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How good are your fits? Unbinned multivariate
goodness-of-fit tests in high energy physics.

Mike Williams

Imperial College London, London SW7 2AZ, UK

ABSTRACT: Multivariate analyses play an important role in high energy physics. Such analyses
often involve performing an unbinned maximum likelihood fit of a probability density function
(p.d.f.) to the data. This paper explores a variety of unbinned methods for determining the good-
ness of fit of the p.d.f. to the data. The application and performance of each method is discussed
in the context of a real-life high energy physics analysis (a Dalitz-plot analysis). Several of the
methods presented in this paper can also be used for the non-parametric determination of whether
two samples originate from the same parent p.d.f. This can be used, e.g., to determine the quality
of a detector Monte Carlo simulation without the need for a parametric expression of the efficiency.
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1. Introduction

Multivariate analyses are playing an increasingly prominent role in high energy physics. In such
analyses a physicist will often employ an unbinned maximum likelihood fit of a probability density
function (p.d.f.) to the data. The fit p.d.f. is then used to extract the desired information (e.g.,
some set of observables) from the data. When performing this type of analysis it is important to
determine the level of agreement between the fit p.d.f. and the data. Unfortunately, the maximum
likelihood value (m.l.v.) itself cannot be used to determine the goodness of fit (g.o.f.).

A common practice in high energy physics is to instead bin the data and compute a χ2 value.
This statistic can be used to test the g.o.f.; however, it does have its limitations. In multivariate
problems the available phase space is typically sparsely populated; this is known in the statistical
literature as the curse of dimensionality [1]. Employing a coarse binning scheme is often required
in this situation to avoid having an abundance of low occupancy bins. If the bin occupancies
are too low, then the significance of any discrepancy between the data and the fit p.d.f. is often
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overestimated when using the χ2 method (see, e.g., Ref. [2]). Of course, if the bin sizes are too
large then it may not be possible to compare the finer structure of the fit p.d.f. with the data. Apart
from this, binning data always results in a loss of information; thus, one would expect unbinned
g.o.f. methods to perform better in multivariate problems.

There are a large number of unbinned multivariate g.o.f. tests available in the statistical lit-
erature (see, e.g., Ref. [3]); however, most of the high energy physics community appears to be
unaware of their existence. Because of this, many high energy physicists use the binned χ2 method
even in analyses where its power is expected to be minimal. Others employ g.o.f. tests that are not
found in the statistical literature. E.g., consider a multivariate analysis where a p.d.f. has been fit
to the data using an unbinned maximum likelihood fit. Many high energy physics analyses have
attempted to use the m.l.v., Lmax, to determine the g.o.f. An outline of the procedure used is as
follows: the data is fit to obtain Lmax; the fit p.d.f. is used to generate an ensemble of Monte Carlo
data sets; the g.o.f. is determined using Lmax from the data and the distribution of m.l.v.’s obtained
from the Monte Carlo. This approach may sound reasonable, but it is fatally flawed and, in fact,
often fails to provide any information regarding the g.o.f. [4] (see Appendix A for a detailed dis-
cussion). Rather than attempting to invent new unbinned multivariate g.o.f. tests, a more prudent
approach for high energy physics would be to study the applicability and performance of the g.o.f.
methods published in the statistical literature. This paper carries out such a study.

Even for one-dimensional data, there is no uniformly most powerful (u.m.p.) g.o.f. test; i.e.,
no test is the most powerful in all situations. The popularity of the χ2 test in high energy physics
is a testament to its versatility and power but it does not mean that it is the u.m.p. g.o.f. test for
one-dimensional data. There are many situations where other tests are more powerful. E.g., the
Kolmogorov-Smirnov test is typically better suited for comparing two samples (rather than a sam-
ple and a p.d.f.). The situation for the unbinned multivariate case is the same; i.e., there is no u.m.p.
test. Thus, it is vitally important to study the performance of the available unbinned multivariate
g.o.f. methods in the context of real-world high energy physics analyses.

This paper carries out a systematic study of the performance of a variety of unbinned multivari-
ate g.o.f. methods in the context of a Dalitz-plot analysis. For each method, the underlying concept
used to test the g.o.f. is discussed first. This is followed by an overview of the formalism with a
strong emphasis on how to apply the method in a high energy physics analysis. The performance
of each method is then studied in detail, including examining the effects of test bias. Guidelines for
dealing with nuisance parameters (including, in some cases, explicit determination of the regions
of validity) is also provided. Finally, a high energy physics multivariate g.o.f. road map is outlined
in Section 4. It is also worth noting that several of the methods discussed in this paper can be used
for the non-parametric determination of whether two samples originate from the same parent p.d.f.
This could be used, e.g., to determine the quality of a detector Monte Carlo simulation without the
need for a parametric expression of the efficiency.

2. Toy-Model Analysis

A Dalitz-plot analysis provides an excellent testing ground for multivariate g.o.f. techniques. It
is often the case in these analyses that a p.d.f. with unknown parameters and of unknown quality
is fit to the data in two (or more) dimensions. Determining the g.o.f. of the p.d.f. to the data is
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Daughters JP Mass Width Fit Fraction
a,b 0+ 0.3 0.025 6%
a,b 2+ 0.6 0.05 2%
a,c 1− 0.4 0.04 18%
a,c 0+ 0.7 0.1 43%
b,c 1− 0.35 0.01 10%
b,c 0+ 0.75 0.02 17%

a,b,c non-resonant 1%

Table 1. Resonances included in the Dalitz-plot model used in this paper.

crucial in these types of analyses. Calculating the g.o.f. is complicated by the fact that Dalitz-
plot distributions are typically highly non-uniform and rapidly varying. Because of this, even with
moderate statistics binned g.o.f. tests are often inadequate.

In this paper I consider the decay X → abc, where mX = 1 and ma = mb = mc = 0.1 are the
particle masses (in some units). All four particles are pseudo-scalars; i.e., they all have a spin-
parity of 0−. The model for the Dalitz-plot distribution of this decay is constructed using the
isobar formalism in which the total amplitude is written as the coherent sum of contributions from
resonant and nonresonant terms:

M (~x) = anreiφnr +∑
r

araiφrAr(~x). (2.1)

In Eq. 2.1,~x = (m2
ab,m

2
ac) represents the position in the Dalitz plot and aeiφ describes the complex

amplitude for each component. The terms Ar(~x) denote the resonance amplitudes and contain
contributions from Blatt-Weisskopf barrier form factors [5], relativistic Breit-Wigner line shapes to
describe the propagators and spin factors obtained using the Zemach formalism [6]. All amplitudes
are evaluated using the qft++ package [7]. The properties of the resonances included in this
model, along with their fit fractions, are shown in Table 2.

The p.d.f. is easily obtained from the total amplitude as f (~x) = |M (~x)|2/
∫
|M (~x)|2d~x, where

the normalization to unity is explicit. Fig. 1 shows the Dalitz-plot distribution obtained from this
p.d.f. The details concerning the resonances are not important to this paper; however, it is worth
noting that this distribution possesses the complex, rapidly varying structures that are present in
many Dalitz-plot (and other high energy physics) analyses. The presence of such features facillitate
testing the robustness of the g.o.f. methods discussed below.

I will consider three different population sizes in this study: low (nd = 100); medium (nd =

1000); and high (nd = 10000). Example Dalitz-plot data sets with these three sample sizes are
shown in Fig. 2. Analysis of a Dalitz-plot data set with less than 100 events is difficult due to
the sparseness of the data. Determining g.o.f. in a Dalitz-plot analysis with nd � 10000 events
is typically possible even using binned methods. Thus, studying data sets of these three sample
sizes should suffice to ascertain the applicability of any unbinned multivariate g.o.f. method to a
Dalitz-plot analysis.

An ensemble of 100 data sets of each of the three sample sizes listed above will be produced
and analyzed in this study. For each data set, the g.o.f. of the following p.d.f.’s will be examined:
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Figure 1. (Color Online) The Dalitz-plot p.d.f. used to generate the data in my toy-model analysis. Note
the log scale on the z (color) axis.
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Figure 2. Example low (left), medium (middle) and high (right) statistics toy-model data sets. The number
of events generated is 100, 1000 and 10000, respectively.

Model P.D.F.
The same p.d.f. as used to generate all of the toy-model data sets. I.e., it is the parent distri-
bution of every data set examined in this study. The p-value distribution obtained for each
ensemble of toy-model data sets must be flat (modulo statistical fluctuations) for any g.o.f.
method when the test p.d.f. is the parent p.d.f. (see Section 3). In a real-world analysis, one
does not have access to this p.d.f. It is examined here as an important systematic check of
each g.o.f. method.

