Measurement of Polarization Observables in Double-pion Photoproduction from the FROST Experiment at Jefferson Lab

Priyashree Roy

Florida State University, Tallahassee, Florida

Prospectus Defense

08/20/2013

Outline

- 2 The FROST experiment
- 3 Event selection

4 Outlook

イロト イロト イヨト イヨト

ъ

The Strong Interaction

Hadrons (baryons and mesons) consist of valence quarks, sea quarks and gluons - not a simple picture !

The Strong Interaction

Hadrons (baryons and mesons) consist of valence quarks, sea quarks and gluons - not a simple picture !

How do quarks and gluons interact ? QCD - the theory of the strong force to describe quark-gluon interaction in hadrons.

Consider a quark-antiquark pair.

The Strong Interaction

Hadrons (baryons and mesons) consist of valence quarks, sea quarks and gluons - not a simple picture !

How do quarks and gluons interact ? QCD - the theory of the strong force to describe quark-gluon interaction in hadrons.

- We can't isolate the quarks .. Color confinement.
- Why confinement? No analytic proof that QCD should be confining.

< □ > < /// >

Understanding Baryon Structure

How many degrees of freedom do baryons have? Understanding non-perturbative aspects of the baryon structure -

- Lattice QCD calculations need a lot of improvement in computational analysis.
- Baryon Spectroscopy understanding the interactions and dynamics of the constituents of the baryons.

Constituent Quark Model for baryons - 3 "constituent quarks" placed in a linearly confining potential.

Understanding Baryon Structure

How many degrees of freedom do baryons have? Understanding non-perturbative aspects of the baryon structure -

 Lattice QCD calculations need a lot of improvement in computational analysis.

 Baryon Spectroscopy - understanding the interactions and dynamics of the constituents of the baryons.

Constituent Quark Model for baryons - 3 "constituent quarks" placed in a linearly confining potential.

Understanding Baryon Structure

How many degrees of freedom do baryons have? Understanding non-perturbative aspects of the baryon structure -

- Lattice QCD calculations need a lot of improvement in computational analysis.
- Baryon Spectroscopy understanding the interactions and dynamics of the constituents of the baryons.

Constituent Quark Model for baryons - 3 "constituent quarks" placed in a linearly confining potential.

ヘロト ヘ戸ト ヘヨト ヘヨト

CQM Predictions for Baryons

Predictions for isospin 1/2 strangeness zero baryons. U. Löring (et al.) Eur.Phys.J.A 10,395 (2001)

P. Roy

A D > A P > A E

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together.

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together.

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together.

ヘロト ヘ戸ト ヘヨト ヘヨト

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together.

ヘロト ヘ戸ト ヘヨト ヘヨト

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together.

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together. Need sophisticated tools to separate them -
- ◊ Spin observables, cross sections.
- ◊ Partial Wave Analysis.

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together. Need sophisticated tools to separate them -
- ◊ Spin observables, cross sections.
- ◊ Partial Wave Analysis.

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together. Need sophisticated tools to separate them -
- Spin observables, cross sections.
- ◇ Partial Wave Analysis.

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together. Need sophisticated tools to separate them -
- Spin observables, cross sections.
- Partial Wave Analysis.

Many undetected resonances, specially for W > 1.7 GeV. Possible reasons -

- The model may not be completely applicable.
- Missing resonances don't couple to π N. Electroproduction and photoproduction experiments could reveal them.
- Baryon resonances are broad and close together. Need sophisticated tools to separate them -
- Spin observables, cross sections.
- Partial Wave Analysis.

ヘロト ヘ戸ト ヘヨト ヘヨト

Light flavored baryon spectroscopy- JLab (U.S.), CBELSA/TAPS at Universität Bonn (Germany), Mainz Microtron (Germany), LEPS (Japan)...

Motivation

Reaction of interest : $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$. (1.6 < W < 2.1 GeV).

Extract polarization observables for linearly polarized beam and transversely polarized target from FROST experiment at JLab.

