phi_{z} $	N(1900) N(1990) N(2000) N(2080) N(2080) N(2040) N(2040) N(2060) N(2100) N(2120)	$\begin{array}{c} 3/2^+ (P_{13}) \\ 7/2^+ (F_{17}) \\ 5/2^+ (F_{15}) \\ D_{13} \\ S_{11} \\ 3/2^+ \\ 5/2^- \\ 1/2^+ (P_{11}) \\ 3/2^- \end{array}$	**
$\frac{c_{x}, c_{z}}{1 \left[\frac{1}{5} - \frac{5}{5} - \frac{5}{2} \right] \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{2} \frac{1}{5} \frac{1}{5} \frac{1}{5} - \frac{5}{5} - \frac{5}{5} \frac{1}{5} $	N(1900) N(1990) N(2000) N(2080) N(2080) N(2040) N(2040) N(2060) N(2100) N(2120) N(2190)	$\begin{array}{c} 3/2^+ (P_{13}) \\ 7/2^+ (F_{17}) \\ 5/2^+ (F_{15}) \\ D_{13} \\ S_{11} \\ 3/2^+ \\ 5/2^- \\ 1/2^+ (P_{11}) \end{array}$	**
$C_{x}, C_{z} \text{Better Fit Results with N(1900)3/2+!}$ $1 \begin{array}{c} c_{x}, c_{z} \text{Better Fit Results with N(1900)3/2+!} \\ \hline \phi_{x}, \phi_{z} $	N(1900) N(1990) N(2000) N(2080) N(2080) N(2040) N(2040) N(2060) N(2100) N(2120)	$\begin{array}{c} 3/2^+ (P_{13}) \\ 7/2^+ (F_{17}) \\ 5/2^+ (F_{15}) \\ D_{13} \\ S_{11} \\ 3/2^+ \\ 5/2^- \\ 1/2^+ (P_{11}) \\ 3/2^- \end{array}$	**

2012

** ****

* * * *

* * *

* * * ** **

* * *

**

**

*

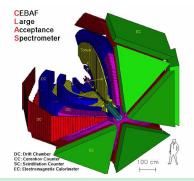
*

*

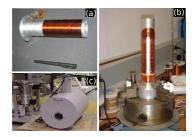
Motivation Polarization Observables The FROST Experiment using CLAS

Spin Observables for $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^- \& p\omega$ @ CLAS

FROST experiment using CLAS, JLab


World-wide effort to extract polarization observables in photoproduction reactions: CLAS @ JLab (U.S.), ELSA, MAMI (Germany), SPring-8 (Japan), GRAAL (France)

	Beam Target	Transversely Pol.	Longitudinally Pol.
<i>m</i> / 1	Linearly Pol.	Σ, Τ, Η, Ρ	Σ, G
$p\omega$:	Circularly Pol.	F , T	E
FSU)	Beam	Transversely Pol.	Longitudinally Pol.
$\pi^+\pi^-$:	Linearly Pol.	$P^{\mathrm{s,c}}_{\mathrm{x,y}},P_{\mathrm{x,y}},I^{\mathrm{s,c}}$	$P_z^{s,c}$, P_z , $I^{s,c}$
/1 /1 •	Circularly Pol.	$P_{x,y}^\circ,P_{x,y}^\circ,I^\circ$	$\mathbf{P}_{\mathbf{z}}^{\circ}, \mathbf{P}_{\mathbf{z}}, \mathbf{I}^{\circ}$


Prelim. results (Priyashree, FSU) Prelim. results available Data acquired $p\pi^+\pi^-$

Motivation Polarization Observables The FROST Experiment using CLAS

The FROST Experiment using CLAS at JLab

g9a run (Oct 2007 to Jan 2008) Photon pol.: Linear/Circular **Target:** Frozen Spin Butanol **Target pol.:** Longitudinal

W range covered \sim 1.5 to 2.3 GeV

g9b run (Mar to Aug, 2010) Photon pol.: Linear/Circular **Target:** Frozen Spin Butanol **Target pol.:** Transverse

Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Motivation
- Polarization Observables
- The FROST Experiment using CLAS

2 Data Selection and Analysis

- Results
- $p\omega$ Reaction, Single Polarization Observables
- $p\pi^+\pi^-$ Reaction, Single Polarization Observables

3 Summary and Outlook

Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

Data Selection and Analysis

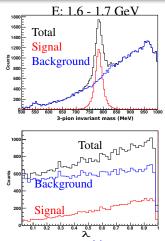
• Topologies for $p\pi^+\pi^-$:

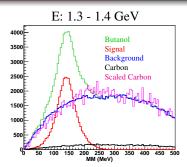
 $\vec{\gamma}\vec{p} \rightarrow p\pi^+ \text{ (missing }\pi^-)$ $\vec{\gamma}\vec{p} \rightarrow p\pi^- \text{ (missing }\pi^+)$ $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$ The observables are weighted avg. over topologies.

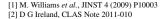
• Topology for $p\omega$:

 $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$ (missing π^0) Kinematic fitting was utilized to identify this topology.

Cuts and corrections:


- Vertex cut
- Particle id.: β cut
- Photon selection: cuts on accidentals and timing cut
- Eloss^[1] & momentum corrections^[2].


E. Pasyuk, CLAS-NOTE 2007-016
 M. Dugger *et. al.* CLAS-NOTE 2013-011


Results

 $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

Data Selection and Analysis

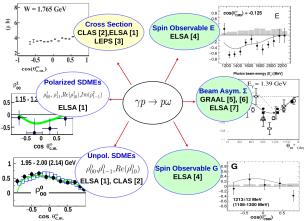
- Event-based method^[1] for signal-background separation.
- Event-based Maximum Likelihood Method for extracting polarization observables^[2]

Results

 $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

イロト イポト イヨト イヨト

Results


Results in $\vec{\gamma}\vec{p} \rightarrow p\omega$

Results

 $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

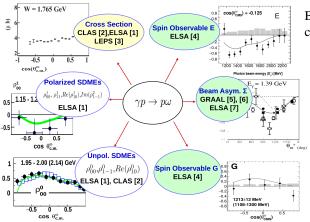
Published Results in $\gamma p \rightarrow p\omega$

Isospin filter (sensitive to N^* only), reduces complexity

PWA solution:

BnGa PWA results from ELSA^[1] consistent with CLAS^[2].

 $\begin{array}{c} N(1720)3/2^+,\\ N(2120)3/2^-,\\ N(1875)3/2^-,\\ N(2000)5/2^+,\\ N(>\!2.1 {\rm GeV})7/2^-? \end{array}$


Wilson et al., arXiv:1508.01483 (2015)
 Williams et al., PRC 80, 065208 (2009)
 Sumiham et al., PRC 80, 052201 (2009)
 Eberhardt et al., arXiv:1504.02221 (2015)
 Vegna et al., PRC 91, 065207 (2015)
 Ajaka et al., PRL 96, 132003 (2006)
 F. Klein et al., PRD 78, 117101 (2008)

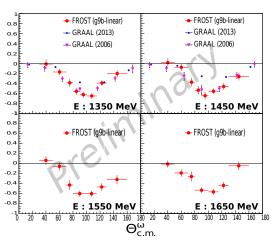
Results

 $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

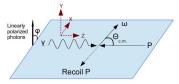
Published Results in $\gamma p \rightarrow p \omega$

Isospin filter (sensitive to N^* only), reduces complexity

PWA solution:


BnGa PWA results from ELSA^[1] consistent with CLAS^[2].

 $N(1720)3/2^+,$ $N(2120)3/2^-,$ $N(1875)3/2^-,$ $N(2000)5/2^+,$ $N(>2.1 \text{GeV})7/2^-?$

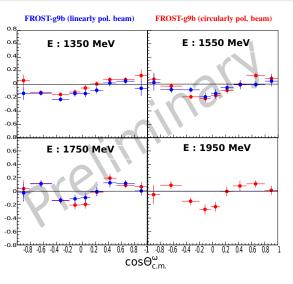

Ambiguity in $J^P \sim 2.2$ GeV $1/2^-$, $1/2^+$, $3/2^+$ or $5/2^+$ give comparable data descriptions. Polarization observables required !