Fit I P.D.F.
The p.d.f. obtained for each data set by fitting the toy-model p.d.f., with all resonance pa-
rameters free (a total of 15 free parameters), to the data. Each toy-model data set has its own
Fit I p.d.f. In the absence of test bias, the p-value distributions obtained for Fit I should also
be flat; however, because of the fact that each Fit I p.d.f. is obtained from a fit to the data
set being analyzed, some test bias is expected. The consistency of each g.o.f. method will be
judged by the size of the observed test bias.
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Fit II P.D.F.
The p.d.f. obtained in the same way as that in Fit I but with the JP = 1− resonance in the bc
system - that has a 10% fit fraction - removed. These p.d.f.’s have a large discrepancy relative
to the Model p.d.f. but in a small region of phase space. The power of each g.o.f. method
will, in part, be judged by how well it is able to reject Fit II.

Fit III P.D.F.
The p.d.f. obtained in the same way as that in Fit I but with the non-resonant term - that has a
1% fit fraction - removed. These p.d.f.’s have a small discrepancy relative to the Model p.d.f.
but in a large region of phase space (all of it). This p.d.f. is very similar to what one would
obtain using a slightly deficient background estimation. The power of each g.o.f. method
will also be judged by how well it is able to reject Fit III.

3. Goodness-of-Fit Methods

The goal of the Dalitz-plot analysis carried out in this paper is to test the g.o.f. of each of the p.d.f.’s
defined in Section 2. The notation used here, and throughout this paper, is as follows: f denotes the
parent p.d.f. of the data; f0 denotes the test p.d.f.;~x denotes the D-dimensional vector of variables;
and nd denotes the number of events in a data sample. For each g.o.f. method, a test statistic, T , is
defined that quantifies (in some way) the agreement between the data and the test p.d.f. For all of
the methods presented in this paper, larger values of T correspond to a worse level of agreement
(n.b. this is not a universal property of all g.o.f. methods).

The p.d.f. of the test statistic, g(T ), may depend on the test p.d.f., i.e., g may not be distribution
free (as it is, e.g., for the χ2 test for a fixed number of degrees of freedom). The significance of
any discrepancy between the data and the test p.d.f. is quantified by the p-value, which is defined
as follows for the case where larger T -values correspond to worse levels of agreement:

p =
∫

∞

T
g f0(T

′)dT ′. (3.1)

Thus, the p-value is the probability of finding a T -value corresponding to lesser agreement than the
observed T -value. It is important to note that the p-value is not the probability that f = f0. If f0

is, in fact, the parent distribution of the data, i.e., if f = f0, then the p-value distribution is uniform
on the interval between zero and one. For this case, the p-value is the same as the confidence level.
One can reject the hypothesis f = f0 at confidence level α if p < 1−α; e.g., the test hypothesis is
rejected at 95% confidence level if p < 0.05.

The statistical literature on g.o.f. is vast. It is not possible to test every available g.o.f. method.
Many of the available methods use similar concepts in constructing their g.o.f. tests. I have divided
up the methods I have found into five categories: mixed-sample methods; point-to-point dissim-
ilarity methods; distance to nearest-neighbor methods; local-density methods; and kernel-based
methods. I have chosen to implement and study one method from each category to determine its
applicability to the Dalitz-plot analysis described in Section 2. I note here that I have ignored
methods specifically designed to find highly localized discrepancies (e.g., unexpected peaks) in the
data. Such methods can be useful, e.g., for signal discovery; however, they are not well suited to
the analysis performed in this paper. Finally, the notation used in the original publications is (in
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Figure 3. Example distributions of data randomly sampled from the p.d.f.’s fa(~x) (black open squares) and
fb(~x) (red crosses) for the cases: (left) fa(~x) = fb(~x); (right) fa(~x) 6= fb(~x). The two samples are optimally
mixed if fa(~x) = fb(~x) but not so if fa(~x) 6= fb(~x). This fact is exploited by g.o.f. tests in the mixed-sample
category.

many cases) different than that used in this paper. I have opted for using, as much as possible, a
consistent set of notation for all of the methods described in this paper.

3.1 Mixed-Sample Methods

If two data sets are combined to form a pooled sample, the mixing of the two samples is only
optimal if they share the same parent distribution (see Fig. 3). This fact can be used to determine
g.o.f. [8, 9]. The method described below does not require any knowledge concerning the p.d.f.’s
of either of the samples; thus, it could be used, e.g., to determine the quality of a detector Monte
Carlo simulation without the need for a parametric expression of the efficiency. It could also be
used to study the stability of data taken by an experiment by comparing data samples taken during
different time periods.

Prior to presenting this category of methods, the concept of nearest-neighbor events must
be introduced. To determine which events are the nearest neighbors to any given event in a data
sample, one first needs to define the distance between events in the multivariate space. One option
is to use the normalized Euclidean distance which is defined as

|~xi−~x j|2 =
D

∑
v=1

(xv
i − xv

j

wv

)2

, (3.2)

where the wv values are used to weight each of the variates. Because of the fact that the two
invariant mass ranges in the Dalitz-plot analysis considered in this paper are the same, I chose to
use wv = 1 for each v (the Euclidean distance). Another choice (that is more desirable when the
allowed values of the variates are not equivalent) is to set each wv value to be the root mean square
of the data for the vth variate. One could also simply chose to set each wv = xmax

v − xmin
v . The

conclusions drawn from the g.o.f. test should not depend on the choice of distance function used,
provided a reasonable choice is made (analogous to the choice of binning scheme when performing
the χ2 test). Once the distance between events is determined, the ith event’s nk nearest neighbors
are simply the events with the nk smallest distances from the ith event.
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Following Ref. [8], let {~xa
1 . . .~x

a
na
} and {~xb

1 . . .~x
b
nb
} be two independent random D-dimensional

samples from the distributions corresponding to the p.d.f.’s fa(~x) and fb(~x), respectively. For my
toy-model Dalitz-plot analysis, the two data sets will be the data and a Monte Carlo data set sam-
pled from one of the fit p.d.f.’s. For now I will keep the notation generic as this method is applicable
to any situation where one wants to determine whether two data sets share the same parent distri-
bution.

The statistic that will be used to test the hypothesis fa = fb is defined as follows:

T =
1

nk(na +nb)

na+nb

∑
i=1

nk

∑
k=1

I(i,k), (3.3)

where I(i,k)= 1 if the ith event and its kth nearest neighbor belong to the same sample and I(i,k)= 0
otherwise, and nk is the number of nearest-neighbor events being considered. The quantity T is then
simply the mean fraction of like-sample nearest-neighbor events in the pooled sample of the two
data sets. The expectation value of T is larger for the case fa 6= fb due to the lack of complete
mixing of the two samples that occurs if their parent distributions are not the same. For the extreme
example shown in Fig. 3, one can see that the left panel has T ≈ 1/2 (na = nb) while the right panel
has T ≈ 1.

For the case where fa = fb, the quantity (T −µT )/σT has a limiting standard normal distribu-
tion; i.e., it has a mean of zero and a width of one, where the mean is easily found to be

µT =
na(na−1)+nb(nb−1)

n(n−1)
(3.4)

using n = na +nb. For the special case na = nb, µT ≈ 1/2. The variance is much more difficult to
calculate since it depends on the p.d.f. The limiting value is given by

lim
n,nk,D→∞

σ
2
T =

1
nnk

(
nanb

n2 +4
n2

an2
b

n4

)
, (3.5)

see Appendix B for a detailed discussion on this quantity. The convergence to this limit is so fast
that Eq. 3.5 can be used to obtain a good approximation of σT even for D = 2 for certain values of
na,nb and nk; this is discussed in detail below in the context of the Dalitz-plot analysis.

As stated above, for the Dalitz-plot analysis considered in this paper the two data sets are the
data (whose parent distribution is f ) and a Monte Carlo sample obtained from the p.d.f. to be tested
(whose parent distribution is denoted by f0). The hypothesis to be tested is that f = f0. Eq. 3.3 can
be rewritten for the Dalitz-plot analysis as

T =
1

nk(nd +nmc)

nd+nmc

∑
i=1

nk

∑
k=1

I(i,k), (3.6)

where I(i,k) = 1 if the ith event and its kth nearest neighbor are either both data or both Monte
Carlo events and I(i,k) = 0 otherwise. It is worth noting that T is easy to calculate (it is simply a
bookkeeping exercise).