Motivation

Reaction of interest : $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$. (1.6 < W < 2.1 GeV).

Advantages ->

- biggest contributor to the cross section for W > 1.7 GeV.
- higher mass resonances likely to undergo sequential decay. E.g., $\gamma p \rightarrow N^* \rightarrow \Delta \pi \rightarrow p \pi^+ \pi^ \gamma p \rightarrow N^* \rightarrow p \rho \rightarrow p \pi^+ \pi^-$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Extract polarization observables for linearly polarized beam and transversely polarized target from FROST at JLab.

Motivation

Reaction of interest : $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$. (1.6 < W < 2.1 GeV).

Advantages ->

- biggest contributor to the cross section for W > 1.7 GeV.
- higher mass resonances likely to undergo sequential decay. E.g., $\gamma p \rightarrow N^* \rightarrow \Delta \pi \rightarrow p \pi^+ \pi^ \gamma p \rightarrow N^* \rightarrow p \rho \rightarrow p \pi^+ \pi^-$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Extract polarization observables for linearly polarized beam and transversely polarized target from FROST at JLab.

Motivation

Reaction of interest : $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$. (1.6 < W < 2.1 GeV).

Advantages ->

- biggest contributor to the cross section for W > 1.7 GeV.
- higher mass resonances likely to undergo sequential decay. E.g., $\gamma p \rightarrow N^* \rightarrow \Delta \pi \rightarrow p \pi^+ \pi^ \gamma p \rightarrow N^* \rightarrow p \rho \rightarrow p \pi^+ \pi^-$

・ロト ・ 日本 ・ 日本 ・ 日本

Extract polarization observables for linearly polarized beam and transversely polarized target from FROST at JLab.

Polarization observables

For $p\pi\pi$ state, w/o measuring polarization of recoiling p, reaction rate I - $I = I_0\{(1 + \bar{\Lambda}_i \cdot \bar{P})\}$

$$+ \delta_{\odot} (I^{\odot} + \bar{\Lambda}_{i} \cdot \bar{P}^{\odot}) + \delta_{l} [sin2\beta (I^{s} + \bar{\Lambda}_{i} \cdot \bar{P}^{s}) cos2\beta (I^{c} + \bar{\Lambda}_{i} \cdot \bar{P}^{c})] \}$$

15 polarization observables

I[⊙] - published results for 1.35<W<2.30 GeV [1] and for 0.57<W<0.81 GeV [2].

[1] S.Strauch et al. Phys. Rev. Lett.95, 162003 (2005).

[2] D. Krambrich et al. Phys. Rev. Lett. 103, 052002 (2009).

- P^O_Z results on helicity dependent cross section difference.
 J. Ahrens et al. Eur. Phys. J. A34, 11 (2007).
- Preliminary results from FROST expt for *I^{s,c}*, *I*[⊙], *P[⊙]_z*, *P_z*, *P^{s,c}* using polarized beam & unpolarized/longitudinally polarized target.

(日) (同) (日) (日) (日)

Polarization observables

For $p\pi\pi$ state, w/o measuring polarization of recoiling p, reaction rate I - $I = I_0\{(1 + \bar{\Lambda}_i \cdot \bar{P})\}$

$$+ \delta_{\odot} (I^{\odot} + \bar{\Lambda}_{i} \cdot \bar{P}^{\odot}) + \delta_{l} [sin2\beta (I^{s} + \bar{\Lambda}_{i} \cdot \bar{P}^{s}) cos2\beta (I^{c} + \bar{\Lambda}_{i} \cdot \bar{P}^{c})] \}$$

15 polarization observables

 I^o - published results for 1.35<W<2.30 GeV [1] and for 0.57<W<0.81 GeV [2].

[1] S.Strauch et al. Phys. Rev. Lett.95, 162003 (2005).

[2] D. Krambrich et al. Phys. Rev. Lett. 103, 052002 (2009).

• P_z^{\odot} - results on helicity dependent cross section difference.

