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Types of Errors

Two types -

⋄ Random errors -They occur simply from the inability of any measuring device
to give infinitely accurate answers. This leads to random fluctuations in the
measurements. They affect thePRECISION of the measurement.

⋄ Systematic errors -They are more in the nature of mistakes. They can come
from faulty experiment, calibration or techniue. They affect theACCURACY
of the experiment.

⋄ Categorize as random or systematic - detector resolution error, detector
calibration error, time interval of taking a measurement (w/ clocks properly
calibrated), detector inefficiency, statistical error in counting.
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Types of Errors

Continued -

⋄ Random -detector resolution error, time interval of taking a measurement (w/
clocks properly calibrated), statistical error in counting.
Systematic -detector calibration error, detector inefficiency.

⋄ Punch line -
Factors that affect precision - random errors.
Factors that affect accuracy - systematic errors.

⋄ Random error (i.e. the spread in the mean, not the variance ofthe distribution
(following slides) ) dec. as1

√

N
, whereas systematic errors don’t get affected by

sample size (N). They can only be eliminated.

⋄ So, usually the goal is to dec. random errors (by inc. N) till it is of the same
order of magnitude as systematic errors.
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Random Errors

We will always obtain a distribution of random observations for our
experiments. The distributions are usually characterized by their mean
(µ) and standard deviation (σ). This is the distribution of the
hypothetical infinite set of data points, called asparent distribution.

Since in reality we have only a finite set of data points, we can only get
estimated mean (̄x) and estimated standard deviation (s).

x̄ =
∑

xiP (xi), s
2 =

∑

(xi − x̄)2P (xi), P is probability function.

3 most common distribution functions - Binomial, Poisson and Gaussian.

Poisson and Gaussian are limiting cases binomial distribution. For large
sample size, Poisson tends to Gaussian.

Note : We could have defined the average deviation|xi − x̄| as the error.
But, the absolute sign makes calculations difficult. So, we use standard
deviation (σ) instead !
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Poisson Distribution
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This distribution describes thestatistical fluctuations in the collection of
a finite no. of countsover a finite interval of time. The observed counts
will be distributed about the mean in a Poisson distribution instead of a
Gaussian distribution.

Estimated mean= N, mean counting rate
or mean count.
s =

√
N . This is what we see in our root

histograms.

As we increase the sample size, the
fractional error goes down.
σf =

√

N
N

= 1
√

N
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Gaussian Distribution

This distribution describes the distribution of random observations for
many experiments.

Probability density function, f(x)= 1
σ
√

2π
exp[− (x−µ)2

2σ2 ]

⋄ Using the formula fors2 (slide 2) will give s= σ.

⋄ At x = x± σ, f = fmax
√

e
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Effect of Sample size on Mean and Variance

My misconception - As we increase
statistics (N), the Gaussian distribution
(which represents the statistical
fluctuations) will become narrower. This is
wrong.

With inc. N,s2 will not change much. It
will get closer toσ2 but they don’t differ by
much anyway if N is not too small. From
the formula fors2, it is evident that with
inc. N, both numerator and denominator
will increase.

On the other hand,the spread in the
determination of the mean goes down as
s

√

N
.
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Example and Proof

Suppose we are measuring the pion mass and the detector resolution is 5 MeV. Let’s
assume that each datapoint has this error only. Then,σi = σ = 5MeV for all i
datapoints.

Then, x̄ =
∑

xiP (xi) =
∑

xi

N (since all datapoints have the same error,
P = 1/N ) ands2 =

∑

(xi − x̄)2P (xi) =
Nσ
N = σ

Using the error propagation equation,

σµ
2 =

∑

σ2
iwi(xi), wherewi is the properly normalized weight of each data

in the calculation of the mean.

=
∑

σ2
i (

∂µ
∂xi

)2

=
∑

σ2
i (

1
N )2

= s2

N = (5MeV )2

N , i.e. the spread in the mean dec. as sample size inc.
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Introduction

We will discuss the error estimation in 2 types of fitting techniques-

⋄ The maximum likelihood method

⋄ The method of least squares

Method of least squares is a special case of the maximum likelihood method,
basically when there is a lot of statistics.
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The Maximum Likelihood Method

In this method we write the likelihood function,
L =

∏

P (yi(α)) and maximize it. Corresponding value of the fit parameterα

is the true value.

In most cases this function is Gaussian distributed with respect to its fit
parameter. E.g., the likelihood function forφ distribution and for a single
meson production with pol. beam and unpol. target andΣ observable as the fit
parameter. Then let’s assume thatL = f(Σ) is Gaussian distributed.

The error inΣ is then the standard deviation of the Gaussian distribution. So, at
Σ± σ, L = Lmax

e . Or,−logL = −logLmax + 0.5

Or, l = lmin + 0.5

We use Minuit to minimize l.The error in the fit parameterΣ is the change in
the value ofΣ that will step-up l by0.5 from lmin. One way is to do it
numerically.
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The Maximum Likelihood Method Continued

Another way that Minuit can use to calculate error in the fit parameter -
Supposel = lmin atΣ = Σ0.