The expectation value of T is also easy to obtain from Eq. 3.4. Thus, the only information
required to obtain the g.o.f. are the values of nmc and nk that should be used. Generating more
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Monte Carlo data reduces the statistical uncertainty on f0. Similarly, collecting a larger number of
nearest-neighbor events reduces the statistical uncertainty on the local population density around
each event; however, the power of the method will obviously be reduced if the region of phase
space required to collect each event’s nk nearest neighbors becomes too large (analogous to using
very wide bins in a χ2 test). The constraints on nmc and nk required to insure the validity of Eq. 3.5
are discussed in detail in Appendix B. I have found that the values nmc = 10 nd and nk = 10 satisfy
all of the relevant concerns and constraints on these quantities.

In all of the results that follow the values of nmc = 10 nd and nk = 10 are used. For these
values, the mean, µT , and variance, σ2

T , of T are easily found from Eqs. 3.4 and 3.5, respectively.
The pull is then given by (T − µT )/σT . The pull distributions for the low, medium and high
statistics ensembles (nd = 100,1000 and 10000, respectively) obtained by mixing each data set
with a Monte Carlo data set (nmc = 10 nd) sampled from the Model p.d.f. are shown in Fig. 4(a).
The agreement of the results obtained with the expected (standard normal) distribution is excellent.
This is confirmation that the approximation for σT given in Eq. 3.5 is valid for all three sample
sizes considered here.

Fig. 4(b) shows the pull distributions (obtained in exactly the same way as for the Model p.d.f.)
for the Fit I p.d.f.’s. The agreement with the predicted distribution is very good; however, there is a
small test bias: µpull ≈−0.3 for each value of nd . Recall from Section 2 that such a bias is expected
because each Fit I p.d.f. is obtained from a fit to the data. This means that the agreement between
the Fit I Monte Carlo and the data is slightly better (on average) than that of two data sets randomly
sampled from the same parent distribution.

Because larger values of T are expected if f 6= f0, rejecting the hypothesis f = f0 at level α is
a one-sided cut on the pull. E.g., the cuts (T −µT )/σT > 1.28 and 1.64 correspond to rejecting at
90% and 95% confidence level, respectively. The rejection powers at 95% confidence level for the
Model and Fit I p.d.f.’s are shown in Table 2. Because of the relatively small number of data sets
used in each ensemble, there is a small uncertainty (a few percent) on each value. The deviation
from the expected rejection rate of 5% is within a few percent for both the Model and Fit I p.d.f.’s.
This is further confirmation that the approximation for σT given in Eq. 3.5 is valid for all three
sample sizes considered for the values of nmc and nk used in this study. It also demonstrates that
the effect of the small test bias on the rejection performance at 95% confidence level is only a few
percent and can safely be ignored.

Figs. 4(c) and (d) show the pull distributions obtained for the Fit II and Fit III p.d.f.’s, respec-
tively. The rejection powers at 95% confidence level for the Fit II and Fit III p.d.f.’s are shown in
Table 2. The rejection power for Fit II is excellent for nd = 10000, good for nd = 1000 and poor for
nd = 100. For Fit III the rejection power is fair for nd = 10000 and poor for nd ≤ 1000. Thus, this
method appears to be better at rejecting a large localized discrepancy than a small omnipresent one.
The method presented in Ref. [8] is easy to use and understand and has decent rejection power; it
would make a useful addition to the high energy physics g.o.f. toolkit.

3.2 Point-to-Point Dissimilarity Methods

If the parent p.d.f. of the data is known, then the statistic formed from the integral of the quadratic
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Figure 4. (Color Online) Pull distributions obtained by mixing low (blue dotted), medium (red dashed) and
high (solid black histograms) statistics data sets with Monte Carlo data obtained from the following p.d.f.’s
using the mixed-sample g.o.f. method of Ref. [8]: (a) Model; (b) Fit I; (c) Fit II; (d) Fit III. The (solid black)
curve shown in panels (a) and (b) represents the expected (standard normal) pull distribution. The (solid
black) vertical line shown in panels (c) and (d) represents the 95% confidence-level cut value; data sets with
(T −µT )/σT > 1.64 are rejected at this level. See Section 3.1 for further discussion on these results.

nd Model Fit I Fit II Fit III
10000 3% 3% 100% 35%
1000 2% 4% 73% 5%
100 6% 3% 5% 3%

Table 2. Rejection power at 95% confidence level using the mixed-sample method of Ref. [8].

difference between f and f0,

T =
1
2

∫
( f (~x)− f0(~x))

2 d~x, (3.7)

– 9 –



can be used as a measure of g.o.f. Since f is not known, T cannot be calculated. Of course, if f
were known there would also be no reason to perform a fit.

A more general form of Eq. 3.7 involves correlating the difference between the two p.d.f.’s
at different points in the multivariate space using a weighting function, denoted by ψ(|~x−~x′|), as
follows [10, 11, 12, 13]:

T =
1
2

∫ ∫
( f (~x)− f0(~x))

(
f (~x′)− f0(~x′)

)
ψ(|~x−~x′|)d~xd~x′. (3.8)

Notice that Eq. 3.7 is simply Eq. 3.8 for the case ψ(|~x−~x′|) = δ (|~x−~x′|). Expanding the term in
the integrand yields

T =
1
2

∫ ∫ [
f (~x) f (~x′)+ f0(~x) f0(~x′)−2 f (~x) f0(~x′)

]
ψ(|~x−~y|)d~xd~x′, (3.9)

which can be calculated using only the data and a Monte Carlo data set sampled from f0 as follows:

T =
1

nd(nd−1)

nd

∑
j>i

ψ(|~xd
i −~xd

j |)

+
1

nmc(nmc−1)

nmc

∑
j>i

ψ(|~xmc
i −~xmc

j |)−
1

ndnmc

nd ,nmc

∑
i, j

ψ(|~xd
i −~xmc

j |). (3.10)

Thus, T is very easy to calculate. I also note here that the expectation value of T is larger for the
case f 6= f0.

The following choices for the functional form of ψ(x) are used in the statistical literature:
Ref. [10] uses ψ(x) = x2; Ref. [11] uses ψ(x) = x; Refs. [12, 13] use ψ(x) = 1

x , ψ(x) =− logx and
ψ(x) = e−x2/2σ2

. Ref. [12], which was written by physicists, observes that for the case ψ(x) = 1
x

Eq. 3.8 is the electrostatic energy of two charge distributions of opposite sign. Ref. [12] also notes
that the electrostatic energy is minimized if the charges neutralize each other, i.e., if f = f0. This
was the motivating factor behind the derivation of their method.

The optimal choice for the weighting function depends on the p.d.f. to be tested. Since Dalitz-
plot p.d.f.’s vary rapidly, I chose to use ψ(x) = e−x2/2σ2

; thus, from this point forward I will follow
Ref. [12] which alters Eq. 3.10 slightly by writing

T =
1
n2

d

nd

∑
j>i

ψ(|~xd
i −~xd

j |)−
1

ndnmc

nd ,nmc

∑
i, j

ψ(|~xd
i −~xmc

j |). (3.11)

The replacement of 1/nd(nd−1) with 1/n2
d is made due to the better small number properties of the

latter expression. The term in Eq. 3.10 that depends only on the Monte Carlo is dropped because
its statistical fluctuations should be negligible (assuming nmc � nd). Perhaps, from a theoretical
perspective, it would be better to keep this term; however, in practice I found that including it
greatly increased the processing time but had no effect on the performance of the method.

Ref. [12] also suggests that, rather than using a constant value for σ in ψ(x), the choice
σ(~x) ∝ 1/ f0(~x) improves the power of the test. Thus, I have chosen to use the following weighting
function:

ψ(|~xi−~x j|) = e−|~xi−~x j|2/2σ(~xi)σ(~x j), (3.12)
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where σ(~x) = σ̄/( f (~x)
∫

d~x′). I have included the factor of
∫

d~x′, which is simply the area of the
Dalitz plot in this analysis, because the mean value of f (~x)

∫
d~x′ is one. This makes the interpre-

tation of σ̄ much easier. I note here that in my tests of this method the variable σ(~x) did perform
significantly better than using a constant σ .

Given this choice for ψ(x), T can now be calculated from the data and a Monte Carlo data set
sampled from the test p.d.f. The number of Monte Carlo events generated should be much larger
than the number of data (nmc � nd) to ensure that statistical fluctuations in the Monte Carlo are
negligible. Unlike for the mixed-sample method, there is no inherent limit on nmc here. The only
limiting factor is the amount of processing time. I will postpone the discussion on the lone nuisance
parameter, σ̄ , until later but note here that its optimal value can be estimated by examining f0; i.e.,
it can be obtained from the physics or interest.