J. Ahrens *et al. Eur. Phys. J.* **A34**, 11 (2007).

Preliminary results from FROST expt for *I^{s,c}*, *I*[⊙], *P[⊙]_z*, *P_z*, *P^{s,c}* using polarized beam & unpolarized/longitudinally polarized target.

イロン 不良 とくほう 不良 とうせい

Polarization observables

For $p\pi\pi$ state, w/o measuring polarization of recoiling p, reaction rate I - $I = I_0\{(1 + \bar{\Lambda}_i \cdot \bar{P})\}$

$$+ \delta_{\odot} (I^{\odot} + \bar{\Lambda}_{i} \cdot \bar{P}^{\odot}) \\ + \delta_{l} [sin2\beta (I^{s} + \bar{\Lambda}_{i} \cdot \bar{P}^{s}) cos2\beta (I^{c} + \bar{\Lambda}_{i} \cdot \bar{P}^{c})] \}$$

15 polarization observables

 I^o - published results for 1.35<W<2.30 GeV [1] and for 0.57<W<0.81 GeV [2].

[1] S.Strauch et al. Phys. Rev. Lett.95, 162003 (2005).

[2] D. Krambrich et al. Phys. Rev. Lett. 103, 052002 (2009).

• P_z^{\odot} - results on helicity dependent cross section difference.

J. Ahrens et al. Eur. Phys. J. A34, 11 (2007).

Preliminary results from FROST expt for I^{s,c}, I^o, P^o_z, P_z, P^{s,c} using polarized beam & unpolarized/longitudinally polarized target.

イロン 不良 とくほう 不良 とうしょう

Polarization observables

For $p\pi\pi$ state, w/o measuring polarization of recoiling p, reaction rate I - $I = I_0\{(1 + \bar{\Lambda}_i \cdot \bar{P})\}$

$$+ \delta_{\odot} (I^{\odot} + \bar{\Lambda}_{i} \cdot \bar{P}^{\odot}) + \delta_{l} [sin2\beta (I^{s} + \bar{\Lambda}_{i} \cdot \bar{P}^{s}) cos2\beta (I^{c} + \bar{\Lambda}_{i} \cdot \bar{P}^{c})] \}$$

15 polarization observables

 I^o - published results for 1.35<W<2.30 GeV [1] and for 0.57<W<0.81 GeV [2].

[1] S.Strauch et al. Phys. Rev. Lett.95, 162003 (2005).

[2] D. Krambrich et al. Phys. Rev. Lett. 103, 052002 (2009).

• P_z^{\odot} - results on helicity dependent cross section difference.

J. Ahrens et al. Eur. Phys. J. A34, 11 (2007).

Preliminary results from FROST expt for I^{s,c}, I^o, P^o_z, P_z, P^{s,c} using polarized beam & unpolarized/longitudinally polarized target.

・ロット (同) ・ ヨット ・ ヨット ・ ヨ

Polarization observables

In my analysis - linearly polarized beam -> $\delta_{\odot} = 0$ transversely polarized target -> $\Lambda_z = 0$

$$I = I_0 \{ (1 + \Lambda_x P_x + \Lambda_y P_y) \\ + \delta_l [sin(2\beta)(I^s + \Lambda_x P_x^s + \Lambda_y P_y^s) \\ cos(2\beta)(I^c + \Lambda_x P_x^c + \Lambda_y P_y^c)] \}$$

8 Polarization Observables - 6 first time measurements !

Extracting polarization observables for 1.6<W<2.1 GeV in this thesis -> bring us closer to a "complete set" to get unambigious solutions to the scattering amplitudes.

ヘロト 人間 とくほ とくほ とう

Outline

イロト イポト イヨト イヨト

ъ

The FROST experiment in Jefferson Lab, VA

- "g9b" experiment in Hall B (Mar -Aug 2010)
- FROST "Frozen Spin Target"
- e⁻ beam energy upto 5.6 GeV.

