Measurement of the Beam and Target Asymmetry in $\gamma p \rightarrow p \pi^+ \pi^$ with the CLAS Spectrometer at JLab

Sungkyun Park on the behalf of CLAS Collaboration

Florida State University

April 2, 2012

ヘロト ヘアト ヘヨト ヘ

Outline

Introduction

• Why is $\pi^+\pi^-$ photoproduction needed

PROST Experiment

- FROST Experiment at Jefferson Laboratory
- The FROzen-Spin Target (FROST)

3 Data Analysis

- Polarization Observables
- Event-based dilution factor

The Preliminary Results

- Polarization Observable I^O
- Polarization Observable Pz

< 17 ▶

Why is $\pi^+\pi^-$ photoproduction needed

Why is $\pi^+\pi^-$ photoproduction needed

- Search for new baryon states that are predicted by quark models and Lattice QCD.
- The most intense cross section contribution is from double pion production, especially (γ , $\pi^+ \pi^-$), in the second resonance region
- Polarization observables are important in the resonance extraction from data.

FROST Experiment at Jefferson Laboratory The FROzen-Spin Target (FROST)

FROST Experiment at Jefferson Laboratory

FROST Experiment at Jefferson Laboratory The FROzen-Spin Target (FROST)

The FRozen-Spin Target (FROST)

High magnetic field (5 T)

- (a) The longitudinal holding magnet. (0.56 T) (Nov. 2007 - Feb. 2008)
- (b) The transversal holding magnet. (0.50 T) (March 2010 - August 2010)
- (c) The polarizing magnet. (5 T)

28 mK (w/o beam) and 30mK (w/ beam)

Sungkyun Park

APS April 2012 in Atlanta

Polarization Observables Event-based dilution factor

Photoproduction of $\pi^+\pi^-$ off the proton: Kinematics

• The π^+ π^- photoproduction require 5 independent variables.

1 0 7 1 8 7 1 5 7 1 5 7 1 5 7 1

Polarization Observables Event-based dilution factor

Polarization observables

The data used for this research :

- 1. circularly-polarized beam
- 2. longitudinally-polarized target

 $\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{i}}} &= \sigma_{0} \left\{ \left(\mathbf{1} + \mathbf{\Lambda}_{z} \cdot \mathbf{P}_{z} \right) \\ &+ \delta_{\odot} \left(\mathbf{I}^{\odot} + \mathbf{\Lambda}_{z} \cdot \mathbf{P}_{z}^{\odot} \right) \right\} \end{aligned}$

- δ_{\odot} and $\vec{\Lambda}_z$: The degree of beam and target polarizaton
- \mathbf{P}_{z}^{\odot} , \mathbf{P}_{z} , and \mathbf{I}^{\odot} : The polarization observables

イロト 不得 トイヨト イヨト 二三

Polarization Observables Event-based dilution factor

Polarization observables

The data used for this research :

- 1. circularly-polarized beam
- 2. longitudinally-polarized target

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{i}}} = \sigma_{0} \left\{ \left(\mathbf{1} + \Lambda_{z} \left(\mathbf{P}_{z} \right) + \delta_{\odot} \left(\mathbf{I}^{\odot} + \Lambda_{z} \left(\mathbf{P}_{z}^{\odot} \right) \right) \right\}$$

- δ_{\odot} and $\vec{\Lambda}_z$: The degree of beam and target polari

- \mathbf{P}_{z}^{\odot} , \mathbf{P}_{z} , and \mathbf{I}^{\odot} : The polarization observables

${\rm I}^{\,\odot}$ only is published

- Phys.Rev.Lett. 95, 162003 (2005, CLAS Collaboration)

Polarization Observables Event-based dilution factor

Polarization observable I^o

$$\mathbf{I}^{\odot}(\mathbf{W}, \ \theta^*, \ \phi^*) = \frac{1}{\overline{\delta}_{\odot}(\mathbf{E}_{\gamma})} \frac{\left\{ N(\rightarrow)_{beam} - N(\leftarrow)_{beam} \right\}}{\left\{ N(\rightarrow)_{beam} + N(\leftarrow)_{beam} \right\}}$$

 $\delta_{\odot}(E_{\gamma})$: The average of the degree of the photon beam polarizations

 $\diamond \rightarrow$ (\leftarrow) : the direction of the beam polarization is parallel (anti-parallel) to the beam.

Polarization Observable I ^(·) Polarization Observable Pz

Beam asymmetry I^o from proton data

Polarization Observable I ^(·) Polarization Observable Pz

Beam asymmetry I^o from proton data

Polarization Observable I ^(·) Polarization Observable Pz

Beam asymmetry I^o from butanol data

Polarization Observable I ^(·) Polarization Observable Pz

Observable I^o from different target nucleons

Polarization Observable I ^(·) Polarization Observable P_z

Target Asymmetry P_z from proton data

Polarization Observable I ⁽⁾ Polarization Observable P_z

Summary

- The event-based dilution factor can separate the background from the butanol data efficiently.
- ◇ Polarization Observable I[☉] using the FROST data has a good agreement with the previous published CLAS data.
- The preliminary result for the target asymmetry is shown.

イロト 不得下 イヨト イヨト