Once the Monte Carlo is generated and a value for σ̄ is chosen, T can be calculated; however,
the distribution of T for the case f = f0 is not known which means that the p-value cannot be
calculated. Although it cannot be calculated, the p-value can be estimated using a re-sampling
method known as the permutation test. This approach involves combining the data and Monte
Carlo data into a pooled sample of size nd + nmc. A sample of size nd is then randomly drawn
from the pooled sample and temporarily labeled “data” while the remaining nmc events are labeled
“Monte Carlo.” The test statistic, denoted Tperm, is then calculated with these designations for each
event. This process is then repeated nperm times to obtain {T 1

perm . . .T nperm
perm }. The p-value is then

simply the fraction of times where T < Tperm. For a more detailed discussion on this technique, see
Appendix C.

In all of the results that follow the value σ̄ = 0.01 is used (this quantity is discussed in detail be-
low). The p-value distributions for the low, medium and high statistics ensembles (nd = 100,1000
and 10000, respectively) obtained using each data set and a Monte Carlo data set sampled from
the Model p.d.f. are shown in Fig. 5(a). The agreement of the results obtained with the predicted
(flat) distribution is excellent. This is confirmation that the permutation technique does produce
valid p-values for all three sample sizes considered. Fig. 5(b) shows the p-value distributions for
the Fit I p.d.f.’s (obtained in exactly the same way as for the Model p.d.f.). The agreement with the
predicted distribution is very good; however, there is a small test bias (a small positive slope) for
nd ≤ 1000. Again, such a bias is expected because each Fit I p.d.f. is obtained from a fit to the data.

Rejection of the hypothesis f = f0 at level α is simply done by requiring the p-value be less
than 1−α (e.g., p < 0.05 at 95% confidence level). The rejection powers at 95% confidence level
for the Model and Fit I p.d.f.’s are given in Table 3. The deviation from the expected rejection rate
of 5% is within a few percent for both the Model and Fit I p.d.f.’s for σ̄ = 0.01. This is further
confirmation that the permutation technique is valid for all three sample sizes considered in this
study. It also demonstrates that the effect of the small test bias on the rejection performance at 95%
confidence level is only a few percent. Figs. 5(c) and (d) show the p-value distributions obtained
for the Fit II and Fit III p.d.f.’s. The rejection powers at 95% confidence level for these p.d.f.’s are
given in Table 3. The rejection power for Fit II is excellent for nd = 10000 and 1000 and fairly poor
for nd = 100. For Fit III the rejection power is good for nd = 10000, fair for nd = 1000 and poor
for nd = 100. These are impressive results given the relatively low level of discrepancy between
the data and the Fit II and Fit III p.d.f.’s.

The results obtained using σ̄ = 0.01 are impressive, but how does one know what value to
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Figure 5. (Color Online) p-value distributions obtained from low (blue dotted), medium (red dashed)
and high (solid black histograms) statistics data sets from the following p.d.f.’s using the point-to-point
dissimilarity g.o.f. method of Ref. [12]: (a) Model; (b) Fit I; (c) Fit II; (d) Fit III. Data sets whose p-values
are less than 0.05 are rejected at 95% confidence level (by definition). See Section 3.2 for further discussion
on these results.

nd Model Fit I Fit II Fit III
10000 [0:5:4:6]% [8:2:4:1]% [100:100:100:100]% [41:78:81:77]%
1000 [7:6:3:9]% [5:4:2:3]% [93:100:100:71]% [9:12:15:29]%
100 [5:6:3:2]% [5:5:2:1]% [11:14:10:1]% [5:4:3:1]%

Table 3. Rejection power at 95% confidence level for σ̄ = [0.001:0.005:0.01:0.05] using the point-to-point
dissimilarity method of Ref. [12]. See Section 3.2 for discussion on the value of σ̄ .

choose for σ̄? Table 3 shows the rejection power at 95% confidence level for the σ̄ values 0.001,
0.005, 0.01 and 0.05. The units of σ̄ are those of mass squared (see Eq. 3.12); thus, the quan-
tity
√

σ̄ , which has approximate values 0.03, 0.07, 0.1 and 0.22, has units of mass. The method
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presented in this section performs best for 0.07 .
√

σ̄ . 0.1. The typical resonance width in the
Dalitz-plot model used in this analysis is Γ̄ = ∑ ffrΓr/∑ ffr ≈ 0.06, where ffr and Γr are the fit
fractions and widths of the resonances, respectively. The preferred range for σ̄ can be rewritten
using this quantity as Γ̄ .

√
σ̄ . 2Γ̄.

This result is not surprising. The widths of the resonances serve as a measure of how rapidly
the p.d.f. varies. If

√
σ̄ < Γ̄ then the p.d.f. is approximately constant in the Gaussian region around

each event. If
√

σ̄ > 2Γ̄ then the finer structure in the p.d.f. is lost in the comparison. From this
one can conclude that the physics of interest can be used to estimate the optimal value of σ̄ . In
practice, it would be advisable to obtain p-values for several σ̄ values in the expected optimal
region. The conclusions drawn about the quality of the fit should not depend on this quantity
(provided a reasonable choice is made). If a strong dependence is observed, then further study
using Monte Carlo may be necessary. I note here that for other types of high energy physics
analyses a different choice for ψ(|~xi−~x j|) may perform better. Additional Monte Carlo studies
may be necessary in these cases.

This method has excellent rejection power for both large localized discrepancies and small
omnipresent ones, even for fairly low-statistics data sets. Conceptually, it is not as easy to un-
derstand as some other methods, e.g., the mixed-sample method described in Section 3.1. It also
requires a rather large amount of processing time (O(1 hr) for nd = 10000) due to the fact that
the use of the permutation technique is required. These downsides are not enough to out-way its
excellent performance. For a Dalitz-plot (or similar) analysis, this method is a very powerful g.o.f.
tool.

3.3 Distance to Nearest Neighbor Methods

The distance from any event to its nearest neighbor is inversely proportional to the magnitude of
the parent p.d.f in the region around the event. I.e., in a region where the parent p.d.f. is larger
(smaller) the density of events will also be larger (smaller); thus, the events will be closer together
(farther apart) on average. This fact can be used to construct a g.o.f. test.

Ref. [14] defines the following statistic for the ith event in a data set:

Ui = exp
(
−nd

∫
|~x−~xi|<Rnn

i

f0(~x)d~x
)
' exp(−nd f0(~xi)VD(Rnn

i )) , (3.13)

where Rnn
i is the distance from the ith event to its nearest neighbor and VD(R) ∝ RD is the D-

dimensional hyper-spherical volume of radius R. The approximation∫
|~x−~xi|<Rnn

i

f0(~x)d~x' f0(~xi)VD(Rnn
i ), (3.14)

which is valid if the hypersphere centered at~xi with radius Rnn
i is sufficiently small such that f0(~x) is

approximately constant inside of it, is made to avoid having to do the integral. Given the power of
modern computers, it is possible to omit this substitution and do the integral numerically; however,
I found that this had no effect on the results. For the case f = f0, the distribution of U values is
approximately uniform (see Appendix D for a detailed discussion).

Fig. 6 shows the U distributions obtained for a single high statistics (nd = 10000) data set. For
the Model and Fit I p.d.f.’s the distributions are in good agreement with the expected (uniform) one.
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Figure 6. Distributions for the U statistic of Ref. [14] defined in Eq. 3.13 for a single high statistics
(nd = 10000) data set for the following p.d.f.’s: (a) Model; (b) Fit I; (c) Fit II; (d) Fit III. The (solid red) line
shows the expected (uniform) distribution.

The Fit II U distribution has a significant deviation from this, while the Fit III distribution does not.
Based on these plots one would expect (for nd = 10000) this method to have good rejection power
for Fit II and poor rejection power for Fit III.