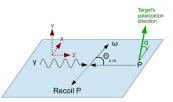
Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

Beam Asymmetry Σ in $\vec{\gamma}p \rightarrow p\omega$

FROST: transversely polarized target GRAAL: unpolarized target. Good agreement between FROST and GRAAL (2006) results.

 ω reconstructed from $\pi^+\pi^-(\pi^0)$


$$\begin{split} \mathbf{I} &= \mathbf{I}_0 [1 - \boldsymbol{\Sigma} \, \delta_l \mathrm{cos}(2\phi) \\ &+ \Lambda \mathrm{cos}(\alpha) (-\delta_l \mathbf{H} \mathrm{sin}(2\phi) + \delta_\odot \mathbf{F}) \\ &- \Lambda \mathrm{sin}(\alpha) (-\mathbf{T} + \delta_l \mathbf{P} \mathrm{cos}(2\phi)] \end{split}$$


 $\delta_{\odot}(\delta_l)$: degree of beam pol. Λ : degree of target pol.

イロト イ理ト イヨト イヨト

Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

First Measurement of Target Asymmetry T in $\gamma \vec{p} \rightarrow p\omega$

The two experimental results agree well.

$$\begin{split} \mathbf{I} &= \mathbf{I}_0 [1 - \boldsymbol{\Sigma} \, \delta_l \cos(2\phi) \\ &+ \Lambda \cos(\alpha) (-\delta_l \mathbf{H} \sin(2\phi) + \delta_{\odot} \mathbf{F}) \\ &- \Lambda \sin(\alpha) (-\mathbf{T} + \delta_l \mathbf{P} \cos 2\phi)] \end{split}$$

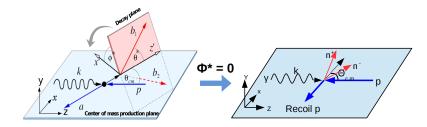
 $\delta_{\odot}(\delta_l)$: degree of beam pol. Λ : degree of target pol.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

イロト イポト イヨト イヨト

Results


Results in $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$

Priyashree Roy, Florida State University Nuclear Physics Seminar, Nov 20, 2015

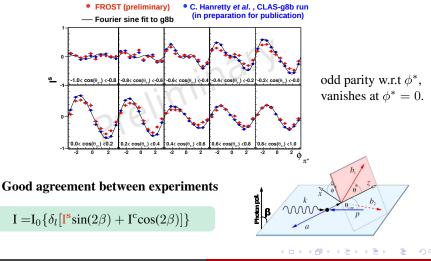
Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

Beam Asymmetries in $\vec{\gamma}p \rightarrow p\pi^+\pi^-$

 $\mathbf{I} = \mathbf{I}_0 \{ \delta_l [\mathbf{I}^{\mathbf{s}} \sin(2\beta) + \mathbf{I}^{\mathbf{c}} \cos(2\beta)] \}$

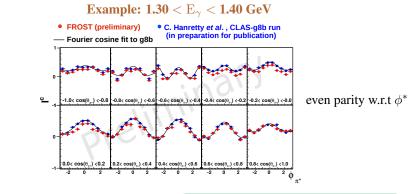
2 beam asymmetry observables: I^s, I^c

I^s vanishes, I^c survives.