・ロト ・ 日本 ・ 日本 ・ 日本

The FROST experiment in Jefferson Lab, VA

- "g9b" experiment in Hall B (Mar -Aug 2010)
- FROST "Frozen Spin Target"
- e^- beam energy upto 5.6 GeV.

イロト 不得 とくほ とくほう

The FROST experiment in Jefferson Lab, VA

- "g9b" experiment in Hall B (Mar -Aug 2010)
- FROST "Frozen Spin Target"
- e⁻ beam energy upto 5.6 GeV.

イロト 不得 とくほ とくほう

The FROST experiment in Jefferson Lab, VA

P. Roy

- "g9b" experiment in Hall B (Mar -Aug 2010)
- FROST "Frozen Spin Target" ۹
- e⁻ beam energy upto 5.6 GeV.

Layout of the g9b experimental setup

 Linearly polarized photon beam by Bremsstrahlung radiation at the diamond radiator.

イロト 不同 トイヨト イヨト

Layout of the g9b experimental setup

 Linearly polarized photon beam by Bremsstrahlung radiation at the diamond radiator.

イロト イポト イヨト イヨト

Layout of the g9b experimental setup

イロト 不得 とくほ とくほう 二日

- Linearly polarized photon beam by Bremsstrahlung radiation at the diamond radiator.
- Coherent edge 0.9 to 2.1 GeV in steps of 200 MeV.
- FRozen Spin Target : TEMPO doped butanol C_4H_9OH .
- CLAS detector to detect charged particles.
Layout of the g9b experimental setup

ヘロト 人間 とくほ とくほ とう

- Linearly polarized photon beam by Bremsstrahlung radiation at the diamond radiator.
- Coherent edge 0.9 to 2.1 GeV in steps of 200 MeV.
- FRozen Spin Target : TEMPO doped butanol C_4H_9OH .
- CLAS detector to detect charged particles.

Layout of the g9b experimental setup

ヘロト ヘ戸ト ヘヨト ヘヨト

- Linearly polarized photon beam by Bremsstrahlung radiation at the diamond radiator.
- Coherent edge 0.9 to 2.1 GeV in steps of 200 MeV.
- FRozen Spin Target : TEMPO doped butanol C_4H_9OH .
- CLAS detector to detect charged particles.

FROzen Spin Target

- (c) Polarizing field 5T. DNP technique.
- (a),(b) holding magnets.
- Low T (30 mK) and high B (5 T) for long relaxation time (3400 hrs w/ beam and 4000 hrs w/o beam).
- Av. deg. of polarization 84 to 86 %.

FROzen Spin Target

- (c) Polarizing field 5T. DNP technique.
- (a),(b) holding magnets.
- Low T (30 mK) and high B (5 T) for long relaxation time (3400 hrs w/ beam and 4000 hrs w/o beam).
- Av. deg. of polarization 84 to 86 %.

ヘロト ヘ戸ト ヘヨト ヘヨト

The CLAS detector

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

- 2 The FROST experiment
- 3 Event selection

4 Outlook

P. Roy Double-pion Photoproduction Analysis from FROST

イロト イポト イヨト イヨト

ъ

The topology cut

Topologies originating from the $p\pi^+\pi^-$ final state -

- Top 1 : $\gamma \ \boldsymbol{p} \rightarrow \boldsymbol{p} \ \pi^+(\pi^-)$
- Top 2 : $\gamma \ \boldsymbol{p} \rightarrow \boldsymbol{p} \ \pi^{-}(\pi^{+})$
- Top 3 : γ p → π⁺π⁻ (p) (not considered as it could be a missing neutron)
- Top 4 : $\gamma \ \mathbf{p} \rightarrow \mathbf{p} \ \pi^+\pi^-$
- Particle id from v and p information from Drift Chambers, Start Counter and Time of Flight.