Obtaining a g.o.f. value simply involves testing the uniformity of the one-dimensional U dis-
tributions. This can be done in a number of ways (e.g., using a χ2 test); the method suggested in
Ref. [14] is to use the statistic

T =
nd

∑
i
(U ′i − i/nd)

2, (3.15)

where {U ′i } is the set of ordered U values. Fig. 7(a) shows the T distributions obtained using this
method for the Model p.d.f. Because of the fact that the uniformity of the U distributions is only
approximate, the observed location of the 95% confidence-level cut is not at the value expected if
the p.d.f. of the U distribution was truly uniform. This is discussed in more detail below. Fig. 7
also shows the T distributions for the Fit I, Fit II and Fit III p.d.f.’s. The rejection powers at 95%
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Figure 7. (Color Online) T distributions obtained from low (blue dotted), medium (red dashed) and high
(solid black histograms) statistics data sets from the following p.d.f.’s using the distance to nearest-neighbor
g.o.f. method of Ref. [14]: (a) Model; (b) Fit I; (c) Fit II; (d) Fit III. The expected and observed locations of
a 95% confidence-level cut are shown by the solid and dashed lines, respectively. See Section 3.3 for further
discussion on these results.

confidence level for all four p.d.f.’s are given in Table 4. For Fit II, the rejection power is excellent
for nd = 10000, fair for nd = 1000 and poor for nd = 100. The rejection power is poor for Fit III
for all data set sizes considered in this study.

nd Model Fit I Fit II Fit III
10000 5(17)% 7(16)% 100(100)% 6(16)%
1000 3(12)% 4(12)% 38(61)% 5(12)%
100 7(21)% 7(21)% 6(14)% 7(18)%

Table 4. Rejection power for T > 0.7(0.45) corresponding to the observed (expected) 95% confidence level
limit of the distance to nearest neighbor method of Ref. [14].
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This method is very easy to use, has no nuisance parameters and requires very little processing
time. Unfortunately, it is not very powerful. The theoretical 95% confidence-level cut rejects too
many data sets due to the fact that the U distributions are only approximately uniform for the
case f = f0. Because of this, I do not think the p-values are worth calculating (especially given the
power of the previous two methods); however, that does not mean this method is useless. Producing
the U distribution is fast and easy and can reveal any large discrepancies between the fit p.d.f. and
the data. For this reason, this method does (at least) have a place as a diagnostic tool. Furthermore,
it could be useful to publish the U distribution for a very high-dimensional analysis to provide an
easy to interpret demonstration of the qualitative agreement between the data and the fit p.d.f.

3.4 Local-Density Methods

The local density of events in a region around each event in the data set can be compared to the
density expected from a test p.d.f. to determine the g.o.f. This idea was introduced in Ref [15] as a
way of testing a two-dimensional distribution for complete spatial randomness, i.e., testing whether
a distribution is consistent with a uniform Poisson process. For this (2-D homogeneous) case the
expected number of events contained inside a circle of radius r around the ith event in the data set
is given by 〈

nd

∑
j=1, j 6=i

I(|~xi−~x j|< r)

〉
= (nd−1)

πr2

A
, (3.16)

where I(true) = 1, I(false) = 0 and A is the total area that the events are allowed to occupy. Eq. 3.16
simply states that the expected number of events inside of the circle is the total number of events
multiplied by the fraction of the total allowed area occupied by the circle used to collect the events.
If the circle centered at~xi with radius r intersects the boundary of the allowed data region, then an
edge correction factor is also required (this is discussed in detail below).

Ref. [15] uses the sum of the Eq. 3.16 values for each event to define the K function as follows:

K(r) =
A
n2

d

nd

∑
i=1

∑
j 6=i

I(|~xi−~x j|< r)/a(i, j), (3.17)

where a(i, j) is the edge correction factor for the circle centered at~xi with radius |~xi−~x j|. There is a
lot of discussion in the literature concerning different ways of calculating a(i, j). Ref. [15] suggests
using the fraction of the circumference of the circle that lies inside the allowed data region. I found
that randomly sampling points within the circle and counting the fraction that fall in the allowed
data region works best. This method is not discussed in the references I have read; however, this is
most likely due to the limited computing power available at the time these references were written.
With the power of modern computers, this approach is quite feasible (although, it is still worth
while to first check whether any part of the circle exits the allowed data region prior to doing the
calculation).

The expectation value of Eq. 3.17 is easily calculated to be 〈K(r)〉 = πr2(nd − 1)/nd ≈ πr2.
Typically in two dimensions the quantity L(r) =

√
K(r)/π , introduced in Ref. [16], is used instead;

this quantity has 〈L(r)〉 ≈ r. The g.o.f. is then determined by examining how well the K(r) or L(r)
distribution agrees with the expected one. For a Poisson process, larger values of K and L are
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expected if the process is non-uniform. The reasoning is identical to that used above for the mixed-
sample methods. If the process is non-uniform, then the events will tend to cluster together. This
results in there being more events (on average) inside the circles drawn around each event which, in
turn, leads to larger K and L values. Using the K and L distributions to determine g.o.f. is discussed
in more detail below.

An extension for the inhomogeneous case (i.e., for non-uniform p.d.f.’s) for D dimensions is
provided in Ref. [17]. The generalized K function is written as

K(r) =
1

VDn2
d

nd

∑
i=1

∑
j 6=i

I(|~xi−~x j|< r)
v(i, j) f0(~xi) f0(~x j)

, (3.18)

where VD is the total allowed D-dimensional hyper-volume and v(i, j) is the D-dimensional equiv-
alent of a(i, j) in Eq. 3.17; i.e., it is the allowed hyper-volume fraction of a hypersphere centered at
~xi with radius |~xi−~x j|. The factor of VD appears in the denominator of Eq. 3.18 while the factor of
A appears in the numerator of Eq. 3.17. This difference is simply due to the inverse-hyper-volume
units of the p.d.f. factors included in Eq. 3.18 (that are not present in Eq. 3.17).

For a Dalitz-plot analysis VD is the total area of the Dalitz plot and v(i, j) is the fraction of the
circle centered at~xi with radius |~xi−~x j| that is inside the kinematically allowed region of the Dalitz
plot. Because of the fact that a Dalitz-plot analysis is two-dimensional, the quantity L(r) (defined
in the same way as for the inhomogeneous case) can be used. Fig. 8 shows the L(r) distributions
for each of the p.d.f.’s examined in this study along with the expected (linear) distribution. The L
functions obtained using the Model and Fit I p.d.f.’s are in excellent agreement with the expected
result. Notice that for large values of r the Fit I L function dips below the L(r) = r line. Recall
that larger values of L indicate a discrepancy between the fit and parent p.d.f.’s; thus, this dip is not
evidence of a discrepancy in the fit p.d.f. It is actually evidence of a small test bias. The fact that the
test bias increases with increasing r is expected. For large values of r, large regions of phase space
are used to collect each event’s neighbors resulting in a much coarser comparison between the fit
p.d.f. and the data. This is not a pathology; it simply means that the K and L statistics become less
meaningful for large values of r (analogous to a histogram with only a few large bins).

Figs. 8(c) and (d) also show the L(r) distributions for the Fit II and Fit III p.d.f.’s, respectively.
Both have L(r) > r for all r values considered. To obtain a g.o.f. value, the significance of these
deviations from the expected distribution needs to be quantified. It is important to realize that the
values L(r1) and L(r2) are not independent measurements. If r1 < r2, then all of the weighted
events used to obtain L(r1) are also used to obtain L(r2). Because of this one cannot use, e.g., a χ2

test to determine the significance of any deviations of L(r) from L(r) = r.
Ref. [15] suggests a procedure that requires sampling an ensemble of Monte Carlo data sets

from the test p.d.f. ( f0 in this case) each with nmc = nd . For the data and each Monte Carlo data set
the maximum deviation from the expected distribution,

T = (L(r)− r)max , (3.19)

is then calculated. Recall that for a Poisson process, larger values of T correspond to a lesser
level of agreement between the fit and parent p.d.f.’s; thus, a one-sided cut on T is employed. The
fraction of the Monte Carlo data sets whose T value is larger than that of the data is then used as the
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Figure 8. Distributions for the L(r) statistic of Ref. [17] for a single high statistics (nd = 10000) data set
for the following p.d.f.’s: (a) Model; (b) Fit I; (c) Fit II; (d) Fit III. The (solid red) line shows the expected
(L(r) = r) distribution.

p-value. There are still two nuisance parameters that need to be determined: the step size in r and
the maximum value of r. Neither of these quantities appears to be very important. As discussed
above, the test bias (which drives T downwards) increases with increasing r; thus, it is unlikely that
the value used for T will come from a very large r value. I chose rmax such that a circle with radius
rmax contained (on average) about 10% of the events. The step size also determines the minimum
value of r at which events are collected. This simply needs to be chosen to be large enough such
that some events do contribute to K or L for rmin.

Fig. 9(a) shows the p-value distribution obtained for the Model p.d.f. The distribution is in
good agreement with the expected (uniform) one. Fig. 9(b) shows the p-value distribution obtained
for the Fit I p.d.f. The agreement with the expected distribution is very good; however, there is a
small test bias for nd ≤ 1000. This is, again, expected and is small enough to safely be ignored.
Figs. 9(c) and (d) show the p-value distributions obtained for the Fit II and Fit III p.d.f.’s, while
the rejection power at 95% condidence level for all four p.d.f.’s is given in Table 5. The rejection
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Figure 9. (Color Online) p-value distributions obtained from low (blue dotted), medium (red dashed) and
high (solid black histograms) statistics data sets from the following p.d.f.’s using the local-density g.o.f.
method of Ref. [17]: (a) Model; (b) Fit I; (c) Fit II; (d) Fit III. Data sets whose p-values are less than 0.05
are rejected at 95% confidence level (by definition). See Section 3.4 for further discussion on these results.

power for Fit II is excellent for nd = 10000, very good for nd = 1000 and poor for nd = 100. For
Fit III, the rejection power is good for nd = 10000, fair for nd = 1000 and poor for nd = 100.
Overall, these results are impressive. The poor performance at nd = 100 is not surprising since this
method relies on using each event’s neighbors to obtain an estimate of the local density. For very
low statistics data, this density estimation is difficult due to the small number of neighbor events
contained within each hypersphere (or circle for the Dalitz-plot analysis).