Taylor expansion aboutΣ0, l(Σ) = l(Σ0 + σ)

or, l(Σ0) + 0.5 = l(Σ)0 + 0 + 1
2

∂2l
∂Σ2 |Σ0

σ2
Σ

or,σΣ = [ ∂
2l

∂Σ2 ]
−

1

2 evaluated atΣ0.

Priyashree Roy, Florida State University 7 Oct 2014, FSU 11 / 18



Introduction
Random Errors

Errors in Fit Parameters in Fitting Techniques
The Method Of Least Squares

The Method of Least Squares

In this method we write the function,

S =
∑

(
yobs
i −yfit

i
(α)

σi
)2 and minimize it using Minuit. Corresponding value of

the fit parameterα is the true value.

In this method,the errorσ in the fit parameter is the change in the parameter
that will make S go fromSmin to Smin + 1. One way is to find it numerically.

The other way is to calculate[ 12
∂2S
∂α2 ]

−
1

2 at the minimum. We can derive this by
using the Taylor expansion method as used in the previous slide.
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Minuit and Factor of 2 needed for MLM Parameter Error
Estimation

As is evident, the least squares method (LSM) and the likelihood
method(MLM) fit error estimation differ by a factor of 2. The step size
is 0.5 in MLM whereas it is 1.0 in LSM. That’s whyin Minuit we need
to multiply the −logL expression by 2 to get the errors right if the
step size is set to 1. Or, do not multiply −logL by 2 but make the
step size = 0.5.

Priyashree Roy, Florida State University 7 Oct 2014, FSU 13 / 18



Introduction
Random Errors

Errors in Fit Parameters in Fitting Techniques
The Method Of Least Squares

When can Minuit Error Calculation go Wrong ?

Following can be the causes -

The value of step-up - it can be different from 0.5 if the likelihood is not
gaussian distributed with respect to its parameters. This can happen for low
statistics.

Improper normalization of theχ2 or the likelihood function -

χ2 =
∑ (xi−yi(α))

2

e2
i

The terms1
e2
i

should be inverse of variances. If they are only relative weights
then the absolute values of the errors will not be correct.
The likelihood function should be properly normalized. i.e.,
∫

l(x, α)dx = constant, x being the observed datapoints. The normalization
constant does not affect the value or the error of the fit parameters but it affects
the convergence of the fit.

Non-linear dependence on the fit parameter - This brings in a technical issue.
Different techniques like MIGRAD, MINOS, HESSE will give different errors.
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Basics

This method is based on the assumption that each datapoint inthe histogram is
gaussian distributed with meanytheory(xi) and std. deviationσi (the vertical
error bar in the datapoints).

It is thus necessary to have enough events per bin in countingexperiments.
Rule of thumb is that N> 10 per bin since Poisson distribution tends to
Gaussian in this case.

With Gaussian distribution assumption for each datapoint,the probability to
make an observed set of measurements is the product of the probabilities for
each observation:
P (α) =

∏

( 1
σi

√

2π
)exp

{

− 1
2

∑

[
yi−ytheory

i
(α)

σi
]2
}

whereα is the fit parameter.

The probability becomes maximum when the sum in the exponential becomes
minimum.This sum is the goodness-of-fit parameterχ2. Its value is affected by
uncertainties inσi, functional form of the fit functionyitheory etc.
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χ
2 Test for Goodness-of-fit

Recall thats2 =
∑

(xi − x̄)2w(xi) is the estimated variance.

The parent or true invariance,σ2 =
∑

σ2
iw(xi)

The normalized weight,w(xi) =
1/σ2

i∑
(1/σ2

i
)
. Therefore,σ2 = N∑

(1/σ2

i
)

The estimated variance,which is charateristic of both the spread of the data
and the accuracy of the fit is given by,

s2 = N
N−m

∑

(xi − x̄)2w(xi) = ( 1
N−m )( N∑

(1/σ2

i
)
)(
∑ (xi−x̄)2

σ2

i

)

or, s2 = ( 1
N−m )σ2χ2

Here N − m is the number of degrees of freedom for fitting N datapoints with
an m parameter fit.

Reducedχ2 = χ2

N−m = s2

σ2 = V arianceestimated

V ariancetrue
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χ
2 Test for Goodness-of-fit and Effect of Bin Size

For a good fit,s2 ∼ σ2, soχ2
red ∼ 1.

For a bad fit,s2 > σ2, soχ2
red > 1. e.g. when the bin size is too big, the data

distribution will differ from the fit curve.

When there is error in the assignment of theσi of the datapoints (such as when
they are not the Gaussian variances), thenχ2

red < 1, for e.g. when bin size is
too small and so counts per bin< 10.
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