W. Roberts et al., Phys. Rev. C 71, 055201 (2005)

・ロト ・ 同ト ・ ヨト ・

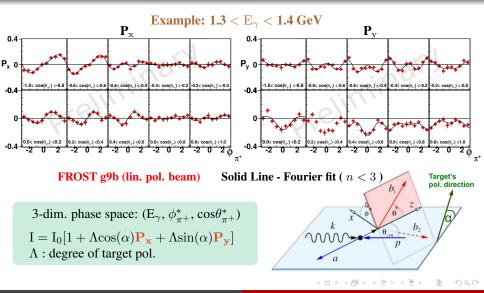
Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables


Beam Asymmetry I^s in $\vec{\gamma}p \rightarrow p\pi^+\pi^-$

Example: 1.30 $< E_{\gamma} <$ 1.40 GeV (Total E_{γ} range covered: 0.7 - 2.1 GeV)

Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

Beam Asymmetry I^c in $\vec{\gamma}p \rightarrow p\pi^+\pi^-$


Good agreement between experiments

 $\mathbf{I} = \mathbf{I}_0 \{ \delta_l [\mathbf{I}^{\mathrm{s}} \sin(2\beta) + \mathbf{I}^{\mathrm{c}} \cos(2\beta)] \}$

イロト イ理ト イヨト イヨト

Results $p\omega$ Reaction, Single Polarization Observables $p\pi^+\pi^-$ Reaction, Single Polarization Observables

First Measurements of Target Asym. $P_{x,y}$ in $\gamma \vec{p} \rightarrow p \pi^+ \pi^-$

Outline

Introduction

- Motivation
- Polarization Observables
- The FROST Experiment using CLAS

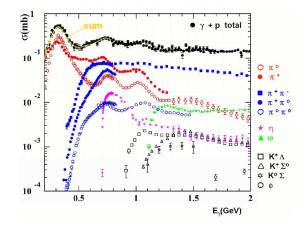
Data Selection and Analysis

- Results
- $p\omega$ Reaction, Single Polarization Observables
- $p\pi^+\pi^-$ Reaction, Single Polarization Observables

3 Summary and Outlook

Summary and Outlook

- Photoproduction of vector mesons and multi-pion final states: essential to discover new resonances and better understand the known resonances. These decay modes have mostly remained unexplored in the past.
- Many first time measurements of single- and double-polarization observables from CLAS for $\vec{\gamma}\vec{p} \rightarrow p\omega$ and $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$: they will significantly augment the world database of polarization observables in photoproduction.
- The new high quality CLAS results are expected to put tight constraints on data interpretation tools, immensely aiding in determining contributing N* with minimal ambiguities.
- Advancement in our understanding of the systematics of the baryon spectrum, together with the findings from meson spectroscopy experiments (GlueX, PANDA, BES III etc.), will help us understand QCD and confinement.


< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This work is supported by DOE# DE-FG02-92ER40735

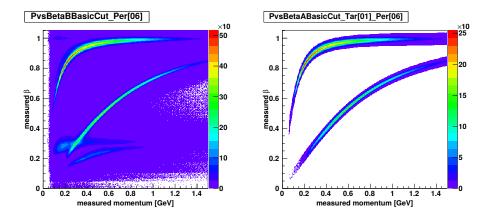
Thank You ! Any Questions ?


Photoproduction Cross Section

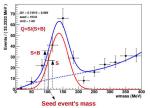
< □ > < 同 >

18/18

Vertex cut



(日)


18/18

-

β cut

Event-Based Qfactor Method with Likelihood Fits

• A multivariate analysis - For each event ("seed event"), find N nearest neighbors in 4-D kinematic phase space $(E_{\gamma}, \theta^*, \phi^*, \cos(\theta_p)^{c.m.})$. Plot mass distribution of the N + 1 events and fit.

• Since N is small (300), use ML method to fit the mass distribution. $L = \prod_{i} [f^{Signal}(m_{i}, \alpha) + f^{Bkg}(m_{i}, \beta)]$ $Q_{\text{seed-event}} = \frac{f^{Signal}(m_{0}, \alpha^{best})}{[f^{Signal}(m_{0}, \alpha^{best}) + f^{Bkg}(m_{0}, \beta^{best})]},$ $m_{0}\text{- seed event's mass.}$

• Computation time reasonably minimized- fits 10,000 events in 30 min.