This method has excellent rejection power for large localized discrepancies and good rejec-
tion power for small omnipresent ones (excluding low statistics data sets). It is also fairly easy
to understand conceptually. Unfortunately, determining the p-values is an involved process that
requires generating an ensemble of Monte Carlo data sets and a large amount of processing time. If
the resources are available to calculate the p-value, then the rejection power of the method makes
it a worthwhile endeavor. Even without calculating the p-values, the method can still be useful.
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nd Model Fit I Fit II Fit III
10000 5% 2% 100% 71%
1000 6% 3% 84% 18%
100 7% 1% 1% 3%

Table 5. Rejection power at 95% confidence level of the local-density method of Ref. [17].

Using just the data and no Monte Carlo one can produce the K or L distribution. About 50% of my
toy-model data sets have L(r) < r ∀ r for Fit I. This is expected given that the L values are highly
correlated and that the test bias increases with increasing r. Thus, if one is fitting data with the true
parent p.d.f. (with some free parameters), then there is about a 50% chance that L(r) < r ∀ r at
which point one can say that p & 0.5. Of course, one should be suspicious if there appears to be a
large test bias, i.e., a large downwards turn in the K or L distribution. Regardless of whether or not
the p-value is calculated, the K or L distribution plot could be a useful addition to any publication.
One can also include the 95% confidence-level band on the plot for reference if the ensemble of
Monte Carlo is produced (see Ref. [15] for examples).

3.5 Kernel-Based Methods

In Section 3.2 I noted that the integral of the quadratic difference between f and f0,

T =
1
2

∫
( f (~x)− f0(~x))

2 d~x, (3.20)

could be used as a measure of g.o.f. if the parent p.d.f. of the data were known. Since f is not
known, T cannot be calculated; however, if f can be approximated, then T can also be approxi-
mated. This is the approach taken by kernel-based g.o.f. methods.

A probability density estimate (p.d.e.) can be obtained through the use of a kernel function
defined as follows for D dimensions:

fnd (~x) =
1

ndb(nd)D

nd

∑
i=1

w
(
|~x−~xi|
b(nd)

)
, (3.21)

where b(nd) is the bandwidth and w is a weighting function. A simple example is shown in Fig. 10
for illustrative purposes. The parent p.d.f. to be approximated is f (x) ∝ e−x2/2. A very small data
set (nd = 10) is randomly sampled from this p.d.f. (the extremely small sample size was chosen
so the construction of the p.d.e. could be illustrated on the plot). The first step in kernel-based
p.d.e. construction is choosing a weighting function. In principle this could take on just about any
functional form (see Ref. [18] for the limited list of restrictions); however, in practice it is typically
chosen to be either a Gaussian line shape or uniform with a cutoff window. Fig. 10 shows the p.d.e.’s
obtained using a standard normal Gaussian weighting function for three different bandwidths. The
quality of the p.d.e. is highly dependent on the value chosen for the bandwidth (discussion on how
to choose the bandwidth is given below).

Once the p.d.e. fnd (~x) has been constructed, then the g.o.f. can be obtained by examining the
statistic [19]

T = ndb(nd)
D/2
∫
( fnd (~x)− f0(~x))2d~x. (3.22)
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Figure 10. (Color Online) Example kernel-based p.d.e.’s for the p.d.f. f (x) ∝ e−x2/2 (solid black lines)
obtained for a very small data set (nd = 10). The location of the data points (sampled randomly from f (x))
is indicated on each plot (black triangles along the x-axis). The kernels are obtained using Eq. 3.21 with
weighting function w(x) ∝ e−x2/2 and using the following bandwidths: (a) b(nd) = 0.3; (b) b(nd) = 0.5; (c)
b(nd) = 0.7. The weighting function at each data point is shown on the plots (blue, dashed lines). The p.d.e.
(red, solid lines) is formed by summing the values of the weighting functions at each value of x.

Ref. [20] suggests replacing f0(~x) by f0nd (~x) (the expectation value of the p.d.e. at ~x) to remove
the bias that arises from using f0(~x). I.e., there is no guarantee that the kernel-based p.d.e. is not a
biased estimate of the true p.d.f. (especially near the edges of the allowed data region); thus, it is
better to use the p.d.e. of f0 instead of f0 itself. The test statistic defined in Eq. 3.22 has an expected
mean of µT = b(nd)

−D/2 ∫ w2(z)dz and an expected variance of

σ
2
T = 2

∫ (∫
w(y+ z)w(z)dz

)2

dy
∫

f 2
0 (~x)d~x. (3.23)

Unfortunately, the theoretical mean and variance values given above are often not accurate for finite
sample sizes; thus, the p-value obtained using them is not reliable [19]. I found this to be true in
my analysis. The quality of the µT and σT values given above varied drastically as a function of
b(nd). Given that the value of b(nd) must be chosen (somewhat arbitrarily) by the experimenter,
this is a disastrous result.

Since one cannot trust the p-values obtained using the theoretical (limiting) T distribution,
some form of data-driven method must be used to calculate the p-value. I have chosen to use the
permutation test used in Section 3.2. I have not explored whether some other re-sampling method
(e.g., bootstrapping, jackknifing, etc.; see Ref. [21]) would perform better. The application of the
permutation test for this method is identical to the point-to-point dissimilarity method of Ref. [12].
A Monte Carlo data set is sampled from f0 and used, along with the data, to calculate T from
Eq. 3.22. A set of random permutations of the labels “data” and “Monte Carlo” (keeping nd and
nmc fixed) are then used to estimate the distribution of T and, in turn, the p-value. A detailed
discussion on this technique is provided in Appendix C.

The results presented below were obtained using a normal Gaussian weighting function. I also
tried using a uniform weighting function with a cutoff window; this had little effect on the results. I
found that the choice of bandwidth is much more important than the choice of weighting function.
Fig. 11 shows the p-value distributions obtained using a constant bandwidth of b(nd) = 0.01, while
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Figure 11. (Color Online) p-value distributions obtained from low (blue dotted), medium (red dashed)
and high (solid black histograms) statistics data sets for the following p.d.f.’s using the kernel-based g.o.f.
method of Ref. [19]: (a) Model; (b) Fit I; (c) Fit II; (d) Fit III. Data sets whose p-values are less than 0.05
are rejected at 95% confidence level (by definition). See Section 3.5 for further discussion on these results.

the rejection power at 95% confidence level for each p.d.f. is given in Table 6. This value was found
to be the optimal one in Section 3.2 when using a Gaussian weighting function in the point-to-point
dissimilarity method of Refs [12, 13]. The p-value distribution obtained for the Model p.d.f. is in
good agreement with the expected (uniform) one. This validates the use of the permutation test
for this method. The test bias obtained for Fit I is fairly small (a few percent) and can safely be
ignored. Overall, the rejection power obtained for Fit II and Fit III for this value of the bandwidth
is fairly poor.

Data-driven methods for choosing a bandwidth do exist; however, they are designed to produce
the best possible p.d.e. (not the most reliable g.o.f. test). E.g., the rule-of-thumb for the bandwidth
of a multivariate Gaussian kernel is b(nd) = 1/nD+4

d [22]. One could also use the variate-dependent
bandwidth bv(nd) = σv/nD+4

d , where σv is the standard deviation of the data in the vth variate [22].
For nd < 10000 these formulas produce bandwidths that are too large to be used in a g.o.f. test. The
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nd Model Fit I Fit II Fit III
10000 4% 4% 100% 13%
1000 3% 1% 26% 5%
100 3% 2% 5% 2%

Table 6. Rejection power at 95% confidence level of the kernel-based method of Ref. [19] using
b(nd) = 0.01. See Section 3.5 for discussion on the value of the bandwidth.

same reasoning used in the previous section to argue that the test bias increases with increasing
hyper-spherical radius applies here as well. As the bandwidth increases, a larger fraction of the
data set contributes to the p.d.e. at each value of~x. While this does improve the quality of the p.d.e.,
it also results in an increased test bias. I have verified this in the Dalitz-plot analysis performed
in this paper. The method presented in this section requires all of the overhead of the point-to-
point dissimilarity method of Ref. [12]; however, it is not as powerful or reliable. It is easy to
understand conceptually, but this alone is not sufficient to recommend its use in a Dalitz-plot (or
similar) analysis.