ヘロト ヘ戸ト ヘヨト ヘヨト

The beta cut

• The beta cut :- $\Delta\beta < 3\sigma$

•
$$\Delta\beta = \beta_1 - \beta_2, \, \beta_1 = \frac{v}{c}, \, \beta_2 = \frac{p}{\sqrt{p^2 + m^2}}$$

proton beta difference

pi beta difference

P. Roy

> < ≣ >

The beta cut

Beta cut : identifying pions and protons

•
$$\Delta\beta = \beta_1 - \beta_2, \, \beta_1 = \frac{v}{c}, \, \beta_2 = \frac{p}{\sqrt{p^2 + m^2}}$$

Before beta cut

After beta cut

ъ

P. Roy

Double-pion Photoproduction Analysis from FROST

Photon selection

- 2 ns photon bunches.
- Many candidate photons per event. $\Delta t = t (\text{event vertex time})$ t(candidate photon at the vertex).

Photon selection cuts-

- All final state particles originated from the same incident photon.
- |\Delta t| < 0.5 ns after applying the photon selection cuts.

A D b 4 A b

Photon selection

- 2 ns photon bunches.
- Many candidate photons per event. $\Delta t = t (\text{event vertex time})$ t(candidate photon at the vertex).

- Photon selection cuts-
- I photon for each final state particle.
- All final state particles originated from the same incident photon.
- |\Delta t| < 0.5 ns after applying the photon selection cuts.

A D b 4 A b

Photon selection

- 2 ns photon bunches.
- Many candidate photons per event. $\Delta t = t$ (event vertex time) t(candidate photon at the vertex).

- Photon selection cuts-
- 1 photon for each final state particle.
- All final state particles originated from the same incident photon.
- I∆t| < 0.5 ns after applying the photon selection cuts.</p>

Image: A matrix

Photon selection

- 2 ns photon bunches.
- Many candidate photons per event. $\Delta t = t$ (event vertex time) t(candidate photon at the vertex).

- Photon selection cuts-
- 1 photon for each final state particle.
- All final state particles originated from the same incident photon.
- |Δt| < 0.5 ns after applying the photon selection cuts.

Kinematic fitting

- Enforcing energy-momentum conservation in each event.
- Fit quality determined by -
- ♦ Pull distribution measures how much the fitter had to alter the fit parameter. Good event -> pull mean \sim 0 and pull σ \sim 1.
- Confidence level (CL) distribution returns value 0 to 1 for each event.

Good events -> Flat CL distribution.

Kinematic fitting

• Enforcing energy-momentum conservation in each event.

• Fit quality determined by -

- ♦ Pull distribution measures how much the fitter had to alter the fit parameter. Good event -> pull mean \sim 0 and pull σ \sim 1.
- Confidence level (CL) distribution returns value 0 to 1 for each event.

Good events -> Flat CL distribution.

Kinematic fitting

- Enforcing energy-momentum conservation in each event.
- Fit quality determined by -
- ♦ Pull distribution measures how much the fitter had to alter the fit parameter. Good event -> pull mean \sim 0 and pull σ \sim 1.
- Confidence level (CL) distribution returns value 0 to 1 for each event.

Good events -> Flat CL distribution.

Kinematic fitting

- Enforcing energy-momentum conservation in each event.
- Fit quality determined by -
- ♦ Pull distribution measures how much the fitter had to alter the fit parameter. Good event -> pull mean \sim 0 and pull $\sigma \sim$ 1.
- Confidence level (CL) distribution returns value 0 to 1 for each event.

Good events -> Flat CL distribution.

ヘロト ヘ戸ト ヘヨト ヘヨト

-

Kinematic fitting

- Enforcing energy-momentum conservation in each event.
- Fit quality determined by -
- ♦ Pull distribution measures how much the fitter had to alter the fit parameter. Good event -> pull mean \sim 0 and pull $\sigma \sim$ 1.
- Confidence level (CL) distribution returns value 0 to 1 for each event.

Good events -> Flat CL distribution.