4. Discussion

In this paper I have studied the performance of a variety of unbinned multivariate g.o.f. tests when
applied to a real-world high energy physics analysis (a Dalitz-plot analysis). The vastness of the
statistical literature on this topic makes it impossible to study all of the available tests. Instead, I
chose to categorize the tests based on the underlying concept used to determine the g.o.f. In each
of these categories one method was tested and the following results were obtained:

Mixed-Sample Methods
The method presented in Ref. [8] is easy to use and conceptually it is easy to understand.
It is excellent at rejecting large localized discrepancies but fairly poor at rejecting small
omnipresent ones. The p-values can be calculated analytically. This method would make a
nice addition to the high energy physics g.o.f. toolkit.

Point-to-Point Dissimilarity Methods
The method presented in Refs. [12, 13] has excellent rejection power for both large localized
discrepancies and small omnipresent ones. Determining the p-value requires re-sampling
the data (using the permutation test) which uses a relatively large amount of processing time.
The method is not as easy to understand conceptually as some of the other methods tested in
this paper. These downsides are not enough to out-way its excellent performance; this is a
very powerful g.o.f. tool.

Distance to Nearest-Neighbor Methods
The method presented in Ref. [14] is easy to use, requires very little processing time and
is conceptually fairly easy to understand; however it is not very powerful. The U statistic
it defines does provide a useful easy-to-visualize diagnostic tool (especially for very high
dimensional analyses), but its quantitative usefulness as a g.o.f. test is limited.
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Local-Density Methods
The method presented in Ref. [17] has excellent rejection power for large localized discrep-
ancies and good rejection power for small omnipresent ones. It is fairly easy to understand
conceptually and provides a nice visual element in the K and L distributions. Determining
the p-values requires generating an ensemble of Monte Carlo data sets and a large amount of
processing time. This is a very useful g.o.f. tool.

Kernel-Based Methods
The method presented in Ref. [19] requires all of the overhead of the point-to-point dissim-
ilarity method of Refs. [12, 13] but is nowhere near as powerful or reliable. It is easy to
understand conceptually; however, this is not sufficient justification to make it a useful high
energy physics g.o.f. tool.

In Section 1 I noted that no g.o.f. test is the most powerful in all situations (even in one
dimension). Thus, there certainly is not a universal unbinned multivariate g.o.f. road map suitable
for all high energy physics analyses; however, that does not mean that some general guidance on
how to apply the g.o.f. methods studied in this paper cannot be provided. The following is an
approximate road map for applying these g.o.f. methods to a high energy physics analysis:

• Start by plotting the U distribution from the distance to nearest-neighbor method of Ref. [14].
This is easy to do and requires very little processing time and no Monte Carlo data. Any clear
deviations from uniformity indicate that the fit p.d.f. is not in good agreement with the data.
This is especially useful for high-dimensional analyses where it can often be difficult to
obtain even a qualitative comparison between the data and the fit p.d.f.

• Next plot the K(r) or L(r) distribution from the local-density method of Ref. [17]. This also
requires a small amount of processing time and no Monte Carlo data. If the values are less
than the expected ones (e.g., if L(r)< r ∀ r) then the p-value will be at least approximately
0.5. Thus, one would accept the fit unless a large fit bias is suspected due to a pronounced
downward turn in the K or L distribution.

• Next, generate a Monte Carlo data set from the fit p.d.f. and obtain the p-values from the
mixed-sample method of Ref. [8] and the point-to-point dissimilarity method of Refs. [12,
13]. This requires a relatively large amount of processing time; however, access to both of
these p-values should be sufficient to accept or reject the test hypothesis.

• Finally, if Monte Carlo generation is not too expensive (processing wise), then generate an
ensemble of Monte Carlo data sets and calculate the p-value using the local-density method
of Ref. [17]. At this point the significance bands can also be added to the K or L distribution
plots (a nice addition if these are to be published).

All of this information can then be used to either accept or reject the hypothesis that the fit p.d.f.
is the parent p.d.f. of the data. Exactly how this is done is analysis dependent. Clearly, the ideal
situation is that all of the tests either accept or reject this hypothesis making the conclusion obvious.
If, however, the results are mixed, then one needs to carefully examine how each of the g.o.f.
methods applies to the specific p.d.f. being tested and attempt to resolve (or, at least, understand)

– 24 –



the conflict. The agreement between the g.o.f. methods for the Dalitz-plot analysis performed in
this paper (following the road map above) was excellent.

5. Conclusions

In conclusion, the statistical literature on unbinned multivariate g.o.f. tests is vast. Rather than sim-
ply applying the χ2 test to every analysis or attempting to invent new unbinned multivariate g.o.f.
tests, the high energy physics community would be better served to study the power and applica-
bility of the g.o.f. methods published in the statistical literature. Finally, it would be worthwhile to
perform studies similar to this one for other types of high energy physics analyses. This should be
straightforward following the work presented in this paper.
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A. Goodness-of-Fit from Likelihood Values

Many high energy physics analyses have attempted to use the m.l.v., Lmax, as a measure of g.o.f.
The method used involves the following steps: the data is fit to obtain Lmax; the fit p.d.f. is used
to generate an ensemble of Monte Carlo data sets; the g.o.f. is determined using Lmax from the
data and the distribution of m.l.v.’s obtained from the Monte Carlo. This method is not published
anywhere (that I have been able to find) in the statistical literature. It is fatally flawed and should
not be used. One can easily see this method is flawed by applying it to the hypothesis f0 = constant
(where the likelihood only depends on nd); however, in this Appendix I will follow Ref. [4] and
apply it to a more illustrative example.

Ref. [4] does an excellent job demonstrating the flaws in this method by applying it to the
following simple one-dimensional p.d.f.:

f (x) =
1
X

e−x/X , (A.1)

where X is an unknown parameter to be estimated from a fit to the data. The likelihood for a data
set with nd events is given by

− logL =
nd

∑
i=1

(xi/X + logX) . (A.2)
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Figure 12. Data sampled randomly from a uniform distribution on the interval [0,1). The line represents
the results of a fit of the p.d.f. given in Eq. A.1 to the data. The p-value obtained using the method described
in Appendix A is 0.52.

The m.l.v., which occurs when dlogL /dX = 0, is

− logLmax = nd (1+ log X̄) , X̄ =
1
nd

nd

∑
i=1

xi. (A.3)

From Eq. A.3 one can see that Lmax is a simple function of X̄ ; thus, all data sets with the same
sample mean, regardless of what their parent p.d.f. is, will have the same g.o.f. value using this
method for the p.d.f. defined in Eq. A.1.

To illustrate why this is so disastrous, consider a data set that consists of nd = 1000 events
sampled randomly from a uniform distribution on the interval [0,1). A fit of the p.d.f. given in
Eq. A.1 to this data yields X̄ ≈ 1/2 with the corresponding m.l.v. given by Eq. A.3. Fig.12 shows
the results of this fit. Clearly, the fit p.d.f. does not reproduce the data; however, applying the g.o.f.
method described in this Appendix yields a p-value of 0.52. What went wrong? The ensemble of
Monte Carlo data sets were generated using the value of X̄ obtained from the data. The sample
means of these data sets are then just statistical fluctuations around X̄ . Since the m.l.v. is a simple
function of the sample mean, one would expect the g.o.f. value to always be approximately 0.5 for
this p.d.f. (regardless of what the true parent p.d.f. of the data is). This method is also not invariant
under change of variables and is biased; see Ref. [4] for more discussion on these topics.

In this example Lmax provided no information about the g.o.f. In general, unless the test-
statistic p.d.f. is known (which is the case, e.g., for the χ2 test) then the test statistic used to obtain
estimators for the unknown parameters in the p.d.f. and the one used to determine g.o.f. should be
weakly correlated. If the correlation is strong (which is clearly the case when they are the same
statistic), then the g.o.f. test is redundant. Of course, the deficiencies in this method are not always
this disastrous for more complicated p.d.f.’s. In some cases this method can expose discrepancies
between the fit p.d.f. and the data. It is important to realize that this does not make it a valid g.o.f.
method; it makes it a cross check. To be a valid g.o.f. method it must (at least) produce a uniform
p-value distribution if f = f0. This method, in many cases, does not.
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B. Approximating σ2
T for Mixed-Sample Methods

The variance of the T -statistic distribution used in Ref. [8] is difficult to calculate since it depends
on f (~x). The limiting value is given by (using the notation from Section 3.1)

lim
n→∞

σ
2
T =

1
nnk

(
nanb

n2 +4
n2

an2
b

n4 nk p̄′1−
nanb(na−nb)

2

n4 nk(1− p̄′2)
)
, (B.1)

where

p̄′i =
1
n2

k

nk

∑
k=1

nk

∑
l=1

lim
n→∞

npi(k, l), (B.2)

and p1(k, l) and p2(k, l) are the mutual- and shared-neighbor probabilities, respectively (for a de-
tailed discussion of these quantities, see Refs. [8, 23]). Ref. [23] provides the following very useful
limits:

lim
nk→∞

nk p̄′1 = 1 (B.3a)

lim
D→∞

p̄′2 = 1. (B.3b)

These limits converge very quickly. Using Eq. B.3 the following limiting values of σT are obtained:

lim
n,nk→∞

σ
2
T =

1
nnk

(
nanb

n2 +4
n2

an2
b

n4

)
if na = nb, (B.4a)

lim
n,nk,D→∞

σ
2
T =

1
nnk

(
nanb

n2 +4
n2

an2
b

n4

)
∀ na,nb. (B.4b)

The convergence to these limits is so fast that Eq. B.4b can be used to obtain a good approximation
of σT even for D = 2 for certain values of na,nb and nk.

Qualitatively, the constraints required to ensure that Eq. B.4b is a valid approximation of
Eq. B.1 are not too difficult to see. Recall that it is the values of p̄′1 and p̄′2 that must be ap-
proximated; however, the limit given in Eq. B.4a converges fast enough that one need not worry
about the term containing p̄′1 in Eq. B.3. The term containing p̄′2 is proportional to both (na−nb)

2

and nk. This limits both how much larger one sample can be than the other and how large a value
of nk can be chosen. I have found that the values na . 10 nb and nk . 10 satisfy all of the rele-
vant constraints. Changing these values by a factor of two worked fine in the studies I performed;
changing them by a factor of 10 did not.

C. The Permutation Test

If the p.d.f. of the test statistic, T , is not known or is difficult to calculate, then it can often be esti-
mated by performing some kind of re-sampling of the data. There are many re-sampling techniques
described in the statistical literature, e.g., bootstrapping, jackknifing, etc. (see, e.g., Ref. [21]). The
method described in this appendix, referred to as a permutation test, was first proposed by Fisher
in 1935 [24]. A detailed discussion on this topic can be found in Ref. [25].

The permutation test involves combining the data and Monte Carlo data into a pooled sample
of size n = nd + nmc. The first step towards obtaining an estimate for the p-value is to randomly
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select nd events from the pooled sample and temporarily label them “data”; label the remaining nmc

events “Monte Carlo.” The test statistic, denoted Tperm, is then calculated with these designations
for each event. This process can be repeated for all of the n!/(nd!nmc!) possible event combinations;
however, if this requires too much processing time, then a random subset of combinations may
be used. This process results in producing the set of T values {T 1

perm . . .T nperm
perm }, where nperm is

the number of event combinations used. The p-value is then simply the fraction of times where
T < Tperm.

Why does this technique work? For the case where the test p.d.f. and parent p.d.f. are the same,
the assignment of “data” and “Monte Carlo” are effectively just labels. Reassigning these labels
should have no effect on the mean value of T . Furthermore, each of the n!/(nd!nmc!) possible event
assignment combinations could have equally well been observed by our experiment. Thus, we can
use them to estimate the p.d.f. of T and, in turn, obtain an estimate for the p-value.

For this paper, I chose to use only 100 randomly selected event combinations due to the large
number of p-values that needed to be calculated (I analyzed ensembles of data sets for multi-
ple p.d.f.’s). The uncertainty on the p-value is obtained from the binomial distribution to be
σp =

√
p(1− p)/nperm. Thus, the number of permutations required depends on the p-value ob-

tained. E.g., if after 100 permutations the estimate of the p-value is 0.5, then the uncertainty on p is
0.05. This is sufficient to conclude that the agreement between the fit p.d.f. and the data is good. If,
however, the p-value estimate is 0.06, then the uncertainty on p is 0.02. More permutations would
be required if, e.g., one wanted to know whether or not the fit p.d.f. is rejected at 95% confidence
level.

D. Uniformity of the U Statistic

In this appendix I will prove that the U statistic used in Ref. [14] and defined in Eq. 3.13 is ap-
proximately uniform if the parent p.d.f. and the test p.d.f. are equivalent, i.e., if f = f0. The proof
presented here follows the one given in Ref. [14] but includes some additional intermediate steps
for illustrative purposes.

The probability that event j is less than R away from event i is given by

P(|~xi−~x j|< R) =
∫
|~x−~xi|<R

f (~x)d~x, (D.1)

which follows from the fact that
∫

f (~x)d~x = 1. The probability that none of the other nd−1 events
falls within R of event i is then

P(Rnn
i ≥ R) =

(
1−

∫
|~x−~xi|<R

f (~x)d~x
)nd−1

. (D.2)

Substituting y =
∫
|~x−~xi|<R f (~x)d~x and using the fact that the value of the integral of the p.d.f. is

monotonically non-decreasing with R yields

P(− 1
nd

logUi ≥ y) = (1− y)nd−1 (D.3)

if f = f0. Finally, making the substitution y =− logz/nd yields

P(Ui ≤ z) =
(

1+
1
nd

logz
)nd−1

, (D.4)
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for logz >−nd (which follows from the fact that y < 1). The p.d.f. for the U’s is then

fU(z) =
d
dz

P(Ui ≤ z) =
nd−1

ndz

(
1+

1
nd

logz
)nd−2

≈ 1, (D.5)

for e−nd < z ≤ 1. Thus, for the case f = f0, the U distribution obtained for a data set is approx-
imately uniform. Of course, the U values for each event are not independent (since they include
the nearest-neighbor distances) so this is not a true p.d.f. Because of this, the U distribution is
expected to have some deviation from uniformity greater than that given in Eq. D.5 (discussion on
this is oddly absent from Ref. [14]).

E. Test Usages in Other Fields

While the use of unbinned multivariate g.o.f. methods in high energy physics is currently very lim-
ited, many other scientific fields have been employing these techniques for some time (for decades
in some areas). Below is a (very informal) survey of how the tests studied in this paper have been
used in other fields. Citation counts are taken from scholar.google.com.

Mixed-Sample Methods
Refs. [8, 9] have been cited 39 and 55 times, respectively, including a number of citations
in ecology publications. The most popular ecological application of this method appears
to be in the analysis of stable-isotope ratios. The ratios of the stable isotopes of carbon
and nitrogen in the tissue of an animal can be used to determine its dietary composition.
The mixed-sample g.o.f. method has been used to determine the statistical significance of
differences found in carbon-nitrogen isotope space from different biological samples.

Point-to-Point Dissimilarity Methods
Refs. [11, 12] have been cited 40 and 11 times, respectively. These publications are both
recent (2004), but the list of fields citing them is already diverse; it includes genetics, mag-
netic resonance imaging, sociology, astronomy, etc. This technique appears to be well suited
to determining g.o.f. in a wide range of multivariate analyses, which is not surprising given
how effective it is in a Dalitz-plot analysis.

Distance to Nearest-Neighbor Methods
Ref. [14] has been cited 71 times, including a number of times in publications that deal with
testing the quality of random number generators. It is easy to demonstrate why. Consider
the optimally non-random set {i/n : i = 0, . . . ,n− 1}. Many g.o.f. tests, including the χ2

test, would not reject a uniform Poisson hypothesis when applied to this data. The method
presented in Ref. [14], however, does reject it since the distance from each event to its nearest
neighbor is constant. This results in a U distribution that is a spike (instead of uniform).

Local-Density Methods
Ref. [15] has a citation count of 985; this includes referencing in a few books that have been
cited almost two thousand times each and in a large number of ecology publications. Eco-
logical processes can be non-Poisson due to factors such as reproduction and competition.
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For a Poisson process, the K and L functions take on larger values if f 6= f0 (see Section 3.4).
If, however, the process is not Poisson (i.e., if the events are correlated), then the K and L
functions can also take on smaller values. Detecting such correlations is often important in
ecology. It is also important in areas such as public health where the method presented in
Ref. [15] has been used to monitor for clusters of disease. The inhomogeneous extension
presented in Ref. [17] already has 148 citations (more than one per month since its publica-
tion).

Kernel-Based Methods
Ref. [18] has a citation count of 418 including a number of citations in the field of econo-
metrics. Economic data is highly multi-dimensional. There is a lot of interest in being able
to properly model this data so that future trends and outcomes can be predicted and, in turn,
obscene amounts of money made. The g.o.f. of economic models has often been tested using
the p.d.e. approach presented in Refs. [18, 19].

It would appear that many other scientific fields are much more advanced than high energy physics
when it comes to unbinned multivariate g.o.f. testing. Hopefully this will change in the near future.
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