ヘロト ヘ戸ト ヘヨト ヘヨト

-

Energy and momentum correction

- Eloss correction for energy lost by the particles while traveling to the drift chambers.
- Momentum correction for the final state particles using the pull distributions.
- Photon energy correction needed mainly because of Tagger sagging.

P. Roy

Double-pion Photoproduction Analysis from FROST

Outlook

Confidence level and Pull distributions

P. Roy Double-pion Photoproduction Analysis from FROST

Missing Mass Example

 KFit doesn't distinguish between events originating from free protons and bound nucleons -> need event based quality factor (probability that the event came from the signal distribution).

Outline

- 2 The FROST experiment
- 3 Event selection

イロト イロト イヨト イヨト

ъ

Outlook

- Event selection process has almost been accomplished.
- About 3.5 % (~ 19 million out of 8.4 billion events) of total no. of events are selected after applying all the cuts.

- Production plane (shown in blue) formed by incident photon and recoiling p in the c.o.m. frame.
- 2 pion plane (shown in pink) formed by recoiling p and pions in the 2-pion rest frame.

ヘロト ヘ戸ト ヘヨト ヘヨト

Outlook

5 independent variables needed to describe the kinematics
 (*E_γ*, φ^{*}, θ^{*}, θ_{c.m.}, m_{pπ⁺}).

Event based quality factor will be very useful -

in separating signal from background originating from the bound nucleons.

 in studying asymmetries; no need to find an overall dilution factor each time.

Outlook

- 5 independent variables needed to describe the kinematics
 (*E*_γ, φ^{*}, θ^{*}, θ_{c.m.}, m_{pπ⁺}).
 - Event based quality factor will be very useful -
- in separating signal from background originating from the bound nucleons.
- in studying asymmetries; no need to find an overall dilution factor each time.

イロト イポト イヨト イヨト

Outlook

- 5 independent variables needed to describe the kinematics
 (*E*_γ, φ^{*}, θ^{*}, θ_{c.m.}, m_{pπ⁺}).
 - Event based quality factor will be very useful -
- in separating signal from background originating from the bound nucleons.
- in studying asymmetries; no need to find an overall dilution factor each time.

イロト イポト イヨト イヨト

Some examples of polarization observables

For $p\pi\pi$ state, w/o measuring polarization of recoiling p, reaction rate I -

$$I = I_0 \{ (1 + \bar{\Lambda}_i \cdot \bar{P}) \\ + \delta_{\odot} (I^{\odot} + \bar{\Lambda}_i \cdot \bar{P}^{\odot}) \\ + \delta_I [sin2\beta (I^s + \bar{\Lambda}_i \cdot \bar{P}^s) cos2\beta (I^c + \bar{\Lambda}_i \cdot \bar{P}^c)] \}$$

 I^{\odot} , P_z^{\odot} and P_z by S. Park, FSU (S. Park, A Dissertation Thesis, Summer Semester, 2013).

イロト 不得 トイヨト イヨト 三日

Some examples of polarization observables

$$I^{\odot} = \frac{1}{\bar{\delta}_{\odot}(W)} \frac{\left\{N(\rightarrow; W, \varphi_{\pi^+})_{beam} - N(\leftarrow; W, \varphi_{\pi^+})_{beam}\right\}}{\left\{N(\rightarrow; W, \varphi_{\pi^+})_{beam} + N(\leftarrow; W, \varphi_{\pi^+})_{beam}\right\}}$$

S.Strauch et al. Phys. Rev. Lett.95, 162003 (2005).

★ 30 × 10

Some examples of polarization observables

$$P_{Z}^{\odot} = \frac{1}{\bar{\Lambda_{z}}(W) \bullet \bar{\delta}_{\odot}} \frac{\left\{ N(W,\varphi_{\pi^{+}})_{3/2} - N(W,\varphi_{\pi^{+}})_{1/2} \right\}}{\left\{ N(W,\varphi_{\pi^{+}})_{3/2} + N(W,\varphi_{\pi^{+}})_{1/2} \right\}}$$

FSU model by Winston Roberts. A. Fix model (Eur. Phys. J. A25, 115-135, 2005.)

< □ > < 同 Double-pion Photoproduction Analysis from FROST

프 에 에 프 어

э

P. Roy

Some examples of polarization observables

$$P_{Z} = \frac{1}{\bar{\Lambda}_{Z}(W)} \frac{\left\{N(\Rightarrow; W, \varphi_{\pi^{+}})_{\textit{target}} - N(\Leftarrow; W, \varphi_{\pi^{+}})_{\textit{target}}\right\}}{\left\{N(\Rightarrow; W, \varphi_{\pi^{+}})_{\textit{target}} + N(\Leftarrow; W, \varphi_{\pi^{+}})_{\textit{target}}\right\}}$$

P. Roy

FSU model by Winston Roberts. A. Fix model (Eur. Phys. J. **A25**, 115-135, 2005.)

Double-pion Photoproduction Analysis from FROST

< ∃⇒

Summary

- Reaction of interest: $\vec{\gamma} \vec{p} \rightarrow p \pi^+ \pi^-$, linearly polarized photon beam, transversely polarized target.
- Extracting I^s, I^c, P_{x,y}, P^{s,c}_{x,y} for 1.6<W<2.1 GeV will bring us closer to a "complete set" to get unambigious solutions to the scattering amplitudes.
- Models based on observables from photoproduction experiments will provide a better understanding of the systematics of the baryon spectrum.

Summary

- Reaction of interest: $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$, linearly polarized photon beam, transversely polarized target.
- Extracting I^s, I^c, P_{x,y}, P^{s,c}_{x,y} for 1.6<W<2.1 GeV will bring us closer to a "complete set" to get unambigious solutions to the scattering amplitudes.
- Models based on observables from photoproduction experiments will provide a better understanding of the systematics of the baryon spectrum.

Summary

- Reaction of interest: $\vec{\gamma}\vec{p} \rightarrow p\pi^+\pi^-$, linearly polarized photon beam, transversely polarized target.
- Extracting I^s, I^c, P_{x,y}, P^{s,c}_{x,y} for 1.6<W<2.1 GeV will bring us closer to a "complete set" to get unambigious solutions to the scattering amplitudes.
- Models based on observables from photoproduction experiments will provide a better understanding of the systematics of the baryon spectrum.

ヘロト ヘ戸ト ヘヨト ヘヨト

HUGS 2013 Summer School at JLab

Thank You!

P. Roy

Double-pion Photoproduction Analysis from FROST

P. Roy Double-pion Photoproduction Analysis from FROST

イロン イロン イヨン イヨン

æ

Polarizing the target

< □ > < 🗗 > < 🖻

≺ ≣⇒

ъ

ヘロト 人間 とくほとう ほとう

æ

Pull and CL

Pull,
$$z_i = rac{\eta_i - y_i}{\sqrt{\sigma^2(\eta_i) - \sigma^2(y_i)}}$$

 $CL = \int_{\chi^2}^{\infty} f(z; n) dz$, χ^2 is probability function possessing n d.o.f. f is the probability that a χ^2 from the theoretical distribution is greater than the χ^2 from the fit.

ヘロト ヘ戸ト ヘヨト ヘヨト

Dilution factor

Ideal dilution factor for butanol, $D = \frac{10}{74} = 0.135$

Dilution factor,
$$D(W) = 1 - \frac{s.N_{carbon}(W)}{N_{C_4H_9OH}(W)}$$

s : phase space scale factor - depends on kinematic variables

э

Photon energy correction

- $\Delta E = \sum E_i 0.938 E_{Photon}(mea)$
- *E_i* : E of the final state particles returned by kinematic fitter, *E_{Photon}(mea)* : from the Tagger

Photon energy correction

- Photon energy needs correction mainly because of sagging of the Tagger.
- Used the Photon E correction constructed by S. Park (a former FSU grad student) for his g9a analysis.

P